
The latexrelease package∗

The LATEX3 Project

2016/07/04

This file is maintained by the LATEX Project team.
Bug reports can be opened (category latex) at
http://latex-project.org/bugs.html.

1 Introduction

Prior to the 2015 release of LATEX, essentially no changes had been made to the
LATEX format code for some years, with all improvements being instead added to
the package fixltx2e.

While this worked at a technical level it meant that you had to explicitly opt-
in to bug fixes and improvements, and the vast majority of documents did not
benefit.

As described in LATEX News 22, a new policy is being implemented in which
improvements will now be added to the format by default, and this latexrelease
package may be used to ensure stability where needed, either by making a new
format use an older definition of some commands, or conversely may be used to
supply the new definitions for use with an old format.

The basic use is:

\RequirePackage[2015/01/01]{latexrelease}

\documentclass{article}

....

After such a declaration the document will use definitions current in the Jan-
uary 2015 LATEX, whether the actual format being used is older, or newer than
that date. In the former case a copy of latexrelease.sty would need to be made
available for use with the older format. This may be used, for example, to share a
document between co-workers using different LATEX releases, or to protect a docu-
ment from being affected by system updates. As well as the definitions within the
format itself, individual packages may use the commands defined here to adjust
their definitions to the specified date as described below.

The bulk of this package, after some initial setup and option handling consists
of a series of \IncludeInRelease commands which have been extracted from the
main source files of the LATEX format. These contain the old and new versions of
any commands with modified definitions.

∗This file has version number v1.0g, last revised 2016/07/04.

1

http://latex-project.org/bugs.html

2 Package Options

• yyyy/mm/dd The package accepts any LATEX format date as argument, al-
though dates in the future for which the current release of this package has
no information will generate a warning.

• current This is the default behaviour, it does not change the effective date
of the format but does ensure that the \IncludeInRelease command is
defined.

• latest sets the effective date of the format to the release date of this file,
so in an older format applies all patches currently available.

3 Release Specific Code

The \IncludeInRelease mechanism allows the kernel developer to associate code
with a specific date to choose different versions of definitions depending on the
date specified as an option to the latexrelease package. Is also available for use by
package authors (or even in a document if necessary).

{〈code-date〉}[〈format-date〉]{〈label〉}{〈message〉}〈code〉\EndIncludeInRelease\IncludeInRelease

{〈code-date〉} This date is associated with the {〈code〉} argument and will be
compared to the requested date in the option to the latexrelease.

[〈format-date〉] This optional argument can be used to specify a format date
with the code in addition to the mandatory {〈code-date〉} argument. This
can be useful for package developers as described below.

{〈label〉} The {〈label〉} argument is an identifier (string) that within a given pack-
age must be a unique label for each related set of optional definitions. Per
package at most one code block from all the \IncludeInRelease declara-
tions with the same label will be executed.

{〈message〉} The {〈message〉} is an informative string that is used in messages.
It has no other function.

〈code〉 Any TEX code after the \IncludeInRelease arguments up until the and
the following \EndIncludeInRelease is to be conditionally included depend-
ing on the date of the format as described below.

The \IncludeInRelease declarations with a given label should be in reverse
chronological order in the file. The one chosen will depend on this order, the
effective format version and the date options, as described below.

If your package mypackage defines a \widget command but has one definition
using the features available in the 2015 LATEX release, and a different definition is
required for older formats then you can use:

\IncludeInRelease{2015/01/01}{\widget}{Widget Definition}

\def\widget{new version}%

\EndIncludeInRelease

\IncludeInRelease{0000/00/00}{\widget}{Widget Definition}

\def\widget{old version}%

\EndIncludeInRelease

2

If a document using this package is used with a format with effective release
date of 2015/01/01 or later the new code will be used, otherwise the old code will
be used. Note the effective release date might be the original LATEX release date as
shown at the start of every LATEX job, or it may be set by the latexrelease package,
so for example a document author who wants to ensure the new version is used
could use

\RequirePackage[2015/01/01]{latexrelease}

\documentclass{article}

\usepackage{mypackage}

If the document is used with a LATEX format from 2014 or before, then latexre-
lease will not have been part of the original distribution, but it may be obtained
from a later LATEX release or from CTAN and distributed with the document, it
will make an older LATEX release act essentially like the 2015 release.

3.1 Intermediate Package Releases

The above example works well for testing against the latex format but is not always
ideal for controlling code by the release date of the package. Suppose LATEX is not
updated but in March you update the mypackage package and modify the definition
of \widget. You could code the package as:

\IncludeInRelease{2015/03/01}{\widget}{Widget Definition}

\def\widget{even newer improved March version}%

\EndIncludeInRelease

\IncludeInRelease{2015/01/01}{\widget}{Widget Definition}

\def\widget{new version}%

\EndIncludeInRelease

\IncludeInRelease{0000/00/00}{\widget}{Widget Definition}

\def\widget{old version}%

\EndIncludeInRelease

This would work and allow a document author to choose a date such as

\RequirePackage[2015/03/01]{latexrelease}

\documentclass{article}

\usepackage{mypackage}

To use the latest version, however it would have disadvantage that until the
next release of LATEX, by default, if the document does not use latexrelease to
specify a date, the new improved code will not be selected as the effective date
will be 2015/01/01 and so the first code block will be skipped.

For this reason \IncludeInRelease has an optional argument that specifies
an alternative date to use if a date option has not been specified to latexrelease.

\IncludeInRelease{2015/03/01}[2015/01/01]{\widget}{Widget Definition}

\def\widget{even newer improved March version}%

\EndIncludeInRelease

\IncludeInRelease{2015/01/01}{\widget}{Widget Definition}

\def\widget{new version}%

3

\EndIncludeInRelease

\IncludeInRelease{0000/00/00}{\widget}{Widget Definition}

\def\widget{old version}%

\EndIncludeInRelease

Now, by default on a 2015/01/01 LATEX format, the first code block will com-
pare the format date to the optional argument 2015/01/01 and so will execute
the even newer improved version. The remaining blocks using the \widget label
argument will all then be skipped.

If on the other hand the document requests an explicit release date using
latexrelease then this date will be used to decide what code block to include.

3.2 Using \IncludeInRelease in Packages

If \IncludeInRelease is used within a package then all such conditional code
needs to be within such declarations, e.g., it is not possible in the above example to
have the “current” definition of \widget somewhere in the main code and only the
two older definitions inside \IncludeInRelease declarations. If you would do this
then one of those \IncludeInRelease declarations would be included overwriting
the even newer code in the main part of the package. As a result your package may
get fragmented over time with various \IncludeInRelease declarations sprinkled
throughout your code or you have to interrupt the reading flow by putting those
declarations together but not necessarily in the place where they belong.

To avoid this issue you can use the following coding strategy: place the current
\widget definition in the main code where it correctly belongs.

...

\def\widget {even newer improved March version}

\def\@widget{newly added helper command no defined in older releases}

...

Then, near the end of your package place the following:

\IncludeInRelease{2015/03/01}[2015/01/01]{\widget}{Widget Definition}

\EndIncludeInRelease

\IncludeInRelease{2015/01/01}{\widget}{Widget Definition}

\def\widget{new version}%

\let\@widget\@undefined % this doesn’t exist in earlier releases

\EndIncludeInRelease

\IncludeInRelease{0000/00/00}{\widget}{Widget Definition}

\def\widget{old version}%

\EndIncludeInRelease

This way the empty code block hides the other \IncludeInRelease declarations
unless there is an explicit request with a date 2015/01/01 or earlier.

Now if you make a further change to \widget in the future you simply copy
the current definition into the empty block and add a new empty declaration with
todays date and the current format date. This way your main code stays readable
and the old versions accumulate at the end of the package.1

1Of course there may be some cases in which the old code has to be in a specific place within

4

The only other “extra effort” necessary when using this approach is that it may
be advisable to undo new definitions in the code block for the previous release,
e.g., in the above example we undefined \@widget as that isn’t available in the
2015/01/01 release but was defined in the main code. If all your conditional code
is within \IncludeInRelease declarations that wouldn’t been necessary as the
new code only gets defined if that release is chosen.

4 fixltx2e

As noted above, prior to the 2015 LATEX release updates to the LATEX kernel were
not made in the format source files but were made available in the fixltx2e package.
That package is no longer needed but we generate a small package from this source
that just makes a warning message but otherwise does nothing.

5 Implementation

We require at least a somewhat sane version of LATEX 2ε. Earlier ones where really
quite different from one another.

1 〈*latexrelease〉
2 \NeedsTeXFormat{LaTeX2e}[1996/06/01]

6 Setup

\IncludeInRelease

\EndIncludeInRelease

3 \DeclareOption*{%

4 \def\@IncludeInRelease#1[#2]{\@IncludeInRele@se{#1}}%

5 \let\requestedpatchdate\CurrentOption}

6 \DeclareOption{latest}{%

7 \let\requestedpatchdate\latexreleaseversion}

8 \DeclareOption{current}{%

9 \let\requestedpatchdate\fmtversion}

10 \ExecuteOptions{current}

11 \ProcessOptions\relax

Sanity check options, it allows some non-legal dates but always ensures
requestedLaTeXdate gets set to a number. Generate an error if there are any
non digit tokens remaining after removing the //.

12 \def\reserved@a{%

13 \edef\requestedLaTeXdate{\the\count@}%

14 \reserved@b}

15 \def\reserved@b#1\\{%

16 \def\reserved@b{#1}%

17 \ifx\reserved@b\@empty\else

18 \PackageError{latexrelease}%

19 {Unexpected option \requestedpatchdate}%

the package as other code depends on it (e.g., if you \let something to it). In that case you have
to place the code variations in the right place in your package rather than accumulating them
at the very end.

5

20 {The option must be of the form yyyy/mm/dd}%

21 \fi}

22 \afterassignment\reserved@a

23 \count@\expandafter

24 \@parse@version\expandafter0\requestedpatchdate//00\@nil\\

less precautions needed for \fmtversion

25 \edef\currentLaTeXdate{%

26 \expandafter\@parse@version\fmtversion//00\@nil}

27 \ifnum\requestedLaTeXdate=\currentLaTeXdate

28 \PackageWarningNoLine{latexrelease}{%

29 Current format date selected, no patches applied.}

30 \expandafter\endinput

31 \fi

A newer version of latexrelease should have been distributed with the later
format.

32 \ifnum\currentLaTeXdate

33 >\expandafter\@parse@version\latexreleaseversion//00\@nil

34 \PackageWarningNoLine{latexrelease}{%

35 The current package is for an older LaTeX format:\MessageBreak

36 LaTeX \latexreleaseversion\space\MessageBreak

37 Obtain a newer version of this package!}

38 \expandafter\endinput

39 \fi

can’t patch into the future, could make this an error but it has some uses to control
package updates so allow for now.

40 \ifnum\requestedLaTeXdate

41 >\expandafter\@parse@version\latexreleaseversion//00\@nil

42 \PackageWarningNoLine{latexrelease}{%

43 The current package is for LaTeX \latexreleaseversion:\MessageBreak

44 It has no patches beyond that date\MessageBreak

45 There may be an updated version\MessageBreak

46 of this package available from CTAN}

47 \expandafter\endinput

48 \fi

Update the format version to the requested date.

49 \let\fmtversion\requestedpatchdate

50 \let\currentLaTeXdate\requestedLaTeXdate

7 Individual Changes

The code for each change will be inserted at this point, extracted from the kernel
source files.

51 〈/latexrelease〉

8 fixltx2e

Generate a stub fixltx2e package:

52 〈*fixltx2e〉

6

53 \NeedsTeXFormat{LaTeX2e}

54 \PackageWarningNoLine{fixltx2e}{%

55 fixltx2e is not required with releases after 2015\MessageBreak

56 All fixes are now in the LaTeX kernel.\MessageBreak

57 See the latexrelease package for details}

58 〈/fixltx2e〉

7

	1 Introduction
	2 Package Options
	3 Release Specific Code
	3.1 Intermediate Package Releases
	3.2 Using \IncludeInRelease in Packages

	4 fixltx2e
	5 Implementation
	6 Setup
	7 Individual Changes
	8 fixltx2e

