
SQLTEX

v2.0

Oscar van Eijk

Januari 12, 2016

Contents

1 Introduction 2
1.1 Known limitations . 2

2 Installing SQLTEX 2
2.1 Configuration . 3
2.2 Create replace files . 5

2.2.1 Regular expressions . 6

3 Write your SQLTEX file 7
3.1 SQL statements . 8
3.2 Opening the database . 8
3.3 Reading a single field . 9

3.3.1 Define variables . 9
3.4 Reading rows of data . 9

3.4.1 Output rows on seperate lines 10
3.4.2 Store data in an array . 10

3.5 Loop context . 10
3.6 Output multiple documents . 11
3.7 Update database records . 12

4 Process your SQLTEX file 12
4.1 Parameters . 12
4.2 Command line options . 12

5 SQLTEX errors and warnings 14

6 Copyright and disclaimer 16

1

7 History 16

1 Introduction

SQLTEX is a preprocessor to enable the use of SQL statements in LATEX. It is
a perl script that reads an input file containing the SQL commands, and writes
a LATEX file that can be processed with your LATEX package.

The SQL commands will be replaced by their values. It’s possible to select a
single field for substitution substitution in your LATEX document, or to be used
as input in another SQL command.

When an SQL command returns multiple fields and or rows, the values can
only be used for substitution in the document.

1.1 Known limitations

• The LATEX \includeonly directive is ignored; all documents included with
\include will be parsed and written to the output file.

• Currently, only 9 command- line parameters (1-9), and 10 variables (0-9)
can be used in SQL statements.

• Replace files can hold only 1,000 items.

• In multidocument mode, only one parameter can be retrieved.

2 Installing SQLTEX

Before installing SQLTEX, you need to have it. The latest version can always
be found at http://freeware.oveas.com/sqltex. The download consists of this
documentation, an installation script for Unix (install), and the Perl script
SQLTeX, and a replace- file (SQLTeX r.dat) for manual installation on non- unix
platforms1.

On a Unix system, make sure the file install is executable by issueing the
command:
bash$ chmod +x install

then execute it with:
bash$./install

The script will ask in which directory SQLTEX should be installed. If you are
logged in as ‘root’, the default will be /usr/local/bin, otherwise the current
directory.
Make sure the directory where SQLTEX is installed is in your path.

1on Unix, this file will be generated by the install script

2

For other operating systems, there is no install script, you will have to install
it manually.

On OpenVMS it would be something like:
$ COPY SQLTEX.PL SYS$SYSTEM:

$ COPY SQLTEX.CFG SYS$SYSTEM:

$ COPY SQLTEX R.DAT SYS$SYSTEM:

$ SET FILE/PROTECTION=(W:R) SYS$SYSTEM:SQLTEX*.*

However, on OpenVMS you also need to define the command SQLTEX by setting
a symbol, either in the LOGIN.COM for all users who need to execute this script,
or in some group– or system wide login procedure, with the command:
$ SQLTEX :== "PERL SYS$SYSTEM:SQLTEX.PL"

2.1 Configuration

The location where SQLTEX is installed also holds the configuration file SQLTeX.cfg.
Multiple configuration files can be created, the command line option -c can be
used to select the requested configuration.

Note: If a 1.x version of SQLTEX is installed on your system, make sure you saved
the configuration section, which was inline in older versions.

Some values can be overwritten using command line options (see section 4.2).
When the command line options are omitted, the values from the requested
configuration file will be used.

dbdriver Database driver. The default is mysql. Other supported databases
are Pg, Sybase, Oracle, Ingres, mSQL and PostgreSQL, but also others
might work without modification.
If your database driver is not support, look for the function db connect

to add support (and please notify me :)

texex The default file extension for LATEX file. When SQLTEX is called, the
first parameter should be the name of the input file. If this filename has
no extension, SQLTEX looks for one with the default extension.

stx An output file can be given explicitly using the ‘-o’ option. When omitted,
SQLTEX composes an output file name using this string.
E.g, if your input file is called db-doc.tex, SQLTEX will produce an out-
putfile with the name db-doc stx.tex.

rfile comment The comment-sign used in replace files. If this is empty, com-
ments are not allowed in the replace files.

rfile regexploc This must be part of the value rfile regexp below.

rfile regexp Explains how a regular expression is identified in the replace files
(see section 2.2.1).

3

cmd prefix SQLTEX looks for SQL commands in the input file. Commands are
specified in the same way all LATEX commands are specified: a backslash
(\) followed by the name of the command.
All SQLTEX commands start with the same string. By default, this is the
string sql. When user commands are defined that start with the same
string, this can be changed here to prevent conflicts.

sql open This string is appended to the cmd prefixx to get the complete
SQLTEX command for opening a database.
With the default configuration this command is “\sqldb”.

sql field This string is appended to the cmd prefix to get the complete SQLTEX
command to read a single field from the database.
With the default configuration this command is “\sqlfield”.

sql row This string is appended to the cmd prefix to get the complete SQLTEX
command to read one or more rows from the database.
With the default configuration this command is “\sqlrow”.

sql params This string is appended to the cmd prefix to get the complete
SQLTEX command to retrieve a list if fields that will be used as parame-
ters ($PAR1, see section 4.1) in the multidocument environment (see sec-
tion 3.6).
With the default configuration this command is “\sqlparams”.

sql update This string is appended to the cmd prefix to get the complete
SQLTEX command to update one or more rows in the database.
With the default configuration this command is “\sqlupdate”.

sql start This string is appended to the cmd prefix to get the complete SQLTEX
command start a section that will be repeated for every row from an array
(see section 3.5).
With the default configuration this command is “\sqlstart”.

sql use This string is appended to the cmd prefix to get the complete SQLTEX
command use a named variable from the array that is currently being
processed in a loop context (see section 3.5).
With the default configuration this command is “\sqluse”.

sql end This string is appended to the cmd prefix to get the complete SQLTEX
command to end a loop context (see section 3.5).
With the default configuration this command is “\sqlend”.

less av & more av These settings are used to determine how the help output
should be displayed. If the command ‘less’ is available on the current
system, the output will be parsed through this program. Otherwise the
output will be parsed through the program ‘more’ if availeble. Both pro-
grams are usually available on Unix system (more is standard on most
Unix systems), but ports for other operating systems are available as well.

4

Set the values to “0” for the program(s) that is (are) not available, or if
you don’t want to use it.
If none of these programs is available, the help output is plain echoed to
the display.

repl step Replacing strings (see section 2.2 below) is done two steps, to prevent
values from being replaced twice. This setting—followed by a three-digit
integer - “000” to “999”—is used in the first step and replaces values
from the first column. In the second step, values from the second column
replace the temporary value.
If the first column in the replace file contains a character sequence that
occurs in this temporary value, or if query results might contain the full
string followed by three digits, this value might need to be changed in
something unique.

alt cmd prefix In loop context, this setting is used internally to differenti-
ate between sql statements to process immediately and sql statements on
stack.
Normally, this setting should never change, but if the value for cmd prefix

has been changed and a conflict is found, the message “Configuration
item ’alt cmd prefix’ cannot start with <conflicting value> ” in-
dicates this setting should change as well.

2.2 Create replace files

Replace files can be used to substitute values in the output of your SQL com-
mands with a different value. This is especially usefull when the database con-
tains characters that are special characters in LATEX, like the percent sign (‘%’),
underscore (‘ ’) etc.

When SQLTEX is installed, it comes with a standard file—SQLTeX r.dat—
which is located in the same directory where SQLTeX is installed, with the
following replacements:

$ \$

_ _

% \%

& \&

< \texttt{<}

> \texttt{>}

{ \{

} \}

\#

~ \~{}

\ \ensuremath{\backslash}

These are all single character replacements, but you can add your own re-
placements that consist of a single character or a character sequence (or even

5

regular expressions, see section 2.2.1).
To do so, enter a new line with the character(string) that should be replaced,
followed by one or more TAB-character(s) (not blanks!) and the character(string)
it should be replaced with.

If the first non-blank character is a semicolon (‘;’), the line is considered a
comment line2. Blank lines are ignored.

The contents of the file are case sensitive, so of you add the line:
LaTeX \LaTeX\

the word “LaTeX” will be changed, but “latex” is untouched.

Different replace files can be created. To select a different replace file for a
certain SQLTEX source, use the commandline option ‘-r filename ’. To disable
the use of replace files, use ‘-rn’.

2.2.1 Regular expressions

The replace file can include regular expressions, which are recognized by a pat-
tern given in the configuration setting rfile regexp. A part of the pattern,
configurable as rfile regexploc, will be the actual regular expression.

By default, rfile regexploc is “...” and rfile regexp is “re(...)”.
If the sequence of three dots can appear anywhere else in the replace file,
rfile regexploc can be changed to any other sequence of characters, e.g.
“regexpHere”.
This also requires rfile regexp to be changed. Its new value has to be “re(regexpHere)”

Both in the default configuration and with the modification example given
above, the key for regular expressions is re(<regular expression >), e.g.:
re(<p\.*?>) \paragraph*{}

will replace all HTML <p> variants (<p style=’font-size: normal’>, <p align=’center’>
etc)

An example replacement file using regular expressions to handle HTML
codes could look like this:

& \&

 \textbf{

 }

 \textit{

 }

re(<br.*?/?>) \\

re(<p.*?>) \paragraph*{}

</p> \\[0pt]

<sup> $^{

2 in the default configuration. See the description for rfile comment in section 2.1 to
change of disable comment lines.

6

</sup> }$

re(<span.*?>) \textsl{

 }

re(<h1.*?>) \section{

re(<h2.*?>) \subsection{

re(<h3.*?>) \subsubsection{

re(</h\d>) }

3 Write your SQLTEX file

For SQLTEX, you write your LATEX document just as you’re used to. SQLTEX
provides you with some extra commands that you can include in your file.
The basic format3 of an SQLTEX command is:
\sqlcmd [options]{SQL statement}

All SQLTEX commands can be specified anywhere in a line, and can span
multiple lines. When SQLTEX executes, the commands are read, executed, and
their results—if they return any—are written to the output:

Input file:
\documentclass[article]
\pagestyle{empty}
\sqldb[oscar]{mydb}
\begin{document}

Output file:
\documentclass[article]
\pagestyle{empty}

\begin{document}

Above you see the SQLTEX command \sqldb was removed. Only the com-
mand was removed, not the newline character at the end of the line, so an empty
line will be printed instead. The example below shows the output is an SQLTEX
command was found on a line with other LATEX directives:

Input file:
\documentclass[article]
\pagestyle{empty}\sqldb[oscar]{mydb}
\begin{document}

Output file:
\documentclass[article]
\pagestyle{empty}
\begin{document}

In these examples the SQLTEX commands did not return a value. When
commands actually read from the database, the returned value is written in-
stead:

Input file:
This invoice has \sqlfield{SELECT
COUNT(*) FROM INVOICE LINE

WHERE INVOICE NR = 12345} lines.

Output file:
This invoice has 4 lines

3in this document, in all examples will be asumed the default values in the configuration
section as described in section 2.1, have not been changed

7

3.1 SQL statements

This document assumes the reader is familiar with SQL commands. This section
only tells something about implementing them in SQLTEX files, especially with
the use of command parameters and variables. Details about the SQLTEX
commands will be described in the next sections.

Let’s look at a simple example. Suppose we want to retreive all header
information from the database for a specific invoice. The SQL statement could
look something like this:
SELECT ∗ FROM INVOICE WHERE INVOICE NR = 12345;

To implement this statement in an SQLTEX file, the \sqlrow command should
be used (see section 3.4):

First, it is important to know that SQL statements should not contain
the ending semicolon (;) in any of the SQLTEX commands. The command
in SQLTEX would be:
\sqlrow{SELECT ∗ FROM INVOICE WHERE INVOICE NR = 12345}

Next, SQLTEX would be useless if you have to change your input file every
time you want to generate the same document for another invoice.

Therefore, you parameters or variables can be used in your SQL statement.
Parameters are given at the command line (see section 4.1), variables can be
defined using the \sqlfield command as described in section 3.3.1.

Given the example above, the invoice number can be passed as a parameter
by rewriting the command as:
\sqlrow{SELECT ∗ FROM INVOICE WHERE INVOICE NR = $PAR1}
or as as variable with the code line:
\sqlrow{SELECT ∗ FROM INVOICE WHERE INVOICE NR = $VAR0}

Note you have to know what datatype is expected by your database. In the
example here the datatype is integer. If the field “invoice nr” contains a
varchar type, the $PARamater or $VARiable should be enclosed by quotes:
\sqlrow{SELECT ∗ FROM INVOICE WHERE INVOICE NR = ’$PAR1’}

3.2 Opening the database

Before any information can be read from a database, this database should be
opened. This is done with the \sqldb command. \sqldb requires the name
of the dabatase. Optionally, a username and password can be given. When
omitted, SQLTEX assumes no username and password is required to connect to
the database (the user that executes SQLTEX should have access to the specified
database).
The format of the command is:
\sqldb[username,password]{database}

The command can be used anywhere in your input file, but should occur
before the first command that tries to read data from the database.

8

3.3 Reading a single field

When a single field of information is to be read from the database, the command
\sqlfield is used. By default, the command in the inputfile is replaced by its
result in the outputfile.
The SQL command is enclosed by curly braces. Square brackets can optionally
be used to enter some extra options. Currently, the only supported option is
setvar (see section 3.3.1).

The full syntax or the \sqlfield command is:
\sqlrow[options]{SELECT fieldname FROM tablename WHERE your where-clause }
By default, the SQLTEX command is replaced with the value returned by the
SQL query. This behaviour can be changed with options.

3.3.1 Define variables

The \sqlfield can also be used to set a variable. The value returned by the
SQL query is not displayed in this case. Instead, a variable is created which can
be used in any other SQL query later in the document (see also section 3.1).

Therefore, the option [setvar=n] is used, where n is an integer between 0
and 9.

Suppose you have an invoice in LATEX. SQLTEX is executed to retrieve the
invoice header information from the database for a specific customer. Next, the
invoice lines are read from the database.

You could pass the invoice number as a paramater to SQLTEX for use in
your queries, but that could change every month. It is easier to :

• pass the customer number as a parameter,

• retrieve the current date (asuming that is the invoice date as stored in the
database by another program), and store it in a variable:
\sqlfield[setvar=0]{SELECT DATE FORMAT(NOW(), "%Y-%m-%d")}
This creates a variable that can be used as $VAR0,

• retrieve the invoice number using the customer number (a command line
parameter, see also section 4.1) and the variable containing the invoice
date. Store this invoice number in $VAR1:
\sqlfield[setvar=1]{SELECT INVOICE NR FROM INVOICES

WHERE CUST NR = ’$PAR1’ AND INVOICE DATE = ’$VAR0’}

• use $VAR1 to retrieve all invoice information.

The SQL queries used here do not display any output in your LATEXdocument.

3.4 Reading rows of data

When an SQL query returns more information than one single field, the SQLTEX
command \sqlrow should be used. As with the \sqlfield, command, SQLTEX

9

replaces the command with the values it returns, but \sqlrow accepts different
options for formating the output.

By default, fields are separated by a comma and a blank (‘, ’), and rows by
a newline character (‘\\’). To change this, the options “fldsep” and “rowsep”
can be used.

e.g. In a tabular enviroment the fields should be seperated by an amphe-
sand (&), perhaps a line should seperate the rows of information. (\\ \hline).
To do this, the options can be used with \sqlrow as shown here:
\sqlrow[fldsep=&,rowsep=\\ \hline]{SELECT I.LINE NR, A.ARTICLE NR, A.PRICE,

I.AMOUNT, (A.PRICE * I.AMOUNT) FROM ARTICLE A, INVOICE LINE I WHERE

I.INVOICE NR = $VAR1 AND I.ARTICLE NR = A.ARTICLE NR}

This will produce an output like:
1 & 9712 & 12 & 1 & 12 \\ \hline
2 & 4768 & 9.75 & 3 & 29.25 \\ \hline
3 & 4363 & 1.95 & 10 & 19.5 \\ \hline
4 & 8375 & 12.5 & 2 & 25 \\ \hline

3.4.1 Output rows on seperate lines

Some LATEX packages require input on a seperate line. If this output is to be
read from a database, this can be set with the rowsep option using the fixed
text “NEWLINE”.

3.4.2 Store data in an array

The \sqlrow command can also be used to store the data in an array. The value
returned by the SQL query is not displayed in this case. Instead, an array is
created which can be used later the document in a loop context (see section 3.5).

Therefore, the option [setarr=n] is used, where n is an integer between 0
and 9.

3.5 Loop context

In a loop context, an array if filled with data from the database using \sqlrow.
Later in the document, the data can be used in a textblock that will be written
to the outputfile once for every record retrieved.

The textblock is between the \sqlstart{n } and \sqlend{n } commands,
where n is the sequence number of the array to use4.

Multiple textblocks can occur in the document, but they can not be nested!

In the example below, data for unpaid invoices is stored in an array identified
with sequence number 0:

4 in \sqlend, the sequence number is ignored, but required by syntax.

10

\sqlrow[setarr=0]{SELECT I.INVOICE NR AS nr

, I.DUE DATE AS date

, I.TOTAL AS amount

, C.NAME AS customer

FROM INVOICES I

LEFT OUTER JOIN CUSTOMERS C

ON C.CUST NR = I.CUST NR

WHERE I.PAY DATE = NULL}

To use this data, a textblock must start with: \sqlstart{0}
Between this command and the first occurrence of \sqlend{}, an unlimited
amount5 of LATEX text can be. Within this text, every occurence of \sqluse{<field
name >} will be replaced with the matching field from the current row, e.g.:

\sqlstart{0}

\begin{flushright}

Regarding: invoicenumber \sqluse{nr}

\end{flushright}

Dear \sqluse{customer},

On \today, the invoice with number \sqluse{nr}, payable before

\sqluse{date}, was not yet received by us.

We kindly request you to pay the amount of \texteuro\sqluse{amount}

as soon as possible.

\newpage

\sqlend{}

3.6 Output multiple documents

A single input file can be created to generate more output files. This option
retrieves the first parameter (see section 4.1) from the database (ignoring any
parameters that where given on the command line!).

The input document must contain the command \sqlsetparams (in the de-
fault configuration) without any options. The query that follows can return an
unlimited number of rows all containing exactly 1 field:
\sqlsetparams{SELECT INVOICE NR FROM INVOICES WHERE PAY DATE = NULL}

By processing this command, SQLTEX builds a list with all values retrieved
and processes the input file again for each value.
In those runs, the queries are executed as described in the previous sections,
using the value as a parameter:
\sqlrow{SELECT * FROM INVOICES WHERE INVOICE NR = $PAR1}

5 limited by your computer’s memory only

11

To enable the multidocument mode, the command line switch -m or -M must
be given and no parameters are allowed. The switches -m and -M cannot be
used together.
Without the -m or -M switch, a parameter can be given and a single output
document will be created, ignoring the \sqlsetparams command.

With the -m switch, output filenames will be numbered filename 1.tex to
filename n.tex.
With the -M switch, output filenames will be numbered filename parameter.tex,
where parameter is the value taken from the database (invoice nr in the ex-
ample above). Note the parameter will not be formatted to be filename-friendly!

3.7 Update database records

Since version 1.5, SQLTEX supports database updates as well:
\sqlupdate{UPDATE INVOICES SET REMINDERS = REMINDERS + 1, LAST REMINDER

= NOW() INVOICE NR = $VAR1}

This command accepts no options.

4 Process your SQLTEX file

To process you SQLTEX file and create a LATEX file with all information read
from the database, call SQLTEX with the parameter(s) and (optional) command-
line options as described here:

4.1 Parameters

SQLTEX accepts more than one parameter. The first parameter is required;
this should be the input file, pointing to your LATEX document containing the
SQLTEX commands.

By default, SQLTEX looks for a file with extension ‘.tex’.

All other parameters are used by the queries, if required. If an SQL query
contains the string $PARn 6, it is replaced by that parameter (see also sec-
tion 3.1).

4.2 Command line options

SQLTEX accepts the followint command- line options:

-c file SQLTEX configuration file. Default is SQLTeX.cfg in the same location
where SQLTEX is installed.

6where n is a number between 1 and 9. Note parameter ‘0’ cannot be used, since that
contains the filename!

12

-e string add string to the output filename: input.tex will be inputstring.tex.
This overwrites the configuration setting stx

In string, the values between curly braces {} will be substituted:

Pn parameter n

M current monthname (Mon)

W current weekday (Wdy)

D current date (yyyymmdd)

DT current date and time (yyyymmddhhmmss)

T current time (hhmmss)

e.g., the command ‘SQLTeX -e {P1} {W} my file code’ will read ‘my file.tex’
and write ‘myfile code Tue.tex’ The same command, but with option
-E would create the outputfile myfile. code Tuesday By default (with-
out -e or -E) the outputfile myfile stx.tex would have been written.
The options -E and -e cannot be used together or with -o.

-E string replace input file extension in outputfile: input.tex will be input.string
For further notes, see option -e above.

-f force overwrite of existing files. By default, SQLTEX exists with a warning
message it the outputfile already exists.

-h print this help message and exit.

-m Multidocument mode; create one document for each parameter that is re-
trieved from the database in the input document (see section 3.6). This
option cannot be used with -o.

-M Same as -m, but with the parameter in the filename instead of a serial
number (see section 3.6).

-N NULL return values allowed. By default SQLTEX exits if a query returns an
empty set.

-o file specify an output file. Cannot be used with -e or -E.

-p prefix prefix used in the SQLTEX file. Default is sql (see also section 2.1
on page 4. This overwrites the configurarion setting cmd prefix.

-P prompt for database password. This overwrites the password in the input
file.

-q run in quiet mode.

-r replace Specify a file that contains the replace characters (see section 2.2).
This is a list with two TAB- seperated fields per lione. The first field holds
a string that will be replaced in the SQL output

13

-rn Do not use a replace file. -rn and -r file are handled on the same order
in which they appear on the commandline and overwrite each other.

-s server SQL server to connect to. Default is localhost.

-U user database username. This overwrites the username in the input file.

-V print version number and exit.

5 SQLTEX errors and warnings

no input file specified

SQLTEX was called without any parameters.
Action: Specify at least one parameter at the commandline. This parameter
should be the name of your input file.

File input filename does not exist

The input file does not exist.
Action: Make sure the first parameter points to the input file.

outputfile output filename already exists

The outputfile cannot be created because it already exists.
Action: Specify another output filename with command line option -e, -E or
-o, or force an overwrite with option -f (see also section4.2).

no database opened at line line nr

A query starts at line line nr, but at that point no database was opened yet.
Action: Add an \sqldb command prior to the first query statement.

insufficient parameters to substitute variable on line line nr

The query starting at line line nr uses a parameter in a where- clause with
$PARn , where n is a number bigger than the number of parameters passed to
SQLTEX˙
Action: Specify all required parameters at the command line.

trying to substitute with non existing on line line nr

The query starting at line line nr requires a variable $VARn in its where- clause,
where n points to a variable that has not (yet) been set.
Action: Change the number or set the variable prior to this statement.

trying to overwrite an existing variable on line line nr

At line line nr, a \sqlfield query tries to set a variable n using the option
[setvar=n], but $VARn already exists at that point.
Action: Change the number.

no result set found on line line nr

14

The query starting at line line nr returned a NULL value. If the option -N

was specified at the commandline, this is just a warning message. Otherwise,
SQLTEX exits.
Action: None.

result set too big on line line nr

The query starting at line line nr, called with \sqlfield returned more than
one field.
Action: Change your query or use \sqlrow instead.

no parameters for multidocument found on line line nr

SQLTEX is executed in multidocument mode, but the statement on line line nr
did not provide any parameters for the documents.
Action: Check your query.

too many fields returned in multidocument mode on line nr

In multidocument mode, the lis of parameters retrieved on line line nr returned
more than one fiels per row.
Action: Check your query.

start using a non-existing array on line line nr

An \sqlstart command occurs, but refers to a non-existing array.
Action: Check the sequence number of the array filled with \sqlrow[setarr=n]
and retrieved with \sqlstart{n } in your input file.

\sqluse command encountered outside loop context on line line nr

Data from array is used, but the current input file position is not in the context
where this data is available.
Action: Check the presence and positions of the \sqlstart and \sqlend com-
mands in your input file.

unrecognized command on line line nr

At line line nr, a command was found that starts with “\sql”, but this command
was not recognized by SQLTEX˙
Action: Check for typos. If the command is a user- defined command, it will
conflict with default SQLTEX commands. Change the SQLTEX command prefix
(see section 2.1).

no sql statements found in input filename

SQLTEX did not find any valid SQLTEX commands.
Action: Check your input file.

15

6 Copyright and disclaimer

The SQLTEX project is available from GitHub: https://github.com/oveas/sqltex
The latest stable release is always available at http://oveas.com/freeware/overige/sqltex
For bugs, questions and comments, please use the issue tracker available at
https://github.com/oveas/sqltex/issues

Copyright c© 2001-2016 - Oscar van Eijk, Oveas Functionality Provider

This software is subject to the terms of the LaTeX Project Public License; see
http://www.ctan.org/tex-archive/help/Catalogue/licenses.lppl.html.

7 History

v1.3 released: Mar 16, 2001
First public release

v1.4 released: May 2, 2002
Implemented replace files

v1.4.1 released: Feb 15, 2005
Fix: removed leading whitespaces added to database results befure replace

v1.5 released: Nov 23, 2007
Support for multiple databases
Implemented database updates (sqlupdate)
Implemented multiple output documents (option -m)

v2.0 released: Jan 12, 2016
Fix: Oracle support using ORASID
Fix: Ensure replacements are handled in the same order as they appear
in the replacements file
Separate configuration file(s)
Added the options -c and -M

Support for regular expressions in replace files
Implemented support for the LATEX \input and \include directives
Implemented loop context
Skip commentlines
Project moved from local CVS to GitHub

16

	Introduction
	Known limitations

	Installing SQLTeX
	Configuration
	Create replace files
	Regular expressions

	Write your SQLTeX file
	SQL statements
	Opening the database
	Reading a single field
	Define variables

	Reading rows of data
	Output rows on seperate lines
	Store data in an array

	Loop context
	Output multiple documents
	Update database records

	Process your SQLTeX file
	Parameters
	Command line options

	SQLTeX errors and warnings
	Copyright and disclaimer
	History

