Package 'saePseudo'

June 4, 2024

Type Package

Title Small Area Estimation using Averaging Pseudo Area Level Model

Version 0.1.0

Maintainer Darin Huwaida <darinhuwaida21@gmail.com>

Description Provides function for small area estimation at area level using averaging pseudo area level model for variables of interest. A dataset produced by data generation is also provided. This package estimates small areas at the village level and then aggregates them to the sub-district, region, and provincial levels.

License GPL-3

URL https://github.com/darinhuwaidaa/saePseudo

BugReports https://github.com/darinhuwaidaa/saePseudo/issues

Depends R (>= 3.5.0) Imports dplyr, sae Suggests knitr, rmarkdown, testthat (>= 3.0.0) VignetteBuilder knitr Encoding UTF-8 LazyData true RoxygenNote 7.2.3 Config/testthat/edition 3 NeedsCompilation no Author Darin Huwaida [aut, cre], Azka Ubaidillah [aut]

Repository CRAN

Date/Publication 2024-06-04 15:50:02 UTC

Contents

avgPseudo											 								•							2
dataVill .		•	•	•					•	•	 			•	•		•	•	•		•	•	•	•	•	3

Index

avgPseudo

Small Area Estimation using Averaging Pseudo Area Level Model

Description

Provides function for small area estimation at area level using averaging pseudo area level model for variables of interest. A dataset produced by data generation are also provided. This package estimates small areas at the village level and then aggregates them to the sub-district, region, and provincial levels.

Usage

avgPseudo(prov, reg, sub, vill, y, x, var, N, method = "REML")

Arguments

prov	Vector containing information of province
reg	Vector containing information of region
sub	Vector containing information of subdistrict
vill	Vector containing information of village
У	Direct estimation for each area
x	Auxiliary variable for each area
var	Sampling variances of direct estimators for each domain
Ν	Number of population in each area
method	Method used to fit the Fay-Herriot model, which can be either "ML", "REML" or "FH" methods. Default is "REML" method

Value

This function returns a list of the following objects:

Est_Area3	A dataframe with the values of Small Area Estimation with averaging pseudo area level model for sub-district level
Est_Area2	A dataframe with the values of Small Area Estimation with averaging pseudo area level model for region level
Est_Area1	A dataframe with the values of Small Area Estimation with averaging pseudo area level model for provincial level

5

dataVill

Examples

dataVill

Sample Data for Small Area Estimation using Averaging Pseudo Area Level Model

Description

Dataset to simulate Small Area Estimation using Averaging Pseudo Area Level Model This data is generated by these following steps:

- 1. Generate population data consisting Area1 (province), Area2 (region), Area3 (sub-district), Area4 (village), and Unit. The auxiliary variabels are generated by Uniform distribution with (x1 U(40, 100)) and Normal distribution with (x2 N(70, 5)). The coefficient parameters are set as $\beta_0 = 0.5$, $\beta_1 = 0.2$, and $\beta_2 = 0.2$
- 2. Calculate $y_k = \beta_0 + \beta_1 * x 1_k + \beta_2 * x_2 k$
- 3. Generate number of sample with simple random sampling with replacement
- 4. Calculate $y dir_a rea4 = \frac{\Sigma y_k}{n}$, $vardir_a rea4 = \frac{\Sigma (y_k \frac{\Sigma y_k}{n})^2}{n-1}$, and auxiliary variable $X1 = \frac{\Sigma x 1_k}{n}$
- 5. Calculate N (number of population) based on the initial population generated for each Area4 selected as a sample
- 6. Area1, Area2, Area3, Area4, ydir_area4, vardir_area4, X1, and N are combined in a dataframe called dataVill.

Usage

dataVill

Format

A data frame with 83 observations on the following 8 variables:

Area1 Province

Area2 Region

Area3 Sub-district

Area4 Village

dataVill

ydir_area4 Direct Estimation of yvardir_area4 Sampling variance of yX1 Auxiliary variableN Number of population in area4

Index

avgPseudo, 2

dataVill, 3