
apnum.tex

Arbitrary Precision Numbers

version 1.6 Feb 2016

Petr Oľsák

ftp://math.feld.cvut.cz/olsak/makra/

Table Of Contents

1 User’s Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Evaluation of Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
�\evaldef . . . 3, �\apTOT . . . 3, �\apFRAC . . . 3, �\ABS . . . 3, �\SGN . . . 3, �\iDIV . . . 3,
�\iMOD . . . 3, �\iFLOOR . . . 3, �\iFRAC . . . 3, �\FAC . . . 3, �\BINOM . . . 3, �\SQRT . . . 3,
�\EXP . . . 3, �\LN . . . 3, �\SIN . . . 3, �\COS . . . 3, �\TAN . . . 3, �\ASIN . . . 3,
�\ACOS . . . 3, �\ATAN . . . 3, �\PI . . . 3, �\PIhalf . . . 3, �\OUT . . . 4, �\apSIGN . . . 4,
�\apE . . . 4

1.2 Scientific Notation of Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
�\evalmdef . . . 4, �\apEadd . . . 4, �\apEnum . . . 4, �\apROLL . . . 5, �\apNORM . . . 5,
�\apROUND . . . 5, �\apEX . . . 5

1.3 Notes for macro programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
�\apPLUS . . . 6, �\apMINUS . . . 6, �\apMUL . . . 6, �\apDIV . . . 6, �\apPOW . . . 6,
�\XOUT . . . 6

1.4 Printing expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
�\eprint . . . 7, �\apMULop . . . 8, �\corrnum . . . 8

1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 The Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Name Convention, Version, Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
\apVERSION . . . 9, \apSIGN . . . 9, \apE . . . 9, \apTOT . . . 9, \apFRAC . . . 9, \apEX . . . 9

2.2 Evaluation of the Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
\evaldef . . . 10, \evalmdef . . . 10, \apEVALa . . . 10, \OUT . . . 10, \apEVALb . . . 10,
\apEVALc . . . 10, \apEVALd . . . 10, \apEVALe . . . 10, \apEVALf . . . 10, \apEVALg . . . 11,
\apEVALh . . . 11, \apEVALk . . . 11, \apEVALm . . . 11, \apEVALn . . . 11, \apEVALo . . . 11,
\apEVALp . . . 11, \apEVALstack . . . 12, \apEVALpush . . . 12, \apEVALdo . . . 12,
\apEVALerror . . . 12, \apTESTdigit . . . 12

2.3 Preparation of the Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
\apPPa . . . 13, \apPPb . . . 13, \apPPc . . . 13, \apPPd . . . 13, \apPPe . . . 13, \apPPf . . . 13,
\apPPg . . . 13, \apPPh . . . 13, \apPPi . . . 13, \apPPj . . . 14, \apPPk . . . 14, \apPPl . . . 14,
\apPPm . . . 14, \apPPn . . . 14, \apPPab . . . 14, \apPPs . . . 14, \apPPt . . . 14, \apPPu . . . 14

2.4 Addition and Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
\apPLUS . . . 15, \apMINUS . . . 15, \apPLUSa . . . 15, \apPLUSxA . . . 15, \apPLUSxB . . . 15,
\apPLUSb . . . 16, \apPLUSc . . . 17, \apPLUSe . . . 17, \apPLUSh . . . 17, \apPLUSg . . . 17,
\apPLUSd . . . 17, \apPLUSf . . . 17, \apPLUSm . . . 17, \apPLUSp . . . 17, \apPLUSw . . . 18,
\apPLUSy . . . 18, \apPLUSz . . . 18, \apPLUSxE . . . 18

2.5 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
\apMUL . . . 18, \apMULa . . . 19, \apMULb . . . 20, \apMULc . . . 20, \apMULd . . . 20,
\apMULe . . . 20, \apMULf . . . 20, \apMULg . . . 21, \apMULh . . . 21, \apMULi . . . 21,
\apMULj . . . 21, \apMULo . . . 21, \apMULt . . . 21

2.6 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
\apDIV . . . 23, \apDIVa . . . 23, \apDIVcomp . . . 24, \apDIVcompA . . . 25, \apDIVcompB . . . 25,
\apDIVg . . . 25, \apDIVh . . . 26, \apDIVi . . . 26, \apDIVj . . . 26, \apDIVp . . . 26,
\apDIVxA . . . 26, \apDIVxB . . . 26, \apDIVq . . . 27, \apDIVr . . . 27, \apDIVt . . . 28,
\apDIVu . . . 28, \XOUT . . . 28, \apDIVv . . . 28, \apDIVw . . . 28

2.7 Power to the Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1

ftp://math.feld.cvut.cz/olsak/makra/


1 User’s Documentation Arbitrary Precision Numbers

\apPOW . . . 28, \apPOWx . . . 28, \apPOWa . . . 28, \apPOWb . . . 29, \apPOWd . . . 30,
\apPOWe . . . 30, \apPOWg . . . 30, \apPOWh . . . 30, \apPOWn . . . 30, \apPOWna . . . 30,
\apPOWnn . . . 30, \apPOWt . . . 30, \apPOWu . . . 30, \apPOWv . . . 30

2.8 apROLL, apROUND and apNORM Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
\apROLL . . . 31, \apROUND . . . 31, \apNORM . . . 31, \apROLLa . . . 31, \apROLLc . . . 31,
\apROLLd . . . 31, \apROLLe . . . 31, \apROLLf . . . 31, \apROLLg . . . 31, \apROLLh . . . 31,
\apROLLi . . . 31, \apROLLj . . . 32, \apROLLk . . . 32, \apROLLn . . . 32, \apROLLo . . . 32,
\apROUNDa . . . 32, \apROUNDb . . . 32, \apROUNDc . . . 32, \apROUNDd . . . 32, \apROUNDe . . . 33,
\apNORMa . . . 33, \apNORMb . . . 33, \apNORMc . . . 33, \apNORMd . . . 33, \apEadd . . . 33,
\apEnum . . . 33

2.9 Miscelaneous Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
\apEND . . . 33, \apDIG . . . 33, \apDIGa . . . 34, \apDIGb . . . 34, \apDIGc . . . 34,
\apDIGd . . . 34, \apDIGe . . . 34, \apDIGf . . . 34, \apIVread . . . 34, \apIVreadA . . . 34,
\apNL . . . 34, \apIVreadX . . . 34, \apIVwrite . . . 35, \apIVtrans . . . 35, \apIVbase . . . 35,
\apIVmod . . . 35, \apIVdot . . . 35, \apIVdotA . . . 35, \apNUMdigits . . . 35,
\apNUMdigitsA . . . 35, \apADDzeros . . . 35, \apREMzerosR . . . 35, \apREMzerosRa . . . 35,
\apREMzerosRb . . . 35, \apREMdotR . . . 35, \apREMdotRa . . . 35, \apREMfirst . . . 36,
\apOUTx . . . 36, \apOUTn . . . 36, \apOUTl . . . 36, \apOUTs . . . 36, \apINIT . . . 36,
\localcounts . . . 36, \apCOUNTS . . . 36, \do . . . 36, \apEVALxdo . . . 37, \apRETURN . . . 37,
\apERR . . . 37, \apNOPT . . .37, \loop . . . 37
2.10 Function-like Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
\ABS . . . 37, \SGN . . . 37, \iDIV . . . 37, \iMOD . . . 37, \iFLOOR . . . 37, \iFRAC . . . 37,
\FAC . . . 38, \BINOM . . . 38, \SQRT . . . 39, \apSQRTxo . . . 39, \apSQRTr . . . 39,
\apSQRTra . . . 39, \apSQRTrb . . . 39, \EXP . . . 40, \apEXPa . . . 40, \apTAYLOR . . . 41,
\apEXPb . . . 41, \LN . . . 41, \apLNtaylor . . . 42, \apLNr . . . 42, \apLNra . . . 43,
\apLNrten . . . 43, \apLNtenexec . . . 43, \apLNten . . . 43, \apPIvalue . . . 43,
\apPIdigits . . . 43, \apPIexec . . . 43, \apPI . . . 43, \apPIhalf . . . 43, \apPIexecA . . . 44,
\apPIexecB . . . 44, \PI . . . 45, \PIhalf . . . 45, \SIN . . . 45, \COS . . . 45, \apSINCOSa . . . 45,
\apSINx . . . 46, \apCOSx . . . 46, \apSINCOSo . . . 46, \TAN . . . 46, \ATAN . . . 46,
\apATANox . . . 47, \ASIN . . . 47, \ACOS . . . 47
2.11 Printing expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
\eprint . . . 48, \apEPe . . . 48, \apEPi . . . 48, \apEPj . . . 48, \apEPplus . . . 48,
\apEPminus . . . 48, \apEPmul . . . 49, \apEPdiv . . . 49, \apEPpow . . . 49, \apEPy . . . 49,
\apEPpowa . . . 49, \apEPf . . . 49, \apEPb . . . 49, \apEPp . . . 50, \apEPa . . . 50,
\apMULop . . . 50, \apEPabs . . . 50, \apEPfac . . . 50, \apEPbinom . . . 50, \apEPsqrt . . . 50,
\apEPexp . . . 50, \apEPsgn . . . 50, \apEPdivmod . . . 50, \apEPidiv . . . 50, \apEPimod . . . 50,
\apEPifloor . . . 50, \apEPifrac . . . 50, \corrnum . . . 50, \apEPc . . . 50
2.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1 User’s Documentation
This macro file apnum.tex implements addition, subtraction, multiplication, division, power to

an integer and other calculation (
√
x, ex, lnx, sinx, arctanx, . . . ) with “large numbers” with arbitrary

number of decimal digits. The numbers are in the form:

<sign><digits>.<digits>

where optional 〈sign〉 is the sequence of + and/or -. The nonzero number is treated as negative if and
only if there is odd number of - signs. The first part or second part of decimal 〈digits〉 (but no both)
can be empty. The decimal point is optional if second part of 〈digits〉 is empty.

There can be unlimited number of digits in the operands. Only TEX main memory or your patience
during calculation with very large numbers are your limits. Note, that the apnum.tex implementation
includes a lot of optimization and it is above 100 times faster (on large numbers) than the implementation
of the similar task in the package fltpoint.sty. And the fp.sty doesn’t implements arbitrary number
of digits. The extensive technical documentation can serve as an inspiration how to do TEX macro
programming.

2



1 User’s Documentation Arbitrary Precision Numbers

1.1 Evaluation of Expressions
After \input apnum in your document you can use the macro \evaldef〈sequence〉{〈expression〉}.

It gives the possibility for comfortable calculation. The 〈expression〉 can include numbers (in the form
described above) combined by +, -, *, / and ^ operators and by possible brackets () in an usual way.
The result is stored to the 〈sequence〉 as a “literal macro”. Examples:

\evaldef\A {2+4*(3+7)}
% ... the macro \A includes 42

\evaldef\B {\the\pageno * \A}
% ... the macro \B includes 84

\evaldef\C {123456789000123456789 * -123456789123456789123456789}
% ... \C includes -15241578765447341344197531849955953099750190521

\evaldef\D {1.23456789 + 12345678.9 - \A}
% ... the macro \D includes 12345596.13456789

\evaldef\X {1/3}
% ... the macro \X includes .3333333333333333333

The limit of the number of digits of the division result can be set by \apTOT and \apFRAC registers. First
one declares maximum calculated digits in total and second one declares maximum of digits after decimal
point. The result is limited by both those registers. If the \apTOT is negative, then its absolute value
is treated as a “soft limit”: all digits before decimal point are calculated even if this limit is exceeded.
The digits after decimal point are not calculated when this limit is reached. The special value \apTOT=0
means that the calculation is limited only by \apFRAC. Default values are \apTOT=0 and \apFRAC=20.

The operator ^ means the powering, i. e. 2^8 is 256. The exponent have to be an integer (no
decimal point is allowed) and a relatively small integer is assumed.

The scanner of the \evaldef macro reads (roughly speaking) the 〈expression〉 in the form
“operand binary-operator operand binary-operator etc.” without expansion. The spaces are not
significant in the 〈expression〉. The operands are:

• numbers (in the format 〈sign〉〈digits〉.〈digits〉) or
• numbers in scientific notation (see the section 1.2) or
• sequences 〈sign〉\the〈token〉 or 〈sign〉\number〈token〉 or
• any other single 〈token〉 optionally preceded by 〈sign〉 and optionally followed by a sequence of

parameters enclosed in braces, for example \A or \B{〈text〉} or -\C{〈textA〉}{〈textB〉}. This case
has two meanings:

• numeric constant defined in a “literal macro” (\def\A{42}, \evaldef\A{13/15}) or
• “function-like” macro which returns a value after processing.

The apnum.tex macro file provides the following “function-like” macros allowed to use them as
an operand in the 〈expression〉:

• \ABS {〈value〉} for absolute value,
• \SGN {〈value〉} returns sign of the 〈value〉,
• \iDIV {〈dividend〉}{〈divisor〉} for integer division,
• \iMOD {〈dividend〉}{〈divisor〉} for integer remainder,
• \iFLOOR {〈value〉} for rounding the number to the integer,
• \iFRAC {〈value〉} for fraction part of the \iFLOOR,
• \FAC {〈integer value〉} for factorial,
• \BINOM {〈integer above〉}{〈integer below〉} for binomial coefficient,
• \SQRT {〈value〉} for square root of the 〈value〉,
• \EXP {〈value〉} applies exponential function to 〈value〉,
• \LN {〈value〉} for natural logarithm of the 〈value〉,
• \SIN {〈value〉}, \COS {〈value〉}, \TAN {〈value〉} for sinx, cosx and tanx functions,
• \ASIN {〈value〉}, \ACOS {〈value〉}, \ATAN {〈value〉} for arcsinx, arccosx and arctanx functions,
• \PI, \PIhalf for constants π and π/2.

The arguments of all these functions can be a nested 〈expressions〉 with the syntax like in the
\evaldef macro. Example:

3



1 User’s Documentation Arbitrary Precision Numbers

\def\A{20}
\evaldef\B{ 30*\SQRT{ 100 + 1.12*\the\widowpenalty } / (4-\A) }

Note that the arguments of the “function-like” macros are enclosed by normal TEX braces {} but the
round brackets () are used for re-arranging of the common priority of the +, -, *, / and ^ operators.
The macros \SQRT, \EXP, \LN, \SIN, \COS, \TAN, \ASIN, \ACOS, \ATAN use \apTOT and \apFRAC registers
similar like during division.

The \PI and \PIhalf are “function-like” macros without parameters. They returns the constant
with \apFRAC digits after decimal point.

Users can define their own “function-like” macros, see the section 1.3.

The output of \evaldef\foo{〈expression〉} processing is stored, of course, to the “literal macro”
\foo. But there are another outputs like side effect of the processing:

• The \OUT macro includes exactly the same result as \foo.
• The \apSIGN register includes the value 1 or 0 or -1 respectively dependent on the fact that the

output is positive, zero or negative.
• The \apE register is equal to the decimal exponent when scientific number format is used (see the

next section 1.2).

For example, you can compare long numbers using \apSIGN register (where direct usage of \ifnum
primitive may cause arithmetic overflow):

\TEST {123456789123456789} > {123456789123456788} \iftrue OK \else KO \fi

The \TEST macro is defined like:

\def\TEST#1#2#3#4{\evaldef\tmp{#1-(#3)}\ifnum\apSIGN #2 0 }

The apnum.tex macros do not provide the evaluation of the 〈expression〉 at the expansion level
only. There are two reasons. First, the macros can be used in classical TEX only with Knuth’s plain
TEX macro. No eTEX is needed. And the expansion-only evaluation of any expression isn’t possible
in classical TEX. Second reason is the speed optimization (see the section 1.5). Anyway, users needn’t
expansion-only evaluation. They can write \evaldef\a{〈expression〉} \edef\foo{...\a...} instead
of \edef\foo{...〈expression〉...}. There is only one case when this “pre-processing” trick cannot be
used: while expansion of the parameters of asynchronous \write commands. But you can save the
〈expression〉 unexpanded into the file and you can read the file again in the second step and do \evaldef
during reading the file.

1.2 Scientific Notation of Numbers
The macro \evaldef is able to operate with the numbers written in the notation:

<sign><digits>.<digits>E<sign><digits>

For example 1.234E9 means 1.234 · 109, i. e. 1234000000 or the text 1.234E-3 means .001234. The
decimal exponent (after the E letter) have to be in the range ± 2 147 483 647 because we store this value
in normal TEX register.

The \evaldef〈sequence〉{〈expression〉} operates with mantissa and exponent separately if there
are operands with scientific notation. It outputs the result in the scientific notation if the result have
non-zero exponent.

The \evalmdef〈sequence〉{〈expression〉} does the same as \evaldef but only mantissa is saved in
the output 〈sequence〉 and in the \OUT macro. The exponent is stored in the \apE register in such case.
You can define the macro which shows the complete result after \evalmdef calculation, for example:

\def\showE#1{\message{#1\ifnum\apE=0 \else*10^\the\apE\fi}}

Suppose \evalmdef\foo{〈expression〉} is processed and the complete result isR = \foo*10^\apE.
There are two possibilities how to save such complete result R to the \foo macro: use \apEadd\foo or
\apEnum\foo. Both macros do nothing if \apE=0. Else the \apEadd〈sequence〉 macro adds E〈exponent〉
to the 〈sequence〉 macro and \apEnum〈sequence〉 moves the decimal point to the new right position in

4



1 User’s Documentation Arbitrary Precision Numbers

the 〈sequence〉 macro or appends zeros. The \apE register is set to zero after the macro \apEadd or
\apEnum is finished. Example:

\evalmdef\foo{ 3 * 4E9 } % \foo is 12, \apE=9
\apEadd\foo % \foo is 12E+9
\evalmdef\foo{ 7E9 + 5E9 } % \foo is 12, \apE=9
\apEnum\foo % \foo is 12000000000

There are another usable macros for operations with scientific numbers.

• \apROLL 〈sequence〉{〈shift〉} . . . the 〈sequence〉 is assumed to be a macro with the number. The
decimal point of this number is shifted right by 〈shift〉 parameter, i. e. the result is multiplied
by 10^〈shift〉. The 〈sequence〉 is redefined by this result. For example the \apEnum\A does
\apROLL\A{\apE}.
• \apNORM 〈sequence〉{〈num〉} . . . the 〈sequence〉 is supposed to be a macro with 〈mantissa〉 and

it will be redefined. The number 〈mantissa〉*10^\apE (with current value of the \apE regis-
ter) is assumed. The new mantissa saved in the 〈sequence〉 is the “normalized mantissa” of the
same number. The \apE register is corrected so the “normalized mantissa”*10^\apE gives the
same number. The 〈num〉 parameter is the number of non-zero digits before the decimal point
in the outputted mantissa. If the parameter 〈num〉 starts by dot following by integer (for ex-
ample {.2}), then the outputted mantissa has 〈num〉 digits after decimal point. For example
\def\A{1.234}\apE=0 \apNORM\A{.0} defines \A as 1234 and \apE=-3.
• The \apROUND 〈sequence〉{〈num〉} rounds the number, which is included in the macro 〈sequence〉

and redefines 〈sequence〉 as rounded number. The digits after decimal point at the position greater
than 〈num〉 are ignored in the rounded number. The decimal point is removed, if it is the right
most character in the \OUT. The ignored part is saved to the \XOUT macro without trailing right
zeros.

Examples of \apROUND usage:

\def\A{12.3456}\apROUND\A{1} % \A is "12.3", \XOUT is "456"
\def\A{12.3456}\apROUND\A{9} % \A is "12.3456", \XOUT is empty
\def\A{12.3456}\apROUND\A{0} % \A is "12", \XOUT is "3456"
\def\A{12.0000}\apROUND\A{0} % \A is "12", \XOUT is empty
\def\A{12.0001}\apROUND\A{2} % \A is "12", \XOUT is "01"
\def\A{.000010}\apROUND\A{2} % \A is "0", \XOUT is "001"
\def\A{-12.3456}\apROUND\A{2} % \A is "-12.34", \XOUT is "56"
\def\A{12.3456}\apROUND\A{-1} % \A is "10", \XOUT is "23456"
\def\A{12.3456}\apROUND\A{-4} % \A is "0", \XOUT is "00123456"

The following example saves the result of the \evalmdef in scientific notation with the mantissa
with maximal three digits after decimal point and one digit before.

\evalmdef\X{...}\apNORM\X{1}\apROUND\X{3}\apEadd\X

The macros \apEadd, \apEnum, \apROLL, \apNORM and \apROUND redefine the macro 〈sequence〉
given as their first argument. They are not “function-like” macros and they cannot be used in an
〈expression〉. The macro 〈sequence〉 must be the number in the format 〈simple sign〉〈digits〉.〈digits〉
where 〈simple sign〉 is one minus or none and the rest of number has the format described in the first
paragraph of this documentation. The scientific notation isn’t allowed here. This format of numbers is
in accordance with the output of the \evalmdef macro.

The build in function-like macros \SGN, \iDIV, . . . \SIN, \COS, \ATAN etc. don’t generate the result
in scientific form regardless of its argument is in scientific form or not. But there are exceptions: \ABS
and \SQRT returns scientific form if the argument is in this form. And \EXP returns scientific form if the
result is greater than 10K+1 or less than 10−K−1 where K = \apEX. The default value of this register is
\apEX=10.

1.3 Notes for macro programmers
If you plan to create a “function-like” macro which can be used as an operand in the 〈expression〉

then observe that first token in the macro body must be \relax. This tells to the 〈expression〉 scanner

5



1 User’s Documentation Arbitrary Precision Numbers

that the calculation follows. The result of this calculation must be saved into the \OUT macro and into
the \apSIGN register.

Example. The \ABS macro for the absolute value is defined by:
apnum.tex

706: \def\ABS#1{\relax % mandatory \relax for "function-like" macros

707: \evalmdef\OUT{#1}% % evaluation of the input parameter

708: \ifnum\apSIGN<0 % if (input < 0)

709: \apSIGN=1 % sign = 1

710: \apREMfirst\OUT % remove first "minus" from OUT

711: \fi % fi

Usage: \evaldef\A{ 2 - \ABS{3-10} }% \A includes -5.

Note, that \apSIGN register is corrected by final routine of the expression scanner according the
\OUT value. But setting \apSIGN in your macro is recommended because user can use your macro directly
outside of \evaldef.

If the result of the function-like macro needs to be expressed by scientific notation then you have
two possibilities: use “E” notation in the \OUT macro and keep \apE register zero. Or save the matissa
only to the \OUT macro and set the value of the exponent into the \apE register. The second possibility
is preferred and used by build in function-like macros. Note the \ABS definition above: the \evalmdef
in the line 707 keeps only mantissa in the \OUT macro and the \apE register is set by \evalmdef itself.

The \evaldef\foo{〈expression〉} is processed in two steps. The 〈expression〉 scanner converts
the input to the macro call of the \apPLUS, \apMINUS, \apMUL, \apDIV or \apPOW macros with two
parameters. They do addition, subtraction, multiplication, division and power to the integer. These
macros are processed in the second step. For example:

\evaldef\A{ 2 - 3*8 } converts the input to:
\apMINUS{2}{\apMUL{3}{8}} and this is processed in the second step.

The macros \apPLUS, \apMINUS, \apMUL, \apDIV and \apPOW behave like normal “function-like”
macros with one important exception: they don’t accept general 〈expression〉 in their parameters, only
single operand (see section 1.1) is allowed.

If your calculation is processed in the loop very intensively than it is better to save time of
such calculation and to avoid the 〈expression〉 scanner processing (first step of the \evaldef). So, it is
recommended to use directly the Polish notation of the expression as shown in the second line in the
example above. See section 2.10 for more inspirations.

The output of the \apPLUS, \apMINUS, \apMUL, \apDIV and \apPOW macros is stored in \OUT
macro and the registers \apSIGN and \apE are set accordingly.

The number of digits calculated by \apDIV macro is limited by the \apTOT and \apFRAC registers
as described in the section 1.1. There is another result of \apDIV calculation stored in the \XOUT macro.
It is the remainder of the division. Example:

\apTOT=0 \apFRAC=0 \apDIV{1234567892345}{2}\ifnum\XOUT=0 even \else odd\fi

You cannot apply \ifodd primitive on “large numbers” directly because the numbers may be too big.
If you set something locally inside your “function-like” macro, then such data are accessible only

when your macro is called outside of \evaldef. Each parameter and the whole \evaldef is processed
inside a TEX group, so your locally set data are inaccessible when your macro is used inside another
“function-like” parameter or inside \evaldef. The \XOUT output is set locally by \apDIV macro, so it
serves as a good example of this feature:

{\apDIV{1}{3} ... \XOUT is .00000000000000000001 }
... \XOUT is undefined

\evaldef{1/3} ... \XOUT is undefined
\apPLUS{1}{\apDIV{1}{3}} ... \XOUT is undefined

The macro \apPOW{〈base〉}{〈exponent〉} calculates the power to the integer exponent. A slight
optimization is implemented here so the usage of \apPOW is faster than repeated multiplication. The
decimal non-integer exponents are not allowed. Use \EXP and \LN macros if you need to calculate
non-integer exponent:

6



1 User’s Documentation Arbitrary Precision Numbers

\def\POWER#1#2{\relax \EXP{(#2)*\LN{#1}}}

Note that both parameters are excepted as an 〈expression〉. Thus the #2 is surrounded in the rounded
brackets.

Examples of another common “function-like” macros:

\evaldef\degcoef{PI/180}
\def\SINdeg#1{\relax \SIN{\degcoef*(#1)}}
\def\COSdeg#1{\relax \COS{\degcoef*(#1)}}
\def\SINH#1{\relax \evaldef\myE{\EXP{#1}}\evaldef\OUT{(\myE-1/\myE)/2}}
\def\ASINH#1{\relax \LN{#1+\SQRT{(#1)^2+1}}}
\def\LOG#1{\relax \apLNtenexec \apDIV{\LN{#1}}{\apLNten}}

In another example, we implement the field \F{〈index 〉} as an “function-like” macro. User can
set values by \set\F{〈index 〉}={〈value〉} and then these values can be used in an 〈expression〉.

\def\set#1#2#3#4{\evaldef\index{#2}\evaldef\value{#4}%
\expandafter\edef\csname \string#1[\index]\endcsname{\value}}

\def\F#1{\relax % function-like macro
\evaldef\index{#1}%
\expandafter\ifx\csname \string\F[\index]\endcsname\relax
\def\OUT{0}% undefined value

\else
\edef\OUT{\csname \string\F[\index]\endcsname}%

\fi
}
\set \F{12/2} = {28+13}
\set \F{2*4} = {144^2}
\evaldef\test { 1 + \F{6} } \message{result=\test}

As an exercise, you can implement linear interpolation of known values.
The final example shows, how to implement the macro \usedimen{〈dimen〉}{〈unit〉}. It is

“function-like” macro, it can be used in the 〈expression〉 and it returns the 〈decimal number〉 with
the property 〈dimen〉=〈decimal number〉〈unit〉.

\def\usedimen #1#2{\relax % function-like macro
\def\OUT{0}% % default value, if the unit isn’t known
\csname dimenX#2\endcsname{#1}}

\def\dimenXpt #1{\apDIV{\number#1}{65536}}
\def\dimenXcm #1{\apDIV{\number#1}{1864682.7}}
\def\dimenXmm #1{\apDIV{\number#1}{186468.27}}
%... etc.
\evaldef\a{\usedimen{\hsize}{cm}} % \a includes 15.91997501773358008845

Note that user cannot write \usedimen\hsize{cm} without braces because this isn’t the syntactically
correct operand (see section 1.1) and the 〈expression〉 scanner is unable to read it.

1.4 Printing expressions
TEX was designed for printing. The apnum.tex provides common syntax of 〈expressions〉 (given

in section 1.1) which can be used for both: for evaluating or for printing. Printing can be done using
\eprint{〈expression〉}{〈declaration〉} macro. The 〈declaration〉 part declares locally what to do with
“variables” or with your “function-like” macros. You can insert your local \def’s or \let’s here because
the 〈declaration〉 is executed in the group before the 〈expression〉 is printed. The \eprint macro must
be used in math mode only. Example:

\def\printresult#1{$$\displaylines{
\eprint{#1}\vars = \cr = \eprint{#1}\nums = \cr
= \apFRAC=8 \evaldef\OUT{#1}\OUT, \cr
\nums x = \X, \quad y = \Y.

7



1 User’s Documentation Arbitrary Precision Numbers

}$$}

\def\X{-.25} \def\Y{18.11}
\def\vars{\def\X{x}\def\Y{y}\let\apMULop=\relax}
\def\nums{\corrnum\X \corrnum\Y}
\printresult
{-(\X-\SQRT{\Y^2+1}) + -((\X*\Y+1)/2) + \SIN{\X+\PIhalf} + 2*\COS{\Y}}

generates the result:

−
(
x−

√
y2 + 1

)
+−xy + 1

2
+ sin

(
x+

π

2

)
+ 2 cos y =

= −
(
−0.25−

√
18.112 + 1

)
+−−0.25 · 18.11 + 1

2
+ sin

(
−0.25 +

π

2

)
+ 2 · cos 18.11 =

= 22.5977863,

x = −0.25, y = 18.11

This example prints the given 〈expression〉 in two forms: with “variables as variables” first and with
“variables as constants” second. The 〈declaration〉 is prepared in the \vars macro for the first form and
in the \nums macro for the second.

Note that \eprint macro re-calculates the occurrences of round brackets but keeps the mean-
ing of the 〈expression〉. For example (\A+\B)/\C is printed as {a+b\over c} (without brackets) and
6*-(\A+\B) is printed as 6\cdot(-(a+b)) (new brackets pair is added). Or \SIN{\X} is printed as
\sin x (without brackets) but \SIN{\X+1} is printed as \sin(x+1) (with brackets). And \SIN{X}^2 is
printed as \sin^2 x.

You can do \let\apMULop=\, or \let\apMULop=\relax in the 〈declaration〉 part if you need not
to print any operator for multiplying. The default setting is \let\apMULop=\cdot. Another possibility
is to set \let\apMULop=\times.

The macro \corrnum〈token〉 corrects the number saved in the 〈token〉 macro if it is in the form
[〈minus〉].〈digits〉 (i. e. without digits before decimal point). Then zero is added before decimal point.
Else nothing is changed.

Warning. The first parameter of \eprint (i. e. the 〈expression〉), must be directly expres-
sion without any expansion steps. For example, you cannot define \def\foo{〈expression〉} and do
\eprint{\foo}{} but you can do \expandafter\eprint\expandafter{\foo}{}.

The macro \eprint has its own intelligence about putting brackets. If you need to put or remove
brackets somewhere where the intelligence of \eprint is different from your opinion, you can create your
function-like macros \BK{〈expression〉} and \noBK{〈expression〉}. They evaluate the 〈expression〉 when
using \evaldef. The \BK prints the 〈expression〉 with brackets and \noBK prints it without brackets
when using \eprint.

\def\BK#1{\relax \evaldef\OUT{#1}}
\let\noBK=\BK
\def\BKprint#1{\left(\eprint{#1}{}\right)}
\def\noBKprint#1{\eprint{#1}{}}
\def\setBK{\let\BK=\BKprint \let\noBK=\noBKprint}
Now $\eprint{3+\BK{\SIN{1}}^2}{\setBK}$ prints $3+(\sin 1)^2$.

1.5 Experiments
The following table shows the time needed for calculation of randomly selected examples. The

comparison with the package fltpoint.sty is shown. The symbol∞ means that it is out of my patience.

input # of digits in the result time spent by apnum.tex time spent by fltpoint.sty

200! 375 0.33 sec 173 sec
1000! 2568 29 sec ∞
517

2
203 0.1 sec 81 sec

517
3

3435 2.1 sec ∞
1/17 1000 0.13 sec 113 sec
1/17 100000 142 sec ∞

8



2 The Implementation Arbitrary Precision Numbers

2 The Implementation

2.1 Name Convention, Version, Counters
The internal control sequence names typically used in apnum.tex have the form \apNAMEsuffix,

but there are exceptions. The control sequences mentioned in the section 1.1 (user’s documentation)
have typically more natural names. And the internal counter registers have names \apnumA, \apnumB,
\apnumC etc.

The code starts by the greeting. The \apVERSION includes the version of this software.
apnum.tex

7: \def\apVERSION{1.6 <Feb 2016>}

8: \message{The Arbitrary Precision Numbers, \apVERSION}

We declare auxiliary counters and one Boolean variable.
apnum.tex

12: \newcount\apnumA \newcount\apnumB \newcount\apnumC \newcount\apnumD

13: \newcount\apnumE \newcount\apnumF \newcount\apnumG \newcount\apnumH

14: \newcount\apnumO \newcount\apnumP \newcount\apnumL

15: \newcount\apnumX \newcount\apnumY \newcount\apnumZ

16: \newcount\apSIGNa \newcount\apSIGNb \newcount\apEa \newcount\apEb

17: \newif\ifapX

The counters \apSIGN , \apE , \apTOT, \apFRAC and \apEX are declared here:
apnum.tex

19: \newcount\apSIGN

20: \newcount\apE

21: \newcount\apTOT \apTOT=0

22: \newcount\apFRAC \apFRAC=20

23: \newcount\apEX \apEX=10

Somebody sometimes sets the @ character to the special catcode. But we need to be sure that
there is normal catcode of the @ character.

apnum.tex
25: \apnumZ=\catcode‘\@ \catcode‘\@=12

2.2 Evaluation of the Expression
Suppose the following expression \A+\B*(\C+\D)+\E as an example.
The main task of the \evaldef\x{\A+\B*(\C+\D)+\E} is to prepare the macro \tmpb with the

content (in this example) \apPLUS{\apPLUS{\A}{\apMUL{\B}{\apPLUS{\C}{\D}}}}{\E} and to execute
the \tmpb macro.

The expression scanner adds the \limits at the end of the expression and reads from left to right
the couples “operand, operator”. For our example: \A+, \B*, \C+, \D+ and \E\limits. The \limits
operator has the priority 0, plus, minus have priority 1, * and / have priority 2 and ^ has priority
3. The brackets are ignored, but each occurrence of the opening bracket ( increases priority by 4 and
each occurrence of closing bracket ) decreases priority by 4. The scanner puts each couple including its
current priority to the stack and does a test at the top of the stack. The top of the stack is executed if
the priority of the top operator is less or equal the previous operator priority. For our example the stack
is only pushed without execution until \D+ occurs. Our example in the stack looks like:

\D + 1 1<=5 exec:
\C + 5 {\C+\D} + 1 1<=2 exec:
\B * 2 \B * 2 {\B*{\C+\D}} + 1 1<=1 exec:
\A + 1 \A + 1 \A + 1 {\A+{\B*{\C+\D}}} + 1

bottom 0 bottom 0 bottom 0 bottom 0

Now, the priority on the top is greater, then scanner pushes next couple and does the test on the top of
the stack again.

\E \limits 0 0<=1 exec:
{\A+{\B*{\C+\D}}} + 1 {{\A+{\B*{\C+\D}}}+\E} \end 0 0<=0 exec:

bottom 0 bottom 0 RESULT

\apVERSION: 9 \apSIGN: 4, 6, 9–10, 12–16, 18–19, 23–24, 29, 33, 37–42, 45–47, 51
\apE: 4, 5–6, 9–14, 16, 18–19, 23–24, 29, 33, 37, 39–42 \apTOT: 3, 4, 6, 9, 24, 37, 43–47
\apFRAC: 3, 4, 6, 9, 24, 37, 39–47 \apEX: 5, 9, 41

9



2 The Implementation Arbitrary Precision Numbers

Let pt, pp are the priority on the top and the previous priority in the stack. Let vt, vp are operands on
the top and in the previous line in the stack, and the same notation is used for operators ot and op. If
pt ≤ pp then: pop the stack twice, create composed operand vn = vp op vt and push vn, ot, pt. Else push
new couple “operand, operator” from the expression scanner. In both cases try to execute the top of the
stack again. If the bottom of the stack is reached then the last operand is the result.

The \evaldef and \evalmdef macros are protected by \relax. It means that it can be used
inside an 〈expression〉 as a “function-like” macro, but I don’t imagine any usual application of this. The
\apEVALa is executed.

apnum.tex
29: \def\evaldef{\relax \apEVALa{\apEadd\OUT}}

30: \def\evalmdef{\relax \apEVALa{}}

The macro \apEVALa {〈final-step〉}〈sequence〉{〈expression〉} runs the evaluation of the expression
in the group. The base priority is initialized by \apnumA=0, then \apEVALb〈expression〉\limits scans the
expression and saves the result in the form \apPLUS{\A}{\apMUL{\B}{\C}} (etc.) into the \tmpb macro.
This macro is executed. The group is finished by \apEND macro, which keeps the \OUT, \apSIGN and
\apE values unchanged. Then 〈final-step〉 is executed and finally, the defined 〈sequence〉 is set equivalent
to the \OUT macro.

apnum.tex
31: \def\apEVALa#1#2#3{\begingroup \apnumA=0 \apnumE=1 \apEVALb#3\limits \tmpb \apEND #1\let#2=\OUT}

The scanner is in one of the two states: reading operand or reading operator. The first state is
initialized by \apEVALb which follows to the \apEVALc. The \apEVALc reads one token and switches by
its value. If the value is a + or - sign, it is assumed to be the part of the operand prefix. Plus sign is
ignored (and \apEVALc is run again), minus signs are accumulated into \tmpa.

The auxiliary macro \apEVALd runs the following tokens to the \fi, but first it closes the condi-
tional and skips the rest of the macro \apEVALc.

apnum.tex
32: \def\apEVALb{\def\tmpa{}\apEVALc}

33: \def\apEVALc#1{%

34: \ifx+#1\apEVALd \apEVALc \fi

35: \ifx-#1\edef\tmpa{\tmpa-}\apEVALd\apEVALc \fi

36: \ifx(#1\apEVALd \apEVALe \fi

37: \ifx\the#1\apEVALd \apEVALf\the\fi

38: \ifx\number#1\apEVALd \apEVALf\number\fi

39: \apTESTdigit#1\iftrue

40: \ifx E#1\let\tmpb=\tmpa \expandafter\apEVALd\expandafter\apEVALk

41: \else \edef\tmpb{\tmpa#1}\expandafter\apEVALd\expandafter\apEVALn\fi\fi

42: \edef\tmpb{\tmpa\noexpand#1}\expandafter

43: \futurelet\expandafter\apNext\expandafter\apEVALg\romannumeral-‘\.%

44: }

45: \def\apEVALd#1\fi#2-‘\.{\fi#1}

If the next token is opening bracket, then the global priority is increased by 4 using the macro
\apEVALe. Moreover, if the sign before bracket generates the negative result, then the new multiplication
(by −1) is added using \apEVALp to the operand stack.

apnum.tex
46: \def\apEVALe{%

47: \ifx\tmpa\empty \else \ifnum\tmpa1<0 \def\tmpb{-1}\apEVALp \apMUL 4\fi\fi

48: \advance\apnumA by4

49: \apEVALb

50: }

If the next token is \the or \number primitives (see lines 37 and 38), then one following token is
assumed as TEX register and these two tokens are interpreted as an operand. This is done by \apEVALf.
The operand is packed to the \tmpb macro.

apnum.tex
51: \def\apEVALf#1#2{\expandafter\def\expandafter\tmpb\expandafter{\tmpa#1#2}\apEVALo}

If the next token is not a number (the \apTESTdigit#1\iftrue results like \iffalse at line 39)
then we save the sign plus this token to the \tmpb at line 43 and we do check of the following token by

\evaldef: 3, 4, 6, 8–10, 12, 28, 36–37, 39, 41, 48 \evalmdef: 4, 5–6, 10, 37–40, 42, 45–47
\apEVALa: 10, 12 \OUT: 4, 5–6, 10, 12–14, 16–24, 26–27, 29–30, 33, 36–47 \apEVALb: 10–11, 48
\apEVALc: 10–11 \apEVALd: 10 \apEVALe: 10 \apEVALf: 10

10



2 The Implementation Arbitrary Precision Numbers

\futurelet. The \apEVALg is processed after that. The test is performed here if the following token
is open brace (a macro with parameter). If this is true then this parameter is appended to \tmpb by
\apEVALh and the test about the existence of second parameter in braces is repeated by next \futurelet.
The result of this loop is stored into \tmpb macro which includes 〈sign〉 followed by 〈token〉 followed by
all parameters in braces. This is considered as an operand.

apnum.tex
52: \def\apEVALg{\ifx\apNext \bgroup \expandafter\apEVALh \else \expandafter\apEVALo \fi}

53: \def\apEVALh#1{\expandafter\def\expandafter\tmpb\expandafter{\tmpb{#1}}\expandafter

If the next token after the sign is a digit or a dot (tested in \apEVALc by \apTESTdigit at
line 39), then there are two cases. The number includes the E symbol as a first symbol (this is allowed
in scientific notation, mantissa is assumed to equal to one). The \apEVALk is executed in such case. Else
the \apEVALn starts the reading the number.

The first case with E letter in the number is solved by macros \apEVALk and \apEVALm. The
number after E is read by \apE= and this number is appended to the \tmpb and the expression scanner
skips to \apEVALo.

apnum.tex
55: \def\apEVALk{\afterassignment\apEVALm\apE=}

56: \def\apEVALm{\edef\tmpb{\tmpb E\the\apE}\apEVALo}

The second case (there is normal number) is processed by the macro \apEVALn. This macro reads
digits (token per token) and saves them to the \tmpb. If the next token isn’t digit nor dot then the
second state of the scanner (reading an operator) is invoked by running \apEVALo. If the E is found then
the exponent is read to \apE and it is processed by \apEVALm.

apnum.tex
57: \def\apEVALn#1{\apTESTdigit#1%

58: \iftrue \ifx E#1\afterassignment\apEVALm\expandafter\expandafter\expandafter\apE

59: \else\edef\tmpb{\tmpb#1}\expandafter\expandafter\expandafter\apEVALn\fi

60: \else \expandafter\apEVALo\expandafter#1\fi

61: }

The reading an operator is done by the \apEVALo macro. This is more simple because the operator
is only one token. Depending on this token the macro \apEVALp 〈operator〉〈priority〉 pushes to the stack
(by the macro \apEVALpush) the value from \tmpb, the 〈operator〉 and the priority increased by \apnumA
(level of brackets).

If there is a problem (level of brackets less than zero, level of brackets not equal to zero at the
end of the expression, unknown operator) we print an error using \apEVALerror macro.

The \apNext is set to \apEVALb, i. e. scanner returns back to the state of reading the operand.
But exceptions exist: if the ) is found then priority is decreased and the macro \apEVALo is executed
again. If the end of the 〈expression〉 is found then the loop is ended by \let\apNext=\relax.

apnum.tex
62: \def\apEVALo#1{\let\apNext=\apEVALb

63: \ifx+#1\apEVALp \apPLUS 1\fi

64: \ifx-#1\apEVALp \apMINUS 1\fi

65: \ifx*#1\apEVALp \apMUL 2\fi

66: \ifx/#1\apEVALp \apDIV 2\fi

67: \ifx^#1\apEVALp \apPOWx 3\fi

68: \ifx)#1\advance\apnumA by-4 \let\apNext=\apEVALo \let\tmpa=\relax

69: \ifnum\apnumA<0 \apEVALerror{many brackets ")"}\fi

70: \fi

71: \ifx\limits#1%

72: \ifnum\apnumA>0 \apEVALerror{missing bracket ")"}\let\tmpa=\relax

73: \else \apEVALp\END 0\let\apNext=\relax \fi

74: \fi

75: \ifx\tmpa\relax \else \apEVALerror{unknown operator "\string#1"}\fi

76: \apnumE=0 \apNext

77: }

78: \def\apEVALp#1#2{%

79: \apnumB=#2 \advance\apnumB by\apnumA

80: \toks0=\expandafter{\expandafter{\tmpb}{#1}}%

81: \expandafter\apEVALpush\the\toks0\expandafter{\the\apnumB}% {value}{op}{priority}

\apEVALg: 10–11 \apEVALh: 11 \apEVALk: 10–11 \apEVALm: 11 \apEVALn: 10–11
\apEVALo: 10–11 \apEVALp: 10–11

11



2 The Implementation Arbitrary Precision Numbers

82: \let\tmpa=\relax

83: }

The \apEVALstack macro includes the stack, three items {〈operand〉}{〈operator〉}{〈priority〉}
per level. Left part of the macro contents is the top of the stack. The stack is initialized with empty
operand and operator and with priority zero. The dot here is only the “total bottom” of the stack.

apnum.tex
84: \def\apEVALstack{{}{}{0}.}

The macro \apEVALpush {〈operand〉}{〈operator〉}{〈priority〉} pushes its parameters to the stack
and runs \apEVALdo〈whole stack〉@ to do the desired work on the top of the stack.

apnum.tex
85: \def\apEVALpush#1#2#3{% value, operator, priority

86: \toks0={{#1}{#2}{#3}}%

87: \expandafter\def\expandafter\apEVALstack\expandafter{\the\toks0\apEVALstack}%

88: \expandafter\apEVALdo\apEVALstack@%

89: }

Finally, the macro \apEVALdo {〈vt〉}{〈ot〉}{〈pt〉}{〈vp〉}{〈op〉}{〈pp〉}〈rest of the stack〉@ per-
forms the execution described at the beginning of this section. The new operand 〈vn〉 is created as
〈op〉{vp}{vt}, this means \apPLUS{〈vp〉}{〈vt〉} for example. The operand is not executed now, only
the result is composed by the normal TEX notation. If the bottom of the stack is reached then the result
is saved to the \tmpb macro. This macro is executed after group by the \apEVALa macro.

apnum.tex
90: \def\apEVALdo#1#2#3#4#5#6#7@{%

91: \apnumB=#3 \ifx#2\apPOWx \advance\apnumB by1 \fi

92: \ifnum\apnumB>#6\else

93: \ifnum#6=0 \def\tmpb{#1}%\toks0={#1}\message{RESULT: \the\toks0}

94: \ifnum\apnumE=1 \def\tmpb{\apPPn{#1}}\fi

95: \else \def\apEVALstack{#7}\apEVALpush{#5{#4}{#1}}{#2}{#3}%

96: \fi\fi

97: }

The macro \apEVALerror 〈string〉 prints an error message. We decide to be better to print only
\message, no \errmessage. The \tmpb is prepared to create \OUT as ?? and the \apNext macro is set
in order to skip the rest of the scanned 〈expression〉.

apnum.tex
98: \def\apEVALerror#1{\message{\noexpand\evaldef ERROR: #1.}%

99: \def\OUT{0}\apE=0\apSIGN=0\def\apNext##1\apEND{\apEND}%

100: }

The auxiliary macro \apTESTdigit 〈token〉\iftrue tests, if the given token is digit, dot or E
letter.

apnum.tex
101: \def\apTESTdigit#1#2{%

102: \ifx E#1\apXtrue \else

103: \ifcat.\noexpand#1%

104: \ifx.#1\apXtrue \else

105: \ifnum‘#1<‘0 \apXfalse\else

106: \ifnum‘#1>‘9 \apXfalse\else \apXtrue\fi

107: \fi\fi

108: \else \apXfalse

109: \fi\fi

110: \ifapX

111: }

2.3 Preparation of the Parameter
All operands of \apPLUS, \apMINUS, \apMUL, \apDIV and \apPOW macros are preprocessed by

\apPPa macro. This macro solves (roughly speaking) the following tasks:

• It partially expands (by \expandafter) the parameter while 〈sign〉 is read.
• The 〈sign〉 is removed from parameter and the appropriate \apSIGN value is set.

\apEVALstack: 12 \apEVALpush: 11–12 \apEVALdo: 12 \apEVALerror: 11–12
\apTESTdigit: 10–12

12



2 The Implementation Arbitrary Precision Numbers

• If the next token after 〈sign〉 is \relax then the rest of the parameter is executed in the group
and the results \OUT, \apSIGN and \apE are used.
• Else the number is read and saved to the parameter.
• If the read number has the scientific notation 〈mantissa〉E〈exponent〉 then only 〈mantissa〉 is saved

to the parameter and \apE is set as 〈exponent〉. Else \apE is zero.

The macro \apPPa 〈sequence〉〈parameter〉 calls \apPPb 〈parameter〉@〈sequence〉 and starts reading
the 〈parameter〉. The result will be stored to the 〈sequence〉.

Each token from 〈sign〉 is processed by three \expandafters (because there could be
\csname...\endcsname). It means that the parameter is partially expanded when 〈sign〉 is read.
The \apPPb macro sets the initial value of \tmpc and \apSIGN and executes the macro \apPPc
〈parameter〉@〈sequence〉.

apnum.tex
115: \def\apPPa#1#2{\expandafter\apPPb#2@#1}

116: \def\apPPb{\def\tmpc{}\apSIGN=1 \apE=0 \expandafter\expandafter\expandafter\apPPc}

117: \def\apPPc#1{%

118: \ifx+#1\apPPd \fi

119: \ifx-#1\apSIGN=-\apSIGN \apPPd \fi

120: \ifx\relax#1\apPPe \fi

121: \apPPg#1%

122: }

123: \def\apPPd#1\apPPg#2{\fi\expandafter\expandafter\expandafter\apPPc}

The \apPPc reads one token from 〈sign〉 and it is called recursively while there are + or - signs.
If the read token is + or - then the \apPPd closes conditionals and executes \apPPc again.

If \relax is found then the rest of parameter is executed by the \apPPe. The macro ends by
\apPPf 〈result〉@ and this macro reverses the sign if the result is negative and removes the minus sign
from the front of the parameter.

apnum.tex
124: \def\apPPe#1\apPPg#2#3@{\fi

125: \begingroup\apE=0 #3% execution of the parameter in the group

126: \edef\tmpb{\apE=\the\apE\relax\noexpand\apPPf\OUT@}\expandafter\endgroup\tmpb

127: }

128: \def\apPPf#1{\ifx-#1\apSIGN=-\apSIGN \expandafter\apPPg\else\expandafter\apPPg\expandafter#1\fi}

The \apPPg 〈parameter〉@ macro is called when the 〈sign〉 was processed and removed from the
input stream. The main reason of this macro is to remove trailing zeros from the left and to check,
if there is the zero value written for example in the form 0000.000. When this macro is started then
\tmpc is empty. This is a flag for removing trailing zeros. They are simply ignored before decimal point.
The \apPPg is called again by \apPPh macro which removes the rest of \apPPg macro and closes the
conditional. If the decimal point is found then next zeros are accumulated to the \tmpc. If the end of
the parameter @ is found and we are in the “removing zeros state” then the whole value is assumed to be
zero and this is processed by \apPPi @. If another digit is found (say 2) then there are two situations:
if the \tmpc is non-empty, then the digit is appended to the \tmpc and the \apPPi〈expanded tmp〉 is
processed (say \apPPi .002) followed by the rest of the parameter. Else the digit itself is stored to the
\tmpc and it is returned back to the input stream (say \apPPi 2) followed by the rest of the parameter.

apnum.tex
129: \def\apPPg#1{%

130: \ifx.#1\def\tmpc{.}\apPPh\fi

131: \ifx\tmpc\empty\else\edef\tmpc{\tmpc#1}\fi

132: \ifx0#1\apPPh\fi

133: \ifx\tmpc\empty\edef\tmpc{#1}\fi

134: \ifx@#1\def\tmpc{@}\apSIGN=0 \fi

135: \expandafter\apPPi\tmpc

136: }

137: \def\apPPh#1\apPPi\tmpc{\fi\apPPg}

The macro \apPPi 〈parameter without trailing zeros〉@〈sequence〉 switches to two cases: if the
execution of the parameter was processed then the \OUT doesn’t include E notation and we can simply

\apPPa: 12–14 \apPPb: 13–14 \apPPc: 13 \apPPd: 13 \apPPe: 13 \apPPf: 13 \apPPg: 13
\apPPh: 13 \apPPi: 13–14

13



2 The Implementation Arbitrary Precision Numbers

define 〈sequence〉 as the 〈parameter〉 by the \apPPj macro. This saves the copying of the (possible) long
result to the input stream again.

If the executing of the parameter was not performed, then we need to test the existence of the E
notation of the number by the \apPPk macro. We need to put the 〈parameter〉 to the input stream and
to use \apPPl to test these cases. We need to remove unwanted E letter by the \apPPm macro.

apnum.tex
138: \def\apPPi{\ifnum\apE=0 \expandafter\apPPk \else \expandafter\apPPj \fi}

139: \def\apPPj#1@#2{\def#2{#1}}

140: \def\apPPk#1@#2{\ifx@#1@\apSIGN=0 \def#2{0}\else \apPPl#1E@#2\fi}

141: \def\apPPl#1E#2@#3{%

142: \ifx@#1@\def#3{1}\else\def#3{#1}\fi

143: \ifx@#2@\else \afterassignment\apPPm \apE=#2\fi

144: }

145: \def\apPPm E{}

The \apPPn 〈param〉 macro does the same as \apPPa\OUT{〈param〉}, but the minus sign is re-
turned back to the \OUT macro if the result is negative.

apnum.tex
146: \def\apPPn#1{\expandafter\apPPb#1@\OUT

The \apPPab 〈macro〉{〈paramA〉}{〈paramB〉} is used for parameters of all macros \apPLUS,
\apMUL etc. It prepares the 〈paramA〉 to \tmpa, 〈paramB〉 to \tmpb, the sign and 〈decimal exponent〉
of 〈paramA〉 to the \apSIGNa and \apEa, the same of 〈paramB〉 to the \apSIGNa and \apEa. Finally, it
executes the 〈macro〉.

apnum.tex
150: \def\apPPab#1#2#3{%

151: \expandafter\apPPb#2@\tmpa \apSIGNa=\apSIGN \apEa=\apE

152: \expandafter\apPPb#3@\tmpb \apSIGNb=\apSIGN \apEb=\apE

153: #1%

154: }

The \apPPs 〈macro〉〈sequence〉{〈param〉} prepares parameters for \apROLL, \apROUND and
\apNORM macros. It saves the 〈param〉 to the \tmpc macro, expands the 〈sequence〉 and runs the
macro \apPPt 〈macro〉〈expanded sequence〉.@〈sequence〉. The macro \apPPt reads first token from
the 〈expanded sequence〉 to #2. If #2 is minus sign, then \apnumG=-1. Else \apnumG=1. Finally the
〈macro〉〈expanded sequence〉.@〈sequence〉 is executed (but without the minus sign in the input stream).
If #2 is zero then \apPPu 〈macro〉〈rest〉.@〈sequence〉 is executed. If the 〈rest〉 is empty, (i. e. the
parameter is simply zero) then 〈macro〉 isn’t executed because there in nothing to do with zero number
as a parameter of \apROLL, \apROUND or \apNORM macros.

apnum.tex
155: \def\apPPs#1#2#3{\def\tmpc{#3}\expandafter\apPPt\expandafter#1#2.@#2}

156: \def\apPPt#1#2{%

157: \ifx-#2\apnumG=-1 \def\apNext{#1}%

158: \else \ifx0#2\apnumG=0 \def\apNext{\apPPu#1}\else \apnumG=1 \def\apNext{#1#2}\fi\fi

159: \apNext

160: }

161: \def\apPPu#1#2.@#3{\ifx@#2@\apnumG=0 \ifx#1\apROUNDa\def\XOUT{}\fi

162: \else\def\apNext{\apPPt#1#2.@#3}\expandafter\apNext\fi

163: }

2.4 Addition and Subtraction
The significant part of the optimization in \apPLUS, \apMUL, \apDIV and \apPOW macros is the

fact, that we don’t treat with single decimal digits but with their quartets. This means that we are
using the numeral system with the base 10000 and we calculate four decimal digits in one elementary
operation. The base was chosen 104 because the multiplication of such numbers gives results less than
108 and the maximal number in the TEX register is about 2 · 109. We’ll use the word “Digit” (with
capitalized D) in this documentation if this means the digit in the numeral system with base 10000,
i. e. one Digit is four digits. Note that for addition we can use the numeral system with the base 108

\apPPj: 14 \apPPk: 14 \apPPl: 14 \apPPm: 14 \apPPn: 12, 14, 48–50
\apPPab: 14–15, 18–19, 24, 28–29, 34 \apPPs: 14, 18, 31–33 \apPPt: 14 \apPPu: 14

14



2 The Implementation Arbitrary Precision Numbers

but we don’t do it, because the auxiliary macros \apIV* for numeral system of the base 104 are already
prepared.

Suppose the following example (the spaces between Digits are here only for more clarity).

123 4567 8901 9999 \apnumA=12 \apnumE=3 \apnumD=16
+ 22.423 \apnumB=0 \apnumF=2 \apnumC=12
--------------------------
sum in reversed order and without transmissions:

{4230}{10021}{8901}{4567}{123} \apnumD=-4
sum in normal order including transmissions:
123 4567 8902 0021.423

In the first pass, we put the number with more or equal Digits before decimal point above the
second number. There are three Digits more in the example. The \apnumC register saves this information
(multiplied by 4). The first pass creates the sum in reversed order without transmissions between Digits.
It simply copies the \apnumC/4 Digits from the first number to the result in reversed order. Then it does
the sums of Digits without transmissions. The \apnumD is a relative position of the decimal point to the
edge of the calculated number.

The second pass reads the result of the first pass, calculates transmissions and saves the result in
normal order.

The first Digit of the operands cannot include four digits. The number of digits in the first Digit
is saved in \apnumE (for first operand) and in \apnumF (for second one). The rule is to have the decimal
point between Digits in all circumstances.

The \apPLUS and \apMINUS macros prepare parameters using \apPPab and execute \apPLUSa:
apnum.tex

167: \def\apPLUS{\relax \apPPab\apPLUSa}

168: \def\apMINUS#1#2{\relax \apPPab\apPLUSa{#1}{-#2}}

The macro \apPLUSa does the following work:

• It gets the operands in \tmpa and \tmpb macros using the \apPPab.
• If the scientific notation is used and the decimal exponents \apEa and \apEb are not equal then

the decimal point of one operand have to be shifted (by the macro \apPLUSxE at line 170).
• The digits before decimal point are calculated for both operands by the \apDIG macro. The first

result is saved to \apnumA and the second result is saved to \apnumB. The \apDIG macro removes
decimal point (if exists) from the parameters (lines 171 and 172).
• The number of digits in the first Digit is calculated by \apIVmod for both operands. This number

is saved to \apnumE and \apnumF. This number is subtracted from \apnumA and \apnumB, so these
registers now includes multiply of four (lines 173 and 174).
• The \apnumC includes the difference of Digits before the decimal point (multiplied by four) of

given operands (line 175).
• If the first operand is negative then the minus sign is inserted to the \apPLUSxA macro else this

macro is empty. The same for the second operand and for the macro \apPLUSxB is done (lines 176
and 177).
• If both operands are positive, then the sign of the result \apSIGN is set to one. If both operands

are negative, then the sign is set to −1. But in both cases mentioned above we will do (internally)
addition, so the macros \apPLUSxA and \apPLUSxB are set to empty. If one operand is negative
and second positive then we will do subtraction. The \apSIGN register is set to zero and it will
set to the right value later (lines 178 to 180).
• The macro \apPLUSb〈first op〉〈first dig〉〈second op〉〈second dig〉〈first Dig〉 does the calculation

of the first pass. The 〈first op〉 has to have more or equal Digits before decimal point than
〈second op〉. This is reason why this macro is called in two variants dependent on the value
\apnumC. The macros \apPLUSxA and \apPLUSxB (with the sign of the operands) are exchanged
(by the \apPLUSg) if the operands are exchanged (lines 181 to 182).
• The \apnumG is set by the macro \apPLUSb to the sign of the first nonzero Digit. It is equal to

zero if there are only zero Digits after first pass. The result is zero in such case and we do nothing
more (line 184).

\apPLUS: 6, 9–12, 14–15, 37–39, 41–44, 46–49, 51 \apMINUS: 6, 11–12, 15, 46, 48, 51 \apPLUSa: 15–16
\apPLUSxA: 15–17 \apPLUSxB: 15–17

15



2 The Implementation Arbitrary Precision Numbers

• The transmission calculation is different for addition and subtraction. If the subtraction is pro-
cessed then the sign of the result is set (using the value \apnumG) and the \apPLUSm for trans-
missions is prepared. Else the \apPLUSp for transmissions is prepared as the \apNext macro
(line 185)
• The result of the first pass is expanded in the input stream and the \apNext (i. e. transmissions

calculation) is activated at line 186.
• if the result is in the form .000123, then the decimal point and the trailing zeros have to be

inserted. Else the trailing zeros from the left side of the result have to be removed by \apPLUSy.
This macro adds the sign of the result too (lines 187 to 193)

apnum.tex
169: \def\apPLUSa{%

170: \ifnum\apEa=\apEb \apE=\apEa \else \apPLUSxE \fi

171: \apDIG\tmpa\relax \apnumA=\apnumD % digits before decimal point

172: \apDIG\tmpb\relax \apnumB=\apnumD

173: \apIVmod \apnumA \apnumE \advance\apnumA by-\apnumE % digits in the first Digit

174: \apIVmod \apnumB \apnumF \advance\apnumB by-\apnumF

175: \apnumC=\apnumB \advance\apnumC by-\apnumA % difference between Digits

176: \ifnum\apSIGNa<0 \def\apPLUSxA{-}\else \def\apPLUSxA{}\fi

177: \ifnum\apSIGNb<0 \def\apPLUSxB{-}\else \def\apPLUSxB{}\fi

178: \apSIGN=0 % \apSIGN=0 means that we are doing subtraction

179: \ifx\apPLUSxA\empty \ifx\apPLUSxB\empty \apSIGN=1 \fi\fi

180: \if\apPLUSxA-\relax \if\apPLUSxB-\relax \apSIGN=-1 \def\apPLUSxA{}\def\apPLUSxB{}\fi\fi

181: \ifnum\apnumC>0 \apPLUSg \apPLUSb \tmpb\apnumF \tmpa\apnumE \apnumB % first pass

182: \else \apnumC=-\apnumC \apPLUSb \tmpa\apnumE \tmpb\apnumF \apnumA

183: \fi

184: \ifnum\apnumG=0 \def\OUT{0}\apSIGN=0 \apE=0 \else

185: \ifnum\apSIGN=0 \apSIGN=\apnumG \let\apNext=\apPLUSm \else \let\apNext=\apPLUSp \fi

186: \apnumX=0 \edef\OUT{\expandafter}\expandafter \apNext \OUT@% second pass

187: \ifnum\apnumD<1 % result in the form .000123

188: \apnumZ=-\apnumD

189: \def\tmpa{.}%

190: \ifnum\apnumZ>0 \apADDzeros\tmpa \fi % adding dot and left zeros

191: \edef\OUT{\ifnum\apSIGN<0-\fi\tmpa\OUT}%

192: \else

193: \edef\OUT{\expandafter}\expandafter\apPLUSy \OUT@% removing left zeros

194: \fi\fi

195: }

The macro \apPLUSb 〈first op〉〈first dig〉〈second op〉〈second dig〉〈first Dig〉 starts the first pass.
The 〈first op〉 is the first operand (which have more or equal Digits before decimal point). The 〈first dig〉
is the number of digits in the first Digit in the first operand. The 〈second op〉 is the second operand and
the 〈second dig〉 is the number of digits in the first Digit of the second operand. The 〈first Dig〉 is the
number of Digits before decimal point of the first operand, but without the first Digit and multiplied
by 4.

The macro\apPLUSb saves the second operand to \tmpd and appends the 4− 〈second dig〉 empty
parameters before this operand in order to read desired number of digits to the first Digit of this oparand.
The macro \apPLUSb saves the first operand to the input queue after \apPLUSc macro. It inserts the
appropriate number of empty parameters (in \tmpc) before this operand in order to read the right number
of digits in the first attempt. It appends the \apNL marks to the end in order to recognize the end of the
input stream. These macros expands simply to zero but we can test the end of input stream by \ifx.

The macro \apPLUSb calculates the number of digits before decimal point (rounded up to multiply
by 4) in \apnumD by advancing 〈first DIG〉 by 4. It initializes \apnumZ to zero. If the first nonzero Digit
will be found then \apnumZ will be set to this Digit in the \apPLUSc macro.

apnum.tex
196: \def\apPLUSb#1#2#3#4#5{%

197: \edef\tmpd{\ifcase#4\or{}{}{}\or{}{}\or{}\fi#3}%

198: \edef\tmpc{\ifcase#2\or{}{}{}\or{}{}\or{}\fi}%

199: \let\apNext=\apPLUSc \apnumD=#5\advance\apnumD by4 \apnumG=0 \apnumZ=0 \def\OUT{}%

200: \expandafter\expandafter\expandafter\apPLUSc\expandafter\tmpc#1\apNL\apNL\apNL\apNL@%

201: }

\apPLUSb: 15–16

16



2 The Implementation Arbitrary Precision Numbers

The macro \apPLUSc is called repeatedly. It reads one Digit from input stream and saves it to
the \apnumY. Then it calls the \apPLUSe, which reads (if it is allowed, i. e. if \apnumC<=0) one digit from
second operand \tmpd by the \apIVread macro. Then it does the addition of these digits and saves the
result into the \OUT macro in reverse order.

Note, that the sign \apPLUSxA is used when \apnumY is read and the sign \apPLUSxB is used when
advancing is performed. This means that we are doing addition or subtraction here.

If the first nonzero Digit is reached, then the macro \apPLUSh sets the sign of the result to the
\apnumG and (maybe) exchanges the \apPLUSxA and \apPLUSxB macros (by the \apPLUSg macro) in
order to the internal result of the subtraction will be always non-negative.

If the end of input stream is reached, then \apNext (used at line 214) is reset from its original
value \apPLUSc to the \apPLUSd where the \apnumY is simply set to zero. The reading from input stream
is finished. This occurs when there are more Digits after decimal point in the second operand than in
the first one. If the end of input stream is reached and the \tmpd macro is empty (all data from second
operand was read too) then the \apPLUSf macro removes the rest of input stream and the first pass of
the calculation is done.

apnum.tex
202: \def\apPLUSc#1#2#3#4{\apnumY=\apPLUSxA#1#2#3#4\relax

203: \ifx\apNL#4\let\apNext=\apPLUSd\fi

204: \ifx\apNL#1\relax \ifx\tmpd\empty \expandafter\expandafter\expandafter\apPLUSf \fi\fi

205: \apPLUSe

206: }

207: \def\apPLUSd{\apnumY=0 \ifx\tmpd\empty \expandafter\apPLUSf \else\expandafter \apPLUSe\fi}

208: \def\apPLUSe{%

209: \ifnum\apnumC>0 \advance\apnumC by-4

210: \else \apIVread\tmpd \advance\apnumY by\apPLUSxB\apnumX \fi

211: \ifnum\apnumZ=0 \apPLUSh \fi

212: \edef\OUT{{\the\apnumY}\OUT}%

213: \advance\apnumD by-4

214: \apNext

215: }

216: \def\apPLUSf#1@{}

217: \def\apPLUSg{\let\tmpc=\apPLUSxA \let\apPLUSxA=\apPLUSxB \let\apPLUSxB=\tmpc}

218: \def\apPLUSh{\apnumZ=\apnumY

Why there is a complication about reading one parameter from input stream but second one from
the macro \tmpd? This is more faster than to save both parameters to the macros and using \apIVread
for both because the \apIVread must redefine its parameter. You can examine that this parameter is
very long.

The \apPLUSm 〈data〉@ macro does transmissions calculation when subtracting. The 〈data〉 from
first pass is expanded in the input stream. The \apPLUSm macro reads repeatedly one Digit from the
〈data〉 until the stop mark is reached. The Digits are in the range −9999 to 9999. If the Digit is negative
then we need to add 10000 and set the transmission value \apnumX to one, else \apnumX is zero. When
the next Digit is processed then the calculated transmission value is subtracted. The macro \apPLUSw
writes the result for each Digit \apnumA in the normal (human readable) order.

apnum.tex
221: \def\apPLUSm#1{%

222: \ifx@#1\else

223: \apnumA=#1 \advance\apnumA by-\apnumX

224: \ifnum\apnumA<0 \advance\apnumA by\apIVbase \apnumX=1 \else \apnumX=0 \fi

225: \apPLUSw

226: \expandafter\apPLUSm

227: \fi

228: }

The \apPLUSp 〈data〉@ macro does transmissions calculation when addition is processed. It is very
similar to\apPLUSm, but Digits are in the range 0 to 19998. If the Digit value is greater then 9999 then
we need to subtract 10000 and set the transmission value \apnumX to one, else \apnumX is zero.

\apPLUSc: 16–17 \apPLUSe: 17 \apPLUSh: 17 \apPLUSg: 15–17 \apPLUSd: 17 \apPLUSf: 17
\apPLUSm: 16–17 \apPLUSp: 16, 18

17



2 The Implementation Arbitrary Precision Numbers

apnum.tex
229: \def\apPLUSp#1{%

230: \ifx@#1\ifnum\apnumX>0 \apnumA=1 \apPLUSw \fi % .5+.5=.1 bug fixed

231: \else

232: \apnumA=\apnumX \advance\apnumA by#1

233: \ifnum\apnumA<\apIVbase \apnumX=0 \else \apnumX=1 \advance\apnumA by-\apIVbase \fi

234: \apPLUSw

235: \expandafter\apPLUSp

236: \fi

237: }

The \apPLUSw writes the result with one Digit (saved in \apnumA) to the \OUT macro. The \OUT
is initialized as empty. If it is empty (it means we are after decimal point), then we need to write all four
digits by \apIVwrite macro (including left zeros) but we need to remove right zeros by \apREMzerosR.
If the decimal point is reached, then it is saved to the \OUT. But if the previous \OUT is empty (it means
there are no digits after decimal point or all such digits are zero) then \def\OUT{\empty} ensures that
the \OUT is non-empty and the ignoring of right zeros are disabled from now.

apnum.tex
238: \def\apPLUSw{%

239: \ifnum\apnumD=0 \ifx\OUT\empty \def\OUT{\empty}\else \edef\OUT{.\OUT}\fi \fi

240: \advance\apnumD by4

241: \ifx\OUT\empty \edef\tmpa{\apIVwrite\apnumA}\edef\OUT{\apREMzerosR\tmpa}%

242: \else \edef\OUT{\apIVwrite\apnumA\OUT}\fi

243: }

The macro \apPLUSy 〈expanded OUT 〉@ removes left trailing zeros from the \OUT macro and saves
the possible minus sign by the \apPLUSz macro.

apnum.tex
244: \def\apPLUSy#1{\ifx0#1\expandafter\apPLUSy\else \expandafter\apPLUSz\expandafter#1\fi}

245: \def\apPLUSz#1@{\edef\OUT{\ifnum\apSIGN<0-\fi#1}}

The macro \apPLUSxE uses the \apROLLa in order to shift the decimal point of the operand.
We need to set the same decimal exponent in scientific notation before the addition or subtraction is
processed.

apnum.tex
246: \def\apPLUSxE{%

247: \apnumE=\apEa \advance\apnumE by-\apEb

248: \ifnum\apEa>\apEb \apPPs\apROLLa\tmpb{-\apnumE}\apE=\apEa

249: \else \apPPs\apROLLa\tmpa{\apnumE}\apE=\apEb \fi

250: }

2.5 Multiplication
Suppose the following multiplication example: 1234*567=699678.

Normal format: | Mirrored format:
1 2 3 4 * | 4 3 2 1 *
5 6 7 | 7 6 5

---------------- | -----------------
*7: 7 14 21 28 | *7: 28 21 14 7
*6: 6 12 18 24 | *6: 24 18 12 6
*5: 5 10 15 20 | *5: 20 15 10 5

---------------- | -----------------
6 9 9 6 7 8 | 8 7 6 9 9 6

This example is in numeral system of base 10 only for simplification, the macros work really with
base 10000. Because we have to do the transmissions between Digit positions from right to left in the
normal format and because it is more natural for TEX to put the data into the input stream and read it
sequentially from left to right, we use the mirrored format in our macros.

The macro \apMUL prepares parameters using \apPPab and executes \apMULa
apnum.tex

254: \def\apMUL{\relax \apPPab\apMULa}

\apPLUSw: 17–18 \apPLUSy: 16, 18 \apPLUSz: 18 \apPLUSxE: 15–16, 18 \apMUL: 6, 9–12, 14,
18, 26, 36, 38, 41–42, 44, 46–49, 51

18



2 The Implementation Arbitrary Precision Numbers

The macro \apMULa does the following:

• It gets the parameters in \tmpa and \tmpb preprocessed using the \apPPab macro.
• It evaluates the exponent of ten \apE which is usable when the scientific notation of numbers is

used (line 256).
• It calculates \apSIGN of the result (line 257).
• If \apSIGN=0 then the result is zero and we will do nothing more (line 258).
• The decimal point is removed from the parameters by \apDIG〈param〉〈register〉. The \apnumD

includes the number of digits before decimal point (after the \apDIG is used) and the 〈register〉
includes the number of digits in the rest. The \apnumA or \apnumB includes total number of digits
in the parameters \tmpa or \tmpb respectively. The \apnumD is re-calculated: it saves the number
of digits after decimal point in the result (lines 259 to 261).
• Let A is the number of total digits in the 〈param〉 and let F = A mod 4, but if F = 0 then reassign

it to F = 4. Then F means the number of digits in the first Digit. This calculation is done by
\apIVmod〈A〉〈F 〉 macro. All another Digits will have four digits. The \apMULb〈param〉@@@@ is able
to read four digits, next four digits etc. We need to insert appropriate number of empty parameters
before the 〈param〉. For example \apMULb{}{}{}〈param〉@@@@ reads first only one digit from
〈param〉, next four digits etc. The appropriate number of empty parameters are prepared in the
\tmpc macro (lines 262 to 263).
• The \apMULb reads the 〈paramA〉 (all Digits) and prepares the \OUT macro in the special inter-

leaved format (described below). The format is finished by *. in the line 265.
• Analogical work is done with the second parameter 〈paramB〉. But this parameter is processed

by \apMULc, which reads Digits of the parameter and inserts them to the \tmpa in the reversed
order (lines 266 to 268).
• The main calculation is done by \apMULd〈paramB〉@, which reads Digits from 〈paramB〉 (in

reversed order) and does multiplication of the 〈paramA〉 (saved in the \OUT) by these Digits
(line 269).
• The \apMULg macro converts the result \OUT to the human readable form (line 270).
• The possible minus sign and the trailing zeros of results of the type .00123 is prepared by
\apADDzeros\tmpa to the \tmpa macro. This macro is appended to the result in the \OUT macro
(lines 271 to 273).

apnum.tex
255: \def\apMULa{%

256: \apE=\apEa \advance\apE by\apEb

257: \apSIGN=\apSIGNa \multiply\apSIGN by\apSIGNb

258: \ifnum\apSIGN=0 \def\OUT{0}\apE=0 \else

259: \apDIG\tmpa\apnumA \apnumX=\apnumA \advance\apnumA by\apnumD

260: \apDIG\tmpb\apnumB \advance\apnumX by\apnumB \advance\apnumB by\apnumD

261: \apnumD=\apnumX % \apnumD = the number of digits after decimal point in the result

262: \apIVmod \apnumA \apnumF % \apnumF = digits in the first Digit of \tmpa

263: \edef\tmpc{\ifcase\apnumF\or{}{}{}\or{}{}\or{}\fi}\def\OUT{}%

264: \expandafter\expandafter\expandafter \apMULb \expandafter \tmpc \tmpa @@@@%

265: \edef\OUT{*.\OUT}%

266: \apIVmod \apnumB \apnumF % \apnumF = digits in the first Digit of \tmpb

267: \edef\tmpc{\ifcase\apnumF\or{}{}{}\or{}{}\or{}\fi}\def\tmpa{}%

268: \expandafter\expandafter\expandafter \apMULc \expandafter \tmpc \tmpb @@@@%

269: \expandafter\apMULd \tmpa@%

270: \expandafter\apMULg \OUT

271: \edef\tmpa{\ifnum\apSIGN<0-\fi}%

272: \ifnum\apnumD>0 \apnumZ=\apnumD \edef\tmpa{\tmpa.}\apADDzeros\tmpa \fi

273: \ifx\tmpa\empty \else \edef\OUT{\tmpa\OUT}\fi

274: \fi

275: }

We need to read the two data streams when the multiplication of the 〈paramA〉 by one Digit from
〈paramB〉 is performed and the partial sum is actualized. First: the digits of the 〈paramA〉 and second:
the partial sum. We can save these streams to two macros and read one piece of information from such
macros at each step, but this si not effective because the whole stream have to be read and redefined
at each step. For TEX is more natural to put one data stream to the input queue and to read pieces of

\apMULa: 18–19, 29

19



2 The Implementation Arbitrary Precision Numbers

infromation thereof. Thus we interleave both data streams into one \OUT in such a way that one element
of data from first stream is followed by one element from second stream and it is followed by second
element from first stream etc. Suppose that we are at the end of i− th line of the multiplication scheme
where we have the partial sums sn, sn−1, . . . , s0 and the Digits of 〈paramA〉 are dk, dk−1, . . . , d0. The
zero index belongs to the most right position in the mirrored format. The data will be prepared in the
form:

. {s_n} {s_(n-1)}...{s_(k+1)} * {s_k} {d_(k-1)}...{s_1} {d_1} {s_0} {d_0} *

For our example (there is a simplification: numeral system of base 10 is used and no transmissions are
processed), after second line (multiplication by 6 and calculation of partial sums) we have in \OUT:

. {28} * {45} {4} {32} {3} {19} {2} {6} {1} *

and we need to create the following line during calculation of next line of multiplication scheme:

. {28} {45} * {5*4+32} {4} {5*3+19} {3} {5*2+6} {2} {5*1} {1} *

This special format of data includes two parts. After the starting dot, there is a sequence of sums which
are definitely calculated. This sequence is ended by first * mark. The last definitely calculated sum
follows this mark. Then the partial sums with the Digits of 〈paramA〉 are interleaved and the data are
finalized by second *. If the calculation processes the the second part of the data then the general task
is to read two data elements (partial sum and the Digit) and to write two data elements (the new partial
sum and the previous Digit). The line calculation starts by copying of the first part of data until the
first * and appending the first data element after *. Then the * is written and the middle processing
described above is started.

The macro \apMULb 〈paramA〉@@@@ prepares the special format of the macro \OUT described above
where the partial sums are zero. It means:

* . {d_k} 0 {d_(k-1)} 0 ... 0 {d_0} *

where di are Digits of 〈paramA〉 in reversed order.
The first “sum” is only dot. It will be moved before * during the first line processing. Why there

is such special “pseudo-sum”? The \apMULe with the parameter delimited by the first * is used in the
context \apMULe.{〈sum〉}* during the third line processing and the dot here protects from removing the
braces around the first real sum.

apnum.tex
276: \def\apMULb#1#2#3#4{\ifx@#4\else

277: \ifx\OUT\empty \edef\OUT{{#1#2#3#4}*}\else\edef\OUT{{#1#2#3#4}0\OUT}\fi

278: \expandafter\apMULb\fi

279: }

The macro \apMULc 〈paramB〉@@@@ reads Digits from 〈paramB〉 and saves them in reversed order
into \tmpa. Each Digit is enclosed by TEX braces {}.

apnum.tex
280: \def\apMULc#1#2#3#4{\ifx@#4\else \edef\tmpa{{#1#2#3#4}\tmpa}\expandafter\apMULc\fi}

The macro \apMULd 〈paramB〉@ reads the Digits from 〈paramB〉 (in reversed order), uses them as
a coefficient for multiplication stored in \tmpnumA and processes the \apMULe 〈special data format〉 for
each such coefficient. This corresponds with one line in the multiplication scheme.

apnum.tex
281: \def\apMULd#1{\ifx@#1\else

282: \apnumA=#1 \expandafter\apMULe \OUT

283: \expandafter\apMULd

284: \fi

285: }

The macro \apMULe 〈special data format〉 copies the first part of data format to the \OUT, copies
the next element after first *, appends * and does the calculation by \apMULf. The \apMULf is recursively
called. It reads the Digit to #1 and the partial sum to the #2 and writes {\appnumA*#1+#2}{#1} to the
\OUT (lines 297 to 301). If we are at the end of data, then #2 is * and we write the {\apnumA*#1}{#1}
followed by ending * to the \OUT (lines 290 to 292).

\apMULb: 19–20, 29 \apMULc: 19–20 \apMULd: 19–20, 29 \apMULe: 20–21, 30
\apMULf: 20–21, 30

20



2 The Implementation Arbitrary Precision Numbers

apnum.tex
286: \def\apMULe#1*#2{\apnumX=0 \def\OUT{#1{#2}*}\def\apOUTl{}\apnumO=1 \apnumL=0 \apMULf}

287: \def\apMULf#1#2{%

288: \advance\apnumO by-1 \ifnum\apnumO=0 \apOUTx \fi

289: \apnumB=#1 \multiply\apnumB by\apnumA \advance\apnumB by\apnumX

290: \ifx*#2%

291: \ifnum\apnumB<\apIVbase

292: \edef\OUT{\OUT\expandafter\apOUTs\apOUTl.,\ifnum\the\apnumB#1=0 \else{\the\apnumB}{#1}\fi*}%

293: \else \apIVtrans

294: \expandafter \edef\csname apOUT:\apOUTn\endcsname

295: {\csname apOUT:\apOUTn\endcsname{\the\apnumB}{#1}}%

296: \apMULf0*\fi

297: \else \advance\apnumB by#2

298: \ifnum\apnumB<\apIVbase \apnumX=0 \else \apIVtrans \fi

299: \expandafter

300: \edef\csname apOUT:\apOUTn\endcsname{\csname apOUT:\apOUTn\endcsname{\the\apnumB}{#1}}%

301: \expandafter\apMULf \fi

302: }

There are several complications in the algorithm described above.

• The result isn’t saved directly to the \OUT macro, but partially into the macros \apOUT:〈num〉,
as described in the section 2.9 where the \apOUTx macro is defined.
• The transmissions between Digit positions are calculated. First, the transmission value \apnumX

is set to zero in the \apMULe. Then this value is subtracted from the calculated value \apnumB
and the new transmission is calculated using the \apIVtrans macro if \apnumB ≥ 10000. This
macro modifies \apnumB in order it is right Digit in our numeral system.
• If the last digit has nonzero transmission, then the calculation isn’t finished, but the new pair
{〈transmission〉}{0} is added to the \OUT. This is done by recursively call of \apMULf at line 296.
• The another situation can be occurred: the last pair has both values zeros. Then we needn’t to

write this zero to the output. This is solved by the test \ifnum\the\apnumB#1=0 at line 292.

The macro \apMULg 〈special data format〉@ removes the first dot (it is the #1 parameter) and
prepares the \OUT to writing the result in reverse order, i. e. in human readable form. The next
work is done by \apMULh and \apMULi macros. The \apMULh repeatedly reads the first part of the
special data format (Digits of the result are here) until the first * is found. The output is stored by
\apMULo〈digits〉{〈data〉} macro. If the first * is found then the \apMULi macro repeatedly reads the triple
{〈Digit of result〉}{〈Digit of A〉}{〈next Digit of result〉} and saves the first element in full (four-digits)
form by the \apIVwrite if the third element isn’t the stop-mark *. Else the last Digit (first Digit in the
human readable form) is saved by \the, because we needn’t the trailing zeros here. The third element
is put back to the input stream but it is ignored by \apMULj macro when the process is finished.

apnum.tex
303: \def\apMULg#1{\def\OUT{}\apMULh}

304: \def\apMULh#1{\ifx*#1\expandafter\apMULi

305: \else \apnumA=#1 \apMULo4{\apIVwrite\apnumA}%

306: \expandafter\apMULh

307: \fi

308: }

309: \def\apMULi#1#2#3{\apnumA=#1

310: \ifx*#3\apMULo{\apNUMdigits\tmpa}{\the\apnumA}\expandafter\apMULj

311: \else \apMULo4{\apIVwrite\apnumA}\expandafter\apMULi

312: \fi{#3}%

313: }

314: \def\apMULj#1{}

The \apMULo 〈digits〉{〈data〉} appends 〈data〉 to the \OUT macro. The number of digits after
decimal point \apnumD is decreased by the number of actually printed digits 〈digits〉. If the decimal
point is to be printed into 〈data〉 then it is performed by the \apMULt macro.

apnum.tex
315: \def\apMULo#1#2{\edef\tmpa{#2}%

316: \advance\apnumD by-#1

317: \ifnum\apnumD<1 \ifnum\apnumD>-4 \apMULt\fi\fi

\apMULg: 19, 21 \apMULh: 21 \apMULi: 21 \apMULj: 21 \apMULo: 21 \apMULt: 21–22

21



2 The Implementation Arbitrary Precision Numbers

318: \edef\OUT{\tmpa\OUT}%

319: }

320: \def\apMULt{\edef\tmpa{\apIVdot{-\apnumD}\tmpa}\edef\tmpa{\tmpa}}

2.6 Division
Suppose the following example:

<paramA> : <paramB> <output>
12345:678 = [12:6=2] 2 (2->1)

2*678 -1356
-1215 <0 correction! 1
12345

1*678 -678
5565 [55:6=8] 9 (9->8)

9*678 -6102
-537 <0 correction! 8
5565

8*678 -5424
1410 [14:6=2] 2

2*678 -1356
0540 [05:6=0] 0

0*678 -0
5400 [54:6=8] 9 (2x correction: 9->8, 8->7)
...

12345:678 = 182079...

We implement the division similar like pupils do it in the school (only the numeral system with
base 10000 instead 10 is actually used, but we keep with base 10 in our illustrations). At each step of the
operation, we get first two Digits from the dividend or remainder (called partial dividend or remainder)
and do divide it by the first nonzero Digit of the divisor (called partial divisor). Unfortunately, the
resulted Digit cannot be the definitive value of the result. We are able to find out this after the whole
divisor is multiplied by resulted Digit and compared with the whole remainder. We cannot do this test
immediately but only after a lot of following operations (imagine that the remainder and divisor have a
huge number of Digits).

We need to subtract the remainder by the multiple of the divisor at each step. This means that
we need to calculate the transmissions from the Digit position to the next Digit position from right to
left (in the scheme illustrated above). Thus we need to reverse the order of Digits in the remainder and
divisor. We do this reversion only once at the preparation state of the division and we interleave the
data from the divisor and the dividend (the dividend will be replaced by the remainder, next by next
remainder etc.).

The number of Digits of the dividend can be much greater than the number of Digits of the
divisor. We need to calculate only with the first part of dividend/remainder in such case. We need to
get only one new Digit from the rest of dividend at each calculation step. The illustration follows:

...used dividend.. | ... rest of dividend ... | .... divisor ....
1234567890123456789 7890123456789012345678901234 : 1231231231231231231
xxxxxxxxxxxxxxxxxx 7 <- calculated remainder
xxxxxxxxxxxxxxxxx x8 <- new calculated remainder
xxxxxxxxxxxxxxxx xx9 <- new calculated remainder etc.

We’ll interleave only the “used dividend” part with the divisor at the preparation state. We’ll
put the “rest of dividend” to the input stream in the normal order. The macros do the iteration over
calculation steps and they can read only one new Digit from this input stream if they need it. This
approach needs no manipulation with the (potentially long) “rest of the dividend” at each step. If the
divisor has only one Digit (or comparable small Digits) then the algorithm has only linear complexity
with respect to the number of Digits in the dividend.

The numeral system with the base 10000 brings a little problem: we are simply able to calculate
the number of digits which are multiple of four. But user typically wishes another number of calculated

22



2 The Implementation Arbitrary Precision Numbers

decimal digits. We cannot simply strip the trailing digits after calculation because the user needs to read
the right remainder. This is a reason why we calculate the number of digits for the first Digit of the
result. All another calculated Digits will have four digits. We need to prepare the first “partial dividend”
in order to the F digits will be calculated first. How to do it? Suppose the following illustration of the
first two Digits in the “partial remainder” and “partial divisor”:

0000 7777 : 1111 = 7 .. one digit in the result
0007 7778 : 1111 = 70 .. two digits in the result
0077 7788 : 1111 = 700 .. three digits in the result
0777 7888 : 1111 = 7000 .. four digits in the result
7777 8888 : 1111 = ???? .. not possible in the numeral system of base 10000

We need to read F−1 digits to the first Digit and four digits to the second Digit of the “partial dividend”.
But this is true only if the dividend is “comparably greater or equal to” divisor. The word “comparably
greater” means that we ignore signs and the decimal point in compared numbers and we assume the
decimal points in the front of both numbers just before the first nonzero digit. It is obvious that if the
dividend is “comparably less” than divisor then we need to read F digits to the first Digit.

The macro \apDIV runs \apDIVa macro which uses the \tmpa (dividend) and \tmpb (divisor)
macros and does the following work:

• If the divisor \tmpb is equal to zero, print error and do nothing more (line 326).
• The \apSIGN of the result is calculated (line 327).
• If the dividend \tmpa is equal to zero, then \OUT and \XOUT are zeros and do nothing more

(line 328).
• Calculate the exponent of ten \apE when scientific notation is used (Line 328).
• The number of digits before point are counted by \apDIG macro for both parameters. The

difference is saved to \apnumD and this is the number of digits before decimal point in the result
(the exception is mentioned later). The \apDIG macro removes the decimal point and (possible)
left zeros from its parameter and saves the result to the \apnumD register (lines 330 to 332).
• The macro \apDIVcomp〈paramA〉〈paramB〉 determines if the 〈paramA〉 is “comparably greater or

equal” to 〈paramB〉. The result is stored in the boolean value apX. We can ask to this by the
\ifapX〈true〉\else〈false〉\fi construction (line 333).
• If the dividend is “comparably greater or equal” to the divisor, then the position of decimal point

in the result \apnumD has to be shifted by one to the right. The same is completed with \apnumH
where the position of decimal point of the remainder will be stored (line 334).
• The number of desired digits in the result \apnumC is calculated (lines 335 to 341).
• If the number of desired digits is zero or less than zero then do nothing more (line 341).
• Finish the calculation of the position of decimal point in the remainder \apnumH (line 334).
• Calculate the number of digits in the first Digit \apnumF (line 345).
• Read first four digits of the divisor by the macro \apIVread〈sequence〉. Note that this macro puts

trailing zeros to the right if the data stream 〈param〉 is shorter than four digits. If it is empty then
the macro returns zero. The returned value is saved in \apnumX and the 〈sequence〉 is redefined
by new value of the 〈param〉 where the read digits are removed (line 346).
•We need to read only \apnumF (or \apnumF − 1) digits from the \tmpa. This is done by the
\apIVreadX macro at line 348. The second Digit of the “partial dividend” includes four digits
and it is read by \apIVread macro at line 350.
• The “partial dividend” is saved to the \apDIVxA macro and the “partial divisor” is stored to

the \apDIVxB macro. Note, that the second Digit of the “partial dividend” isn’t expanded by
simply \the, because when \apnumX=11 and \apnumA=2222 (for example), then we need to save
22220011. These trailing zeros from left are written by the \apIVwrite macro (lines 351 to 352).
• The \XOUT macro for the currently computed remainder is initialized. The special interleaved

data format of the remainder \XOUT is described below (line 353).
• The \OUT macro is initialized. The \OUT is generated as literal macro. First possible 〈sign〉, then

digits. If the number of effective digits before decimal point \apnumD is negative, the result will be
in the form .000123 and we need to add the zeros by the \apADDzeros macro (lines 354 to 355).

\apDIV: 6, 11–12, 14, 24, 36–51 \apDIVa: 24, 29

23



2 The Implementation Arbitrary Precision Numbers

• The registers for main loop are initialized. The \apnumE signalizes that the remainder of the
partial step is zero and we can stop the calculation. The \apnumZ will include the Digit from the
input stream where the “rest of dividend” will be stored (line 355).
• The main calculation loop is processed by the \apDIVg macro (line 357).
• If the division process stops before the position of the decimal point in the result (because there is

zero remainder, for example) then we need to add the rest of zeros by \apADDzeros macro. This
is actual for the results of the type 1230000 (line 358).
• If the remainder isn’t equal to zero, we need to extract the digits of the remainder from the special

data formal to the human readable form. This is done by the \apDIVv macro. The decimal point
is inserted to the remainder by the \apROLLa macro (lines 360 to 361).

apnum.tex
324: \def\apDIV{\relax \apPPab\apDIVa}

325: \def\apDIVa{%

326: \ifnum\apSIGNb=0 \apERR{Dividing by zero}\else

327: \apSIGN=\apSIGNa \multiply\apSIGN by\apSIGNb

328: \ifnum\apSIGNa=0 \def\OUT{0}\def\XOUT{0}\apE=0 \apSIGN=0 \else

329: \apE=\apEa \advance\apE by-\apEb

330: \apDIG\tmpb\relax \apnumB=\apnumD

331: \apDIG\tmpa\relax \apnumH=\apnumD

332: \advance\apnumD by-\apnumB % \apnumD = num. of digits before decimal point in the result

333: \apDIVcomp\tmpa\tmpb % apXtrue <=> A>=B, i.e 1 digit from A/B

334: \ifapX \advance\apnumD by1 \advance\apnumH by1 \fi

335: \apnumC=\apTOT

336: \ifnum\apTOT<0 \apnumC=-\apnumC

337: \ifnum\apnumD>\apnumC \apnumC=\apnumD \fi

338: \fi

339: \ifnum\apTOT=0 \apnumC=\apFRAC \advance\apnumC by\apnumD

340: \else \apnumX=\apFRAC \advance\apnumX by\apnumD

341: \ifnum\apnumC>\apnumX \apnumC=\apnumX \fi

342: \fi

343: \ifnum\apnumC>0 % \apnumC = the number of digits in the result

344: \advance\apnumH by-\apnumC % \apnumH = the position of decimal point in the remainder

345: \apIVmod \apnumC \apnumF % \apnumF = the number of digits in the first Digit

346: \apIVread\tmpb \apnumB=\apnumX % \apnumB = partial divisor

347: \apnumX=\apnumF \ifapX \advance\apnumX by-1 \fi

348: \apIVreadX\apnumX\tmpa

349: \apnumA=\apnumX % \apnumA = first Digit of the partial dividend

350: \apIVread\tmpa % \apnumX = second Digit of the partial dividend

351: \edef\apDIVxA{\the\apnumA\apIVwrite\apnumX}% first partial dividend

352: \edef\apDIVxB{\the\apnumB}% partial divisor

353: \edef\XOUT{{\apDIVxB}{\the\apnumX}@{\the\apnumA}}% the \XOUT is initialized

354: \edef\OUT{\ifnum\apSIGN<0-\fi}%

355: \ifnum\apnumD<0 \edef\OUT{\OUT.}\apnumZ=-\apnumD \apADDzeros\OUT \fi

356: \apnumE=1 \apnumZ=0

357: \let\apNext=\apDIVg \apNext % <--- the main calculation loop is here

358: \ifnum\apnumD>0 \apnumZ=\apnumD \apADDzeros\OUT \fi

359: \ifnum\apnumE=0 \def\XOUT{0}\else % extracting remainder from \XOUT

360: \edef\XOUT{\expandafter}\expandafter\apDIVv\XOUT

361: \def\tmpc{\apnumH}\apnumG=\apSIGNa \expandafter\apROLLa\XOUT.@\XOUT

362: \fi

363: \else

364: \def\OUT{0}\def\XOUT{0}\apE=0 \apSIGN=0

365: \fi\fi\fi

366: }

The macro \apDIVcomp 〈paramA〉〈paramB〉 provides the test if the 〈paramA〉 is “comparably
greater or equal” to 〈paramB〉. Imagine the following examples:

123456789 : 123456789 = 1
123456788 : 123456789 = .99999999189999992628

The example shows that the last digit in the operands can be important for the first digit in the result.
This means that we need to compare whole operands but we can stop the comparison when the first

\apDIVcomp: 23–25

24



2 The Implementation Arbitrary Precision Numbers

difference in the digits is found. This is lexicographic ordering. Because we don’t assume the existence
of eTEX (or another extensions), we need to do this comparison by macros. We set the 〈paramA〉
and 〈paramB〉 to the \tmpc and \tmpd respectively. The trailing \apNLs are appended. The macro
\apDIVcompA reads first 8 digits from first parameter and the macros \apDIVcompB reads first 8 digits
from second parameter and does the comparison. If the numbers are equal then the loop is processed
again.

apnum.tex
367: \def\apDIVcomp#1#2{%

368: \expandafter\def\expandafter\tmpc\expandafter{#1\apNL\apNL\apNL\apNL\apNL\apNL\apNL\apNL@}%

369: \expandafter\def\expandafter\tmpd\expandafter{#2\apNL\apNL\apNL\apNL\apNL\apNL\apNL\apNL@}%

370: \def\apNext{\expandafter\expandafter\expandafter\apDIVcompA\expandafter\tmpc\tmpd}%

371: \apXtrue \apNext

372: }

373: \def\apDIVcompA#1#2#3#4#5#6#7#8#9@{%

374: \ifx#8\apNL \def\tmpc{0000000\apNL@}\else\def\tmpc{#9@}\fi

375: \apnumX=#1#2#3#4#5#6#7#8\relax

376: \apDIVcompB

377: }

378: \def\apDIVcompB#1#2#3#4#5#6#7#8#9@{%

379: \ifnum\apnumX<#1#2#3#4#5#6#7#8 \let\apNext=\relax \apXfalse \else

380: \ifnum\apnumX>#1#2#3#4#5#6#7#8 \let\apNext=\relax \apXtrue

381: \fi\fi

382: \ifx\apNext\relax\else

383: \ifx#8\apNL \def\tmpd{0000000\apNL@}\ifx\tmpc\tmpd\let\apNext=\relax\fi

384: \else\def\tmpd{#9@}\fi

385: \fi

386: \apNext

387: }

The format of interleaved data with divisor and remainder is described here. Suppose this partial
step of the division process:

R0 R1 R2 R3 ... Rn : d1 d2 d3 ... dn = ...A...
@ -A*d1 -A*d2 -A*d3 ... -A*dn [ R0 R1 : d1 = A ]
0 N0 N1 N2 ... N(n-1) Nn

The Rk are Digits of the remainder, dk are Digits of the divisor. The A is calculated Digit in this
step. The calculation of the Digits of the new remainder is hinted here. We need to do this from right
to left because of the transmissions. This implies, that the interleaved format of \XOUT is in the reverse
order and looks like

dn Rn ... d3 R3 d2 R2 d1 R1 @ R0

for example for 〈paramA〉=1234567893, 〈paramB〉=454502 (in the human readable form) the \XOUT
should be {200}{9300}{4545}{5678}@{1234} (in the special format). The Digits are separated by TEX
braces {}. The resulted digit for this step is A = 12345678/1415 = 2716.

The calculation of the new remainder takes dk, Rk, dk−1 for each k from n to 0 and creates the
Digit of the new remainder Nk−1 = Rk − A · dk (roughly speaking, actually it calculates transmissions
too) and adds the new couple dk−1 Nk−1 to the new version of \XOUT macro. The zero for N−1 should
be reached. If it is not completed then a correction of the type A := A − 1 have to be done and the
calculation of this step is processed again.

The result in the new \XOUT should be (after one step is done):

dn Nn ... d3 N3 d2 N2 d1 N1 @ N0

where Nn is taken from the “rest of the dividend” from the input stream.
The initialization for the main loop is done by \apDIVg macro. It reads the Digits from \tmpa

(dividend) and \tmpb macros (using \apIVread) and appends them to the \XOUT in described data
format. This initialization is finished when the \tmpb is empty. If the \tmpa is not empty in such case,
we put it to the input stream using \expandafter\apDIVh\tmpa followed by four \apNLs (which simply
expands zero digit) followed by stop-mark. The \apDIVh reads one Digit from input stream. Else we

\apDIVcompA: 25 \apDIVcompB: 25 \apDIVg: 24, 26

25



2 The Implementation Arbitrary Precision Numbers

put only the stop-mark to the input stream and run the \apDIVi. The \apNexti is set to the \apDIVi,
so the macro \apDIVh will be skipped forever and no new Digit is read from input stream.

apnum.tex
388: \def\apDIVg{%

389: \ifx\tmpb\empty

390: \ifx\tmpa\empty \def\apNext{\apDIVi!}\let\apNexti=\apDIVi

391: \else \def\apNext{\expandafter\apDIVh\tmpa\apNL\apNL\apNL\apNL!}\let\apNexti=\apDIVh

392: \fi\fi

393: \ifx\apNext\apDIVg

394: \apIVread\tmpa \apnumA=\apnumX

395: \apIVread\tmpb

396: \edef\XOUT{{\the\apnumX}{\the\apnumA}\XOUT}%

397: \fi

398: \apNext

399: }

The macro \apDIVh reads one Digit from data stream (from the rest of the dividend) and saves it
to the \apnumZ register. If the stop-mark is reached (this is recognized that the last digit is the \apNL),
then \apNexti is set to \apDIVi, so the \apDIVh is never processed again.

apnum.tex
400: \def\apDIVh#1#2#3#4{\apnumZ=#1#2#3#4

401: \ifx\apNL#4\let\apNexti=\apDIVi\fi

402: \apDIVi

403: }

The macro \apDIVi contains the main loop for division calculation. The core of this loop is the
macro call \apDIVp〈data〉 which adds next digit to the \OUT and recalculates the remainder.

The macro \apDIVp decreases the \apnumC register (the desired digits in the output) by four,
because four digits will be calculated in the next step. The loop is processed while \apnumC is positive.
The \apnumZ (new Digit from the input stream) is initialized as zero and the \apNexti runs the next
step of this loop. This step starts from \apDIVh (reading one digit from input stream) or directly the
\apDIVi is repeated. If the remainder from the previous step is calculated as zero (\apnumE=0), then we
stop prematurely. The \apDIVj macro is called at the end of the loop because we need to remove the
“rest of the dividend” from the input stream.

apnum.tex
404: \def\apDIVi{%

405: \ifnum\apnumE=0 \apnumC=0 \fi

406: \ifnum\apnumC>0

407: \expandafter\apDIVp\XOUT

408: \advance\apnumC by-4

409: \apnumZ=0

410: \expandafter\apNexti

411: \else

412: \expandafter\apDIVj

413: \fi

414: }

415: \def\apDIVj#1!{}

The macro \apDIVp 〈interleaved data〉@ does the basic setting before the calculation through the
expanded \XOUT is processed. The \apDIVxA includes the “partial dividend” and the \apDIVxB includes
the “partial divisor”. We need to do \apDIVxA over \apDIVxB in order to obtain the next digit in the
output. This digit is stored in \apnumA. The \apnumX is the transmission value, the \apnumB, \apnumY
will be the memory of the last two calculated Digits in the remainder. The \apnumE will include the
maximum of all digits of the new remainder. If it is equal to zero, we can finish the calculation.

The new interleaved data will be stored to the \apOUT:〈num〉 macros in similar way as in the
\apMUL macro. This increases the speed of the calculation. The data \apnumO, \apnumL and \apOUTl
for this purpose are initialized.

The \apDIVq is started and the tokens 0\apnumZ are appended to the input stream (i. e. to the
expanded \XOUT. This zero will be ignored and the \apnumZ will be used as a new Nn, i. e. the Digit
from the “rest of the dividend”.

\apDIVh: 25–27 \apDIVi: 26 \apDIVj: 26 \apDIVp: 26–27 \apDIVxA: 23–24, 26–27
\apDIVxB: 23–24, 26–27

26



2 The Implementation Arbitrary Precision Numbers

apnum.tex
416: \def\apDIVp{%

417: \apnumA=\apDIVxA \divide\apnumA by\apDIVxB

418: \def\apOUTl{}\apnumO=1 \apnumL=0

419: \apnumX=0 \apnumB=0 \apnumE=0

420: \let\apNext=\apDIVq \apNext 0\apnumZ

421: }

The macro \apDIVq 〈dk〉 〈Rk〉 〈dk−1〉 calculates the Digit of the new remainder Nk−1 by the
formula Nk−1 = −A · dk +Rk −X where X is the transmission from the previous Digit. If the result is
negative, we need to add minimal number of the form X ·10000 in order the result is non-negative. Then
the X is new transmission value. The digit Nk is stored in the \apnumB register and then it is added
to \apOUT:〈num〉 in the order dk−1Nk−1. The \apnumY remembers the value of the previous \apnumB.
The dk−1 is put to the input stream back in order it would be read by the next \apDIVq call.

If dk−1 = @ then we are at the end of the remainder calculation and the \apDIVr is invoked.
apnum.tex

422: \def\apDIVq#1#2#3{% B A B

423: \advance\apnumO by-1 \ifnum\apnumO=0 \apOUTx \fi

424: \apnumY=\apnumB

425: \apnumB=#1\multiply\apnumB by-\apnumA

426: \advance\apnumB by#2\advance\apnumB by-\apnumX

427: \ifnum\apnumB<0 \apnumX=\apnumB \advance\apnumX by1

428: \divide\apnumX by-\apIVbase \advance\apnumX by1

429: \advance\apnumB by\the\apnumX 0000

430: \else \apnumX=0 \fi

431: \expandafter

432: \edef\csname apOUT:\apOUTn\endcsname{\csname apOUT:\apOUTn\endcsname{#3}{\the\apnumB}}%

433: \ifnum\apnumE<\apnumB \apnumE=\apnumB \fi

434: \ifx@#3\let\apNext=\apDIVr \fi

435: \apNext{#3}%

436: }

The \apDIVr macro does the final work after the calculation of new remainder is done. It tests
if the remainder is OK, i. e. the transmission from the R1 calculation is equal to R0. If it is true then
new Digit \apnumA is added to the \OUT macro else the \apnumA is decreased (the correction) and the
calculation of the remainder is run again.

If the calculated Digit and the remainder are OK, then we do following:

• The new \XOUT is created from \apOUT:〈num〉 macros using \apOUTs macro.
• The \apnumA is saved to the \OUT. This is done with care. If the \apnumD (where the decimal

point is measured from the actual point in the \OUT) is in the interval [0, 4) then the decimal
point have to be inserted between digits into the next Digit. This is done by \apDIVt macro. If
the remainder is zero (\apnumE=0), then the right trailing zeros are removed from the Digit by
the \apDIVu and the shift of the \apnumD register is calculated from the actual digits. All this
calculation is done in \tmpa macro. The last step is adding the contents of \tmpa to the \OUT.
• The \apnumD is increased by the number of added digits.
• The new “partial dividend” is created from \apnumB and \apnumY.

apnum.tex
437: \def\apDIVr#1#2{%

438: \ifnum\apnumX=#2 % the calculated Digit is OK, we save it

439: \edef\XOUT{\expandafter\apOUTs\apOUTl.,}%

440: \edef\tmpa{\ifnum\apnumF=4 \expandafter\apIVwrite\else \expandafter\the\fi\apnumA}%

441: \ifnum\apnumD<\apnumF \ifnum\apnumD>-1 \apDIVt \fi\fi %adding dot

442: \ifx\apNexti\apDIVh \apnumE=1 \fi

443: \ifnum\apnumE=0 \apDIVu % removing zeros

444: \advance\apnumD by-\apNUMdigits\tmpa \relax

445: \else \advance\apnumD by-\apnumF \apnumF=4 \fi

446: \edef\OUT{\OUT\tmpa}% save the Digit

447: \edef\apDIVxA{\the\apnumB\apIVwrite\apnumY}% next partial dvividend

448: \else % we need do correction and run the remainder calculation again

449: \advance\apnumA by-1 \apnumX=0 \apnumB=0 \apnumE=0

450: \def\apOUTl{}\apnumO=1 \apnumL=0

451: \def\apNext{\let\apNext=\apDIVq

\apDIVq: 26–27 \apDIVr: 27

27



2 The Implementation Arbitrary Precision Numbers

452: \expandafter\apNext\expandafter0\expandafter\apnumZ\XOUT}%

453: \expandafter\apNext

454: \fi

455: }

The \apDIVt macro inserts the dot into digits quartet (less than four digits are allowed too) by the
\apnumD value. This value is assumed in the interval [0, 4). The expandable macro \apIVdot〈shift〉〈data〉
is used for this purpose. The result from this macro has to be expanded twice.

apnum.tex
456: \def\apDIVt{\edef\tmpa{\apIVdot\apnumD\tmpa}\edef\tmpa{\tmpa}}

The \apDIVu macro removes trailing zeros from the right and removes the dot, if it is the
last token of the \tmpa after removing zeros. It uses expandable macros \apREMzerosR〈data〉 and
\apREMdotR〈data〉.

apnum.tex
457: \def\apDIVu{\edef\tmpa{\apREMzerosR\tmpa}\edef\tmpa{\apREMdotR\tmpa}}

The rest of the code concerned with the division does an extraction of the last remainder from
the data and this value is saved to the \XOUT macro in human readable form. The \apDIVv macro is
called repeatedly on the special format of the \XOUT macro and the new \XOUT is created. The trailing
zeros from right are ignored by the \apDIVw.

apnum.tex
458: \def\apDIVv#1#2{\apnumX=#2

459: \ifx@#1\apDIVw{.\apIVwrite\apnumX}\else\apDIVw{\apIVwrite\apnumX}\expandafter\apDIVv\fi

460: }

461: \def\apDIVw#1{%

462: \ifx\XOUT\empty \ifnum\apnumX=0

463: \else \edef\tmpa{#1}\edef\XOUT{\apREMzerosR\tmpa\XOUT}%

464: \fi

465: \else \edef\XOUT{#1\XOUT}\fi

466: }

2.7 Power to the Integer
The \apPOW macro does the power to the integer exponent only. The \apPOWx is equivalent to

\apPOW and it is used in \evaldef macro for the ^ operator. If you want to redefine the meaning of the
^ operator then redefine the \apPOWx sequence.

apnum.tex
470: \def\apPOW{\relax \apPPab\apPOWa} \let\apPOWx=\apPOW % for usage as ^ operator

We can implement the power to the integer as repeated multiplications. This is simple but slow.
The goal of this section is to present the power to the integer with some optimizations.

Let a is the base of the powering computation and d1, d2, d3, . . . , dn are binary digits of the
exponent (in reverse order). Then

p = a1 d1+2 d2+2
2 d3+···+2n−1 dn = (a1)d1 · (a2)d2 · (a2

2

)d3 · (a2
n−1

)dn .

If di = 0 then zdi is one and this can be omitted from the queue of multiplications. If di = 1 then we
keep zdi as z in the queue. We can see from this that the p can be computed by the following algorithm:

(* "a" is initialized as the base, "e" as the exponent *)
p := 1;
while (e>0) {
if (e%2) p := p*a;
e := e/2;
if (e>0) a := a*a;

}
(* "p" includes the result *)

The macro \apPOWa does the following work.

\apDIVt: 27–28 \apDIVu: 27–28 \XOUT: 6, 5, 14, 23–28, 32–33, 37–38, 46 \apDIVv: 24, 28
\apDIVw: 28 \apPOW: 6, 12, 14, 28, 36, 41–42, 46–47, 51 \apPOWx: 11–12, 28, 48
\apPOWa: 28–30

28



2 The Implementation Arbitrary Precision Numbers

• After using \apPPab the base parameter is saved in \tmpa and the exponent is saved in \tmpb.
• In trivial cases, the result is set without any computing (lines 472 and 473).
• If the exponent is non-integer or it is too big then the error message is printed and the rest of the

macro is skipped by the \apPOWe macro (lines 475 to 478).
• The \apE is calculated from \apEa (line 479).
• The sign of the result is negative only if the \tmpb is odd and base is negative (line 481).
• The number of digits after decimal point for the result is calculated and saved to \apnumD. The

total number of digits of the base is saved to \apnumC. (line 482).
• The first Digit of the base needn’t to include all four digits, but other Digits do it. The similar

trick as in \apMULa is used here (lines 484 to 485).
• The base is saved in interleaved reversed format (like in \apMULa) into the \OUT macro by the
\apMULb macro. Let it be the a value from our algorithm described above (lines 486 and 487).
• The initial value of p = 1 from our algorithm is set in interleaved format into \tmpc macro

(line 488).
• The main loop described above is processed by \apPOWb macro. (line 489).
• The result in \tmpc is converted into human readable form by the \apPOWg macro and it is stored

into the \OUT macro (line 490).
• If the result is negative or decimal point is needed to print then use simple conversion of the \OUT

macro (adding minus sign) or using \apROLLa macro (lines 491 and 492).
• If the exponent is negative then do the 1/r calculation, where r is previous result (line 493).

apnum.tex
471: \def\apPOWa{%

472: \ifnum\apSIGNa=0 \def\OUT{0}\apSIGN=0 \apE=0 \else

473: \ifnum\apSIGNb=0 \def\OUT{1}\apSIGN=1 \apE=0 \else

474: \apDIG\tmpb\apnumB

475: \ifnum\apnumB>0 \apERR{POW: non-integer exponent is not implemented yet}\apPOWe\fi

476: \ifnum\apEb=0 \else \apERR{POW: the E notation of exponent isn’t allowed}\apPOWe\fi

477: \ifnum\apnumD>8 \apERR{POW: too big exponent.

478: Do you really need about 10^\the\apnumD\space digits in output?}\apPOWe\fi

479: \apE=\apEa \multiply\apE by\tmpb\relax

480: \apSIGN=\apSIGNa

481: \ifodd\tmpb \else \apSIGN=1 \fi

482: \apDIG\tmpa\apnumA \apnumC=\apnumA \advance\apnumC by\apnumD

483: \apnumD=\apnumA \multiply\apnumD by\tmpb

484: \apIVmod \apnumC \apnumA

485: \edef\tmpc{\ifcase\apnumA\or{}{}{}\or{}{}\or{}\fi}\def\OUT{}%

486: \expandafter\expandafter\expandafter \apMULb \expandafter \tmpc \tmpa @@@@%

487: \edef\OUT{*.\OUT}% \OUT := \tmpa in interleaved format

488: \def\tmpc{*.1*}%

489: \apnumE=\tmpb\relax \apPOWb

490: \expandafter\apPOWg \tmpc % \OUT := \tmpc in human raedable form

491: \ifnum\apnumD=0 \ifnum \apSIGN<0 \edef\OUT{-\OUT}\fi

492: \else \def\tmpc{-\apnumD}\apnumG=\apSIGN \expandafter\apROLLa\OUT.@\OUT\fi

493: \ifnum\apSIGNb<0 \apPPab\apDIVa 1\OUT \fi

494: \relax

495: \fi\fi

496: }

The macro \apPOWb is the body of the loop in the algorithm described above. The code part
after \ifodd\apnumE does p := p*a. In order to do this, we need to convert \OUT (where a is stored)
into normal format using \apPOWd. The result is saved in \tmpb. Then the multiplication is done by
\apMULd and the result is normalized by the \apPOWn macro. Because \apMULd works with \OUT macro,
we temporary set \tmpc to \OUT.

The code part after \ifnum\apnumE<0 does a := a*a using the \apPOWt macro. The result is
normalized by the \apPOWn macro.

apnum.tex
497: \def\apPOWb{%

498: \ifodd\apnumE \def\tmpb{}\expandafter\apPOWd\OUT

499: \let\tmpd=\OUT \let\OUT=\tmpc

500: \expandafter\apMULd \tmpb@\expandafter\apPOWn\OUT@%

501: \let\tmpc=\OUT \let\OUT=\tmpd

\apPOWb: 29–30

29



2 The Implementation Arbitrary Precision Numbers

502: \fi

503: \divide\apnumE by2

504: \ifnum\apnumE>0 \expandafter\apPOWt\OUT \expandafter\apPOWn\OUT@%

505: \expandafter\apPOWb

506: \fi

507: }

The macro \apPOWd 〈initialized interleaved reversed format〉 extracts the Digits from its argument
and saves them to the \tmpb macro.

apnum.tex
508: \def\apPOWd#1#2{% \apPOWd <spec format> => \tmpb (in simple reverse format)

509: \ifx*#1\expandafter\apPOWd \else

510: \edef\tmpb{\tmpb{#1}}%

511: \ifx*#2\else \expandafter\expandafter\expandafter\apPOWd\fi

512: \fi

513: }

The \apPOWe macro skips the rest of the body of the \apPOWa macro to the \relax. It is used
when \errmessage is printed.

apnum.tex
514: \def\apPOWe#1\relax{\fi}

The \apPOWg macro provides the conversion from interleaved reversed format to the human read-
able form and save the result to the \OUT macro. It ignores the first two elements from the format and
runs \apPOWh.

apnum.tex
515: \def\apPOWg#1#2{\def\OUT{}\apPOWh} % conversion to the human readable form

516: \def\apPOWh#1#2{\apnumA=#1

517: \ifx*#2\edef\OUT{\the\apnumA\OUT}\else \edef\OUT{\apIVwrite\apnumA\OUT}\expandafter\apPOWh\fi

518: }

The normalization to the initialized interleaved format of the \OUT is done by the \apPOWn 〈data〉@
macro. The \apPOWna reads the first part of the 〈data〉 (to the first *, where the Digits are non-interleaved.
The \apPOWnn reads the second part of 〈data〉 where the Digits of the result are interleaved with the
digits of the old coefficients. We need to set the result as a new coefficients and prepare zeros between
them for the new calculation. The dot after the first * is not printed (the zero is printed instead it) but
it does not matter because this token is simply ignored during the calculation.

apnum.tex
519: \def\apPOWn#1{\def\OUT{*}\apPOWna}

520: \def\apPOWna#1{\ifx*#1\expandafter\apPOWnn\else \edef\OUT{\OUT0{#1}}\expandafter\apPOWna\fi}

521: \def\apPOWnn#1#2{\ifx*#1\edef\OUT{\OUT*}\else\edef\OUT{\OUT0{#1}}\expandafter\apPOWnn\fi}

The powering to two (\OUT:=\OUT^2) is provided by the \apPOWt 〈data〉 macro. The macro
\apPOWu is called repeatedly for each \apnumA=Digit from the 〈data〉. One line of the multiplication
scheme is processed by the \apPOWv 〈data〉 macro. We can call the \apMULe macro here but we don’t do
it because a slight optimization is used here. You can try to multiply the number with digits abcd by
itself in the mirrored multiplication scheme. You’ll see that first line includes a^2 2ab 2ac 2ad, second
line is intended by two columns and includes b^2 2bc 2bd, next line is indented by next two columns
and includes c^2 2cd and the last line is intended by next two columns and includes only d^2. Such
calculation is slightly shorter than normal multiplication and it is implemented in the \apPOWv macro.

apnum.tex
522: \def\apPOWt#1#2{\apPOWu} % power to two

523: \def\apPOWu#1#2{\apnumA=#1

524: \expandafter\apPOWv\OUT

525: \ifx*#2\else \expandafter\apPOWu\fi

526: }

527: \def\apPOWv#1*#2#3#4{\def\apOUTl{}\apnumO=1 \apnumL=0

528: \apnumB=\apnumA \multiply\apnumB by\apnumB \multiply\apnumA by2

529: \ifx*#4\else\advance\apnumB by#4 \fi

530: \ifx\apnumB<\apIVbase \apnumX=0 \else \apIVtrans \fi

531: \edef\OUT{#1{#2}{\the\apnumB}*}%

532: \ifx*#4\apMULf0*\else\expandafter\apMULf\fi

\apPOWd: 29–30 \apPOWe: 29–30 \apPOWg: 29–30 \apPOWh: 30 \apPOWn: 29–30 \apPOWna: 30
\apPOWnn: 30 \apPOWt: 29–30 \apPOWu: 30 \apPOWv: 30

30



2 The Implementation Arbitrary Precision Numbers

533: }

2.8 apROLL, apROUND and apNORM Macros
The macros \apROLL , \apROUND and \apNORM are implemented by \apROLLa, \apROUNDa and

\apNORMa macros with common format of the parameter text: 〈expanded sequence〉.@〈sequence〉 where
〈expanded sequence〉 is the expansion of the macro 〈sequence〉 (given as first parameter of \apROLL,
\apROUND and \apNORM, but without optionally minus sign. If there was the minus sign then \apnumG=-1
else \apnumG=1. This preparation of the parameter 〈sequence〉 is done by the \apPPs macro. The second
parameter of the macros \apROLL, \apROUND and \apNORM is saved to the \tmpc macro.

\apROLLa 〈param〉.@〈sequence〉 shifts the decimal point of the 〈param〉 by \tmpc positions to the
right (or to the left, if \tmpc is negative) and saves the result to the 〈sequence〉 macro. The \tmpc value
is saved to the \apnumA register and the \apROLLc is executed if we need to shift the decimal point to
left. Else \apROLLg is executed.

apnum.tex
537: \def\apROLL{\apPPs\apROLLa}

538: \def\apROLLa{\apnumA=\tmpc\relax \ifnum\apnumA<0 \expandafter\apROLLc\else \expandafter\apROLLg\fi}

The \apROLLc 〈param〉.@〈sequence〉 shifts the decimal point to left by the -\apnumA decimal
digits. It reads the tokens from the input stream until the dot is found using \apROLLd macro. The
number of such tokens is set to the \apnumB register and tokens are saved to the \tmpcmacro. If the dot is
found then \apROLLe does the following: if the number of read tokens is greater then the absolute value of
the 〈shift〉, then the number of positions from the most left digit of the number to the desired place of the
dot is set to the \apnumA register a the dot is saved to this place by \apROLLi〈parameter〉.@〈sequence〉.
Else the new number looks like .000123 and the right number of zeros are saved to the 〈sequence〉 using
the \apADDzeros macro and the rest of the input stream (including expanded \tmpc returned back) is
appended to the macro 〈sequence〉 by the \apROLLf 〈param〉.@ macro.

apnum.tex
539: \def\apROLLc{\edef\tmpc{}\edef\tmpd{\ifnum\apnumG<0-\fi}\apnumB=0 \apROLLd}

540: \def\apROLLd#1{%

541: \ifx.#1\expandafter\apROLLe

542: \else \edef\tmpc{\tmpc#1}%

543: \advance\apnumB by1

544: \expandafter\apROLLd

545: \fi

546: }

547: \def\apROLLe#1{\ifx@#1\edef\tmpc{\tmpc.@}\else\edef\tmpc{\tmpc#1}\fi

548: \advance\apnumB by\apnumA

549: \ifnum\apnumB<0

550: \apnumZ=-\apnumB \edef\tmpd{\tmpd.}\apADDzeros\tmpd

551: \expandafter\expandafter\expandafter\apROLLf\expandafter\tmpc

552: \else

553: \apnumA=\apnumB

554: \expandafter\expandafter\expandafter\apROLLi\expandafter\tmpc

555: \fi

556: }

557: \def\apROLLf#1.@#2{\edef#2{\tmpd#1}}

The \apROLLg 〈param〉.@〈sequence〉 shifts the decimal point to the right by \apnumA digits starting
from actual position of the input stream. It reads tokens from the input stream by the \apROLLh and
saves them to the \tmpd macro where the result will be built. When dot is found the \apROLLi is
processed. It reads next tokens and decreases the \apnumA by one for each token. It ends (using
\apROLLj\apROLLk) when \apnumA is equal to zero. If the end of the input stream is reached (the @
character) then the zero is inserted before this character (using \apROLLj\apROLLi0@). This solves the
situations like 123, 〈shift〉=2, → 12300.

apnum.tex
558: \def\apROLLg#1{\edef\tmpd{\ifnum\apnumG<0-\fi}\ifx.#1\apnumB=0 \else\apnumB=1 \fi \apROLLh#1}

\apROLL: 5, 14, 31, 33, 39, 41–42, 46, 51 \apROUND: 5, 14, 31–32, 37–38, 41–42, 44, 46–47, 51
\apNORM: 5, 14, 31, 33, 51 \apROLLa: 18, 24, 29, 31, 33 \apROLLc: 31 \apROLLd: 31
\apROLLe: 31 \apROLLf: 31 \apROLLg: 31–32 \apROLLh: 31–32 \apROLLi: 31–32

31



2 The Implementation Arbitrary Precision Numbers

559: \def\apROLLh#1{\ifx.#1\expandafter\apROLLi\else \edef\tmpd{\tmpd#1}\expandafter\apROLLh\fi}

560: \def\apROLLi#1{\ifx.#1\expandafter\apROLLi\else

561: \ifnum\apnumA>0 \else \apROLLj \apROLLk#1\fi

562: \ifx@#1\apROLLj \apROLLi0@\fi

563: \advance\apnumA by-1

564: \ifx0#1\else \apnumB=1 \fi

565: \ifnum\apnumB>0 \edef\tmpd{\tmpd#1}\fi

566: \expandafter\apROLLi\fi

567: }

The \apROLLg macro initializes \apnumB=1 if the 〈param〉 doesn’t begin by dot. This is a flag that
all digits read by \apROLLi have to be saved. If the dot begins, then the number can look like .000123
(before moving the dot to the right) and we need to ignore the trailing zeros. The \apnumB is equal to
zero in such case and this is set to 1 if here is first non-zero digit.

The \apROLLj macro closes the conditionals and runs its parameter separated by \fi. It skips
the rest of the \apROLLi macro too.

apnum.tex
568: \def\apROLLj#1\fi#2\apROLLi\fi{\fi\fi#1}

The macro \apROLLk puts the decimal point to the \tmpd at current position (using \apROLLn) if
the input stream is not fully read. Else it ends the processing. The result is an integer without decimal
digit in such case.

apnum.tex
569: \def\apROLLk#1{\ifx@#1\expandafter\apROLLo\expandafter@\else

570: \def\tmpc{}\apnumB=0 \expandafter\apROLLn\expandafter#1\fi

571: }

The macro \apROLLn reads the input stream until the dot is found. Because we read now the
digits after a new position of the decimal point we need to check situations of the type 123.000 which is
needed to be written as 123 without decimal point. This is a reason of a little complication. We save all
digits to the \tmpc macro and calculate the sum of such digits in \apnumB register. If this sum is equal
to zero then we don’t append the .\tmpc to the \tmpd. The macro \apROLLn is finished by the \apROLLo
@〈sequence〉 macro, which removes the last token from the input stream and defines 〈sequence〉 as \tmpd.

apnum.tex
572: \def\apROLLn#1{%

573: \ifx.#1\ifnum\apnumB>0 \edef\tmpd{\tmpd.\tmpc}\fi \expandafter\apROLLo

574: \else \edef\tmpc{\tmpc#1}\advance\apnumB by#1 \expandafter\apROLLn

575: \fi

576: }

577: \def\apROLLo@#1{\let#1=\tmpd}

The macro \apROUNDa 〈param〉.@〈sequence〉 rounds the number given in the 〈param〉. The number
of digits after decimal point \tmpc is saved to \apnumD. If this number is negative then \apROUNDe is
processed else the \apROUNDb reads the 〈param〉 to the decimal point and saves this part to the \tmpc
macro. The \tmpd macro (where the rest after decimal point of the number will be stored) is initialized
to empty and the \apROUNDc is started. This macro reads one token from input stream repeatedly until
the number of read tokens is equal to \apnumD or the stop mark @ is reached. All tokens are saved to
\tmpd. Then the \apROUNDd macro reads the rest of the 〈param〉, saves it to the \XOUT macro and defines
〈sequence〉 (i. e. #2) as the rounded number.

apnum.tex
579: \def\apROUND{\apPPs\apROUNDa}

580: \def\apROUNDa{\apnumD=\tmpc\relax

581: \ifnum\apnumD<0 \expandafter\apROUNDe

582: \else \expandafter\apROUNDb

583: \fi

584: }

585: \def\apROUNDb#1.{\edef\tmpc{#1}\apnumX=0 \def\tmpd{}\let\apNext=\apROUNDc \apNext}

586: \def\apROUNDc#1{\ifx@#1\def\apNext{\apROUNDd.@}%

587: \else \advance\apnumD by-1

588: \ifnum\apnumD<0 \def\apNext{\apROUNDd#1}%

589: \else \ifx.#1\else \advance\apnumX by#1 \edef\tmpd{\tmpd#1}\fi

590: \fi

\apROLLj: 31–32 \apROLLk: 31–32 \apROLLn: 32 \apROLLo: 32 \apROUNDa: 14, 31–33
\apROUNDb: 32 \apROUNDc: 32 \apROUNDd: 32–33

32



2 The Implementation Arbitrary Precision Numbers

591: \fi \apNext

592: }

593: \def\apROUNDd#1.@#2{\def\XOUT{#1}\edef\XOUT{\apREMzerosR\XOUT}%

594: \ifnum\apnumX=0 \def\tmpd{}\fi

595: \ifx\tmpd\empty

596: \ifx\tmpc\empty \def#2{0}%

597: \else \edef#2{\ifnum\apnumG<0-\fi\tmpc}\fi

598: \else\edef#2{\ifnum\apnumG<0-\fi\tmpc.\tmpd}\fi

599: }

The macro \apROUNDe solves the “less standard” problem when rounding to the negative digits
after decimal point \apnumD, i. e. we need to set -\apnumD digits before decimal point to zero. The
solution is to remove the rest of the input stream, use \apROLLa to shift the decimal point left by
-\apnumD positions, use \apROUNDa to remove all digits after decimal point and shift the decimal point
back to its previous place.

apnum.tex
600: \def\apROUNDe#1.@#2{\apnumC=\apnumD

601: \apPPs\apROLLa#2{\apnumC}\apPPs\apROUNDa#2{0}\apPPs\apROLLa#2{-\apnumC}%

602: }

The macro \apNORMa redefines the 〈sequence〉 in order to remove minus sign because the \apDIG
macro uses its parameter without this sign. Then the \apNORMb 〈sequence〉〈parameter〉@ is executed
where the dot in the front of the parameter is tested. If the dot is here then the \apDIG macro measures
the digits after decimal point too and the \apNORMc is executed (where the \apROLLa shifts the decimal
point from the right edge of the number). Else the \apDIG macro doesn’t measure the digits after decimal
point and the \apNORMd is executed (where the \apROLLa shifts the decimal point from the left edge of
the number).

apnum.tex
603: \def\apNORM{\apPPs\apNORMa}

604: \def\apNORMa#1.@#2{\ifnum\apnumG<0 \def#2{#1}\fi \expandafter\apNORMb\expandafter#2\tmpc@}

605: \def\apNORMb#1#2#3@{%

606: \ifx.#2\apnumC=#3\relax \apDIG#1\apnumA \apNORMc#1%

607: \else \apnumC=#2#3\relax \apDIG#1\relax \apNORMd#1%

608: \fi

609: }

610: \def\apNORMc#1{\advance\apE by-\apnumA \advance\apE by\apnumC

611: \def\tmpc{-\apnumC}\expandafter\apROLLa#1.@#1%

612: }

613: \def\apNORMd#1{\advance\apE by\apnumD \advance\apE by-\apnumC

614: \def\tmpc{\apnumC}\expandafter\apROLLa\expandafter.#1.@#1%

615: }

The macro \apEadd 〈sequence〉 adds E in scientific format into 〈sequence〉 macro and \apEnum
〈sequence〉 normalizes the number in the 〈sequence〉. After processing these macros the \apE register is
set to zero.

apnum.tex
616: \def\apEadd#1{\ifnum\apE=0 \else\edef#1{#1E\ifnum\apE>0+\fi\the\apE}\apE=0 \fi}

617: \def\apEnum#1{\ifnum\apE=0 \else\apROLL#1\apE \apE=0 \fi}

2.9 Miscelaneous Macros
The macro \apEND closes the \begingroup group, but keeps the values of \OUT macro and

\apSIGN, \apE registers.
apnum.tex

621: \def\apEND{\global\let\apENDx=\OUT

622: \edef\tmpb{\apSIGN=\the\apSIGN \apE=\the\apE}%

623: \expandafter\endgroup \tmpb \let\OUT=\apENDx

624: }

The macro \apDIG 〈sequence〉〈register or relax 〉 reads the content of the macro 〈sequence〉 and
counts the number of digits in this macro before decimal point and saves it to \apnumD register. If the
macro 〈sequence〉 includes decimal point then it is redefined with the same content but without decimal

\apROUNDe: 32–33 \apNORMa: 31, 33 \apNORMb: 33 \apNORMc: 33 \apNORMd: 33
\apEadd: 4, 5, 10, 33 \apEnum: 4, 5, 33, 37–38, 40, 45–47 \apEND: 10, 12, 33, 36–42, 45–47
\apDIG: 15–16, 19, 23–24, 29, 33–34, 39, 42, 47

33



2 The Implementation Arbitrary Precision Numbers

point. The numbers in the form .00123 are replaced by 123 without zeros, but \apnumD=-2 in this
example. If the second parameter of the \apDIG macro is \relax then the number of digits after decimal
point isn’t counted. Else the number of these digits is stored to the given 〈register〉.

The macro \apDIG is developed in order to do minimal operations over a potentially long param-
eters. It assumes that 〈sequence〉 includes a number without 〈sign〉 and without left trailing zeros. This
is true after parameter preparation by the \apPPab macro.

The macro \apDIG prepares an incrementation in \tmpc if the second parameter 〈register〉 isn’t
\relax. It initializes \apnumD and 〈register〉. It runs \apDIGa 〈data〉..@〈sequence〉 which increments
the \apnumD until the dot is found. Then the \apDIGb is executed (if there are no digits before dot) or
the \apDIGc is called (if there is at least one digit before dot). The \apDIGb ignores zeros immediately
after dot. The \apDIGc reads the rest of the 〈data〉 to the #1 and saves it to the \tmpd macro. It runs
the counter over this 〈data〉 \apDIGd 〈data〉@ only if it is desired (\tmpc is non-empty). Else the \apDIGe
is executed. The \apDIGe 〈dot or nothing〉@〈sequence〉 redefines 〈sequence〉 if it is needed. Note, that
#1 is empty if and only if the 〈data〉 include no dot (first dot was reached as the first dot from \apDIG,
the second dot from \apDIG was a separator of #1 in \apDIGc and there is nothing between the second
dot and the @ mark. The 〈sequence〉 isn’t redefined if it doesn’t include a dot. Else the sequence is set
to the \tmpd (the rest after dot) if there are no digits before dot. Else the sequence is redefined using
expandable macro \apDIGf.

apnum.tex
625: \def\apDIG#1#2{\ifx\relax#2\def\tmpc{}\else #2=0 \def\tmpc{\advance#2 by1 }\fi

626: \apnumD=0 \expandafter\apDIGa#1..@#1%

627: }

628: \def\apDIGa#1{\ifx.#1\csname apDIG\ifnum\apnumD>0 c\else b\fi\expandafter\endcsname

629: \else \advance\apnumD by1 \expandafter\apDIGa\fi}

630: \def\apDIGb#1{%

631: \ifx0#1\advance\apnumD by-1 \tmpc \expandafter\apDIGb

632: \else \expandafter\apDIGc \expandafter#1\fi

633: }

634: \def\apDIGc#1.{\def\tmpd{#1}%

635: \ifx\tmpc\empty \let\apNext=\apDIGe

636: \else \def\apNext{\expandafter\apDIGd\tmpd@}%

637: \fi \apNext

638: }

639: \def\apDIGd#1{\ifx@#1\expandafter\apDIGe \else \tmpc \expandafter\apDIGd \fi}

640: \def\apDIGe#1@#2{%

641: \ifx@#1@\else % #1=empty <=> the param has no dot, we need to do nothing

642: \ifnum\apnumD>0 \edef#2{\expandafter\apDIGf#2@}% the dot plus digits before dot

643: \else \let#2=\tmpd % there are only digits after dot, use \tmpd

644: \fi\fi

645: }

646: \def\apDIGf#1.#2@{#1#2}

The macro \apIVread 〈sequence〉 reads four digits from the macro 〈sequence〉, sets \apnumX as
the Digit consisting from read digits and removes the read digits from 〈sequence〉. It internally expands
〈sequence〉, adds the \apNL marks and runs \apIVreadA macro which sets the \apnumX and redefines
〈sequence〉.

The usage of the \apNL as a stop-marks has the advantage: they act as simply zero digits in the
comparison but we can ask by \ifx if this stop mark is reached. The #5 parameter of \apIVreadA is
separated by first occurrence of \apNL, i. e. the rest of the macro 〈sequence〉 is here.

apnum.tex
648: \def\apNL{0}

649: \def\apIVread#1{\expandafter\apIVreadA#1\apNL\apNL\apNL\apNL\apNL@#1}

650: \def\apIVreadA#1#2#3#4#5\apNL#6@#7{\apnumX=#1#2#3#4\relax \def#7{#5}}

The macro \apIVreadX 〈num〉〈sequence〉 acts similar as \apIVread〈sequence〉, but only 〈num〉
digits are read. The 〈num〉 is expected in the range 0 to 4. The macro prepares the appropriate number
of empty parameters in \tmpc and runs \apIVreadA with these empty parameters inserted before the
real body of the 〈sequence〉.

\apDIGa: 34 \apDIGb: 34 \apDIGc: 34 \apDIGd: 34 \apDIGe: 34 \apDIGf: 34
\apIVread: 17, 23–26, 34 \apIVreadA: 34–35 \apNL: 16–17, 25–26, 34–35 \apIVreadX: 23–24, 35

34



2 The Implementation Arbitrary Precision Numbers

apnum.tex
651: \def\apIVreadX#1#2{\edef\tmpc{\ifcase#1{}{}{}0\or{}{}{}\or{}{}\or{}\fi}%

652: \expandafter\expandafter\expandafter\apIVreadA\expandafter\tmpc#2\apNL\apNL\apNL\apNL\apNL@#2%

653: }

The macro \apIVwrite 〈num〉 expands the digits from 〈num〉 register. The number of digits are
four. If the 〈num〉 is less than 1000 then left zeros are added.

apnum.tex
654: \def\apIVwrite#1{\ifnum#1<1000 0\ifnum#1<100 0\ifnum#1<10 0\fi\fi\fi\the#1}

The macro \apIVtrans calculates the transmission for the next Digit. The value (greater or
equal 10000) is assumed to be in \apnumB. The new value less than 10000 is stored to \apnumB and the
transmission value is stored in \apnumX. The constant \apIVbase is used instead of literal 10000 because
it is quicker.

apnum.tex
656: \mathchardef\apIVbase=10000

657: \def\apIVtrans{\apnumX=\apnumB \divide\apnumB by\apIVbase \multiply\apnumB by-\apIVbase

658: \advance\apnumB by\apnumX \divide\apnumX by\apIVbase

659: }

The macro \apIVmod 〈length〉〈register〉 sets 〈register〉 to the number of digits to be read to the
first Digit, if the number has 〈length〉 digits in total. We need to read all Digits with four digits, only
first Digit can be shorter.

apnum.tex
660: \def\apIVmod#1#2{#2=#1\divide#2by4 \multiply#2by-4 \advance#2by#1\relax

The macro \apIVdot 〈num〉〈param〉 adds the dot into 〈param〉. Let K = 〈num〉 and F is the
number of digits in the 〈param〉. The macro expects that K ∈ [0, 4) and F ∈ (0, 4]. The macro inserts
the dot after K-th digit if K < F . Else no dot is inserted. It is expandable macro, but two full expansions
are needed. After first expansion the result looks like \apIVdotA〈dots〉〈param〉....@ where 〈dots〉 are
the appropriate number of dots. Then the \apIVdotA reads the four tokens (maybe the generated dots),
ignores the dots while printing and appends the dot after these four tokens, if the rest #5 is non-empty.

apnum.tex
664: \def\apIVdot#1#2{\noexpand\apIVdotA\ifcase#1....\or...\or..\or.\fi #2....@}

665: \def\apIVdotA#1#2#3#4#5.#6@{\ifx.#1\else#1\fi

666: \ifx.#2\else#2\fi \ifx.#3\else#3\fi \ifx.#4\else#4\fi\ifx.#5.\else.#5\fi

667: }

The expandable macro \apNUMdigits {〈param〉} expands (using the \apNUMdigitsA macro) to
the number of digits in the 〈param〉. We assume that maximal number of digits will be four.

apnum.tex
668: \def\apNUMdigits#1{\expandafter\apNUMdigitsA#1@@@@!}

669: \def\apNUMdigitsA#1#2#3#4#5!{\ifx@#4\ifx@#3\ifx@#2\ifx@#10\else1\fi \else2\fi \else3\fi \else4\fi}

The macro \apADDzeros 〈sequence〉 adds \apnumZ zeros to the macro 〈sequence〉.
apnum.tex

671: \def\apADDzeros#1{\edef#1{#10}\advance\apnumZ by-1

672: \ifnum\apnumZ>0 \expandafter\apADDzeros\expandafter#1\fi

673: }

The expandable macro \apREMzerosR {〈param〉} removes right trailing zeros from the 〈param〉.
It expands to \apREMzerosRa〈param〉@0@!. The macro \apREMzerosRa reads all text terminated by 0@
to #1. This termination zero can be the most right zero of the 〈param〉 (then #2 is non-empty) or 〈param〉
hasn’t such zero digit (then #2 is empty). If #2 is non-empty then the \apREMzerosRa is expanded again
in the recursion. Else \apREMzerosRb removes the stop-mark @ and the expansion is finished.

apnum.tex
674: \def\apREMzerosR#1{\expandafter\apREMzerosRa#1@0@!}

675: \def\apREMzerosRa#10@#2!{\ifx!#2!\apREMzerosRb#1\else\apREMzerosRa#1@0@!\fi}

676: \def\apREMzerosRb#1@{#1}

The expandable macro \apREMdotR {〈param〉} removes right trailing dot from the 〈param〉 if
exists. It expands to \apREMdotRa and works similarly as the \apREMzerosR macro.

\apIVwrite: 18, 21, 23–24, 27–28, 30, 35 \apIVtrans: 21, 30, 35 \apIVbase: 17–18, 21, 27, 30, 35
\apIVmod: 15–16, 19, 24, 29, 35 \apIVdot: 22, 28, 35 \apIVdotA: 35 \apNUMdigits: 21, 27, 35
\apNUMdigitsA: 35 \apADDzeros: 16, 19, 23–24, 31, 35 \apREMzerosR: 18, 28, 33, 35
\apREMzerosRa: 35 \apREMzerosRb: 35–36 \apREMdotR: 28, 36 \apREMdotRa: 36

35



2 The Implementation Arbitrary Precision Numbers

apnum.tex
677: \def\apREMdotR#1{\expandafter\apREMdotRa#1@.@!}

678: \def\apREMdotRa#1.@#2!{\ifx!#2!\apREMzerosRb#1\else#1\fi}

The \apREMfirst 〈sequence〉 macro removes the first token from the 〈sequence〉 macro. It can be
used for removing the “minus” sign from the “number-like” macros.

apnum.tex
680: \def\apREMfirst#1{\expandafter\apREMfirsta#1@#1}

681: \def\apREMfirsta#1#2@#3{\def#3{#2}}

The writing to the \OUT in the \apMUL, \apDIV and \apPOW macros is optimized, which de-
creases the computation time with very large numbers ten times and more. We can do simply
\edef\OUT{\OUT〈something〉} instead of

\expandafter\edef\csname apOUT:\apOUTn\endcsname
{\csname apOUT:\apOUTn\endcsname<something>}%

but \edef\OUT{\OUT〈something〉} is typically processed very often over possibly very long macro (many
thousands of tokens). It is better to do \edef over more short macros \apOUT:0, \apOUT:1, etc.
Each such macro includes only 7 Digits pairs of the whole \OUT. The macro \apOUTx is invoked
each 7 digit (the \apnumO register is decreased). It uses \apnumL value which is the 〈num〉 part of
the next \apOUT:〈num〉 control sequence. The \apOUTx defines this 〈num〉 as \apOUTn and initializes
\apOUT:〈num〉 as empty and adds the 〈num〉 to the list \apOUTl. When the creating of the next \OUT
macro is definitely finished, the \OUT macro is assembled from the parts \apOUT:0, \apOUT:1 etc. by the
macro \apOUTs 〈list of numbers〉〈dot〉〈comma〉.

apnum.tex
683: \def\apOUTx{\apnumO=7

684: \edef\apOUTn{\the\apnumL}\edef\apOUTl{\apOUTl\apOUTn,}%

685: \expandafter\def\csname apOUT:\apOUTn\endcsname{}%

686: \advance\apnumL by1

687: }

688: \def\apOUTs#1,{\ifx.#1\else\csname apOUT:#1\expandafter\endcsname\expandafter\apOUTs\fi}

If a “function-like” macro needs a local counters then it is recommended to enclose all calculation
into a group \apINIT . . . \apEND. The \apINIT opens the group and prepares a short name \do and the
macro \localcounts〈counters〉;. The typical usage is:

\def\MACRO#1{\relax \apINIT % function-like macro, \apINIT
\evaldef\foo{#1}% % preparing the parameter
\localounts \N \M \K ;% % local \newcount\N \newcount\M \newcount\K
... % calculation
\apEND % end of \apINIT group

}

Note that \localcounts is used after preparing the parameter using \evaldef in odrer to avoid
name conflict of local declared “variables” and “variables” used in #1 by user.

The \apINIT sets locally \localcounts to be equivalent to \apCOUNTS. This macro increases the
top index of allocated counters \count10 (used in plain TEX) locally and declares the counters locally. It
means that if the group is closed then the counters are deallocated and top index of counters \count10
is returned to its original value.

apnum.tex
690: \def\apINIT{\begingroup \let\do=\apEVALxdo \let\localcounts=\apCOUNTS}

691: \def\apCOUNTS#1{\ifx;#1\else

692: \advance\count10 by1 \countdef#1=\count10

693: \expandafter\apCOUNTS\fi

694: }

The macro \do 〈sequence〉=〈calculation〉; allows to write the calculation of Polish expressions
more synoptic:

\apREMfirst: 6, 36–37, 40, 45–47 \apOUTx: 21, 27, 36 \apOUTn: 21, 27, 36 \apOUTl: 21, 26–27,
30, 36 \apOUTs: 21, 27, 36 \apINIT: 36–42, 44–47 \localcounts: 36, 38–40, 42, 44, 46–47
\apCOUNTS: 36 \do: 36–38, 41–43, 46–47

36



2 The Implementation Arbitrary Precision Numbers

\do \X=\apPLUS{2}{\the\N};% % is equivalent to:
\apPLUS{2}{\the\N}\let\X=\OUT

The \do macro is locally set to be equivalent to \apEVALxdo .
apnum.tex

695: \def\apEVALxdo#1=#2;{#2\let#1=\OUT}

The \apRETURN macro must be followed by \fi. It skips the rest of the block \apINIT. . .\apEND
typically used in “function-like” macros. The \apERR {〈text〉} macro writes 〈text〉 as error message and
returns the processing of the block enclosed by \apINIT. . .\apEND. User can redefine it if the \errmessage
isn’t required.

apnum.tex
697: \def\apRETURN#1\apEND{\fi\apEND}

698: \def\apERR#1{\errmessage{#1}}

The \apNOPTmacro removes the pt letters after expansion of 〈dimen〉 register. This is usable when
we do a classical 〈dimen〉 calculation, see TBN page 80. Usage: \expandafter\apNOPT\the〈dimen〉.

apnum.tex
700: {\lccode‘\?=‘\p \lccode‘\!=‘\t \lowercase{\gdef\apNOPT#1?!{#1}}}

The \loop macro from plain TEX is redefined here in more convenient way. It does the same as
original \loop by D. Knuth but moreover, it allows the construction \if...\else...\repeat.

apnum.tex
702: \def\loop#1\repeat{\def\body{#1\relax\expandafter\body\fi}\body}

2.10 Function-like Macros
The implementation of function-like macros \ABS , \SGN , \iDIV , \iMOD , \iFLOOR , \iFRAC are

simple.
apnum.tex

706: \def\ABS#1{\relax % mandatory \relax for "function-like" macros

707: \evalmdef\OUT{#1}% % evaluation of the input parameter

708: \ifnum\apSIGN<0 % if (input < 0)

709: \apSIGN=1 % sign = 1

710: \apREMfirst\OUT % remove first "minus" from OUT

711: \fi % fi

712: }

713: \def\SGN#1{\relax \evaldef\OUT{#1}\edef\OUT{\the\apSIGN}\apE=0 }

714: \def\iDIV#1#2{\relax \apINIT % calculation in group

715: \evalmdef\apAparam{#1}\apEnum\apAparam

716: \evalmdef\apBparam{#2}\apEnum\apAparam % evaluation of the parameters

717: \apTOT=0 \apFRAC=0 \apDIV\apAparam\apBparam % integer division

718: \apEND % end of group

719: }

720: \def\iMOD#1#2{\relax \apINIT % calculation in group

721: \evalmdef\apAparam{#1}\apEnum\apAparam

722: \evalmdef\apBparam{#2}\apEnum\apBparam % evaluation of the parameters

723: \apTOT=0 \apFRAC=0 \apDIV\apAparam\apBparam % integer division

724: \let\OUT=\XOUT % remainder is the output

725: \apEND % end of group

726: }

727: \def\iFLOOR#1{\relax \evalmdef\OUT{#1}\apEnum\OUT \apROUND\OUT0%

728: \ifnum\apSIGN<0 \ifx\XOUT\empty \else \apPLUS\OUT{-1}\fi\fi

729: \def\tmp{0}\ifx\tmp\OUT \apSIGN=0 \fi

730: }

731: \def\iFRAC#1{\relax

732: \evalmdef\OUT{#1}\apEnum\OUT \apROUND\OUT0% % preparing the parameter

733: \ifx\XOUT\empty \def\OUT{0}\apSIGN=0 % empty fraction part means zero

734: \else \ifnum\apSIGN<0

735: \edef\XOUT{-.\XOUT}\apPLUS1\XOUT % OUT = 1 - .\XOUT

736: \else \edef\OUT{.\XOUT}\apSIGN=1 % else OUT = .\XOUT

737: \fi \fi

\apEVALxdo: 36–37 \apRETURN: 37–40, 42, 46–47 \apERR: 24, 29, 37–39, 42, 46–47
\apNOPT: 37, 40, 43 \loop: 37–42, 44, 46–47 \ABS: 3, 5–6, 37, 48 \SGN: 3, 5, 37, 48
\iDIV: 3, 5, 37, 48 \iMOD: 3, 37, 48 \iFLOOR: 3, 37, 48 \iFRAC: 3, 37, 48

37



2 The Implementation Arbitrary Precision Numbers

738: }

The \FAC macro for factorial doesn’t use recursive call because the TEX group is opened in such
case and the number of levels of TEX group is limited (to 255 in my computer). But we want to calculate
more factorial than only 255!.

apnum.tex
740: \def\FAC#1{\relax \apINIT % "function-like" in the group, FAC = factorial

741: \evalmdef\OUT{#1}\apEnum\OUT % preparing the parameter

742: \localcounts \N;% % local \newcount

743: \ifnum\apSIGN<0 \apERR{\string\FAC: argument {\OUT} cannot be negative}\apRETURN\fi

744: \let\tmp=\OUT \apROUND\tmp0% % test, if parameter is integer

745: \ifx\XOUT\empty \else \apERR{\string\FAC: argument {\OUT} must be integer}\apRETURN\fi

746: \N=\OUT\relax % N = param (error here if it is an big integer)

747: \ifnum\N=0\def\OUT{1}\apSIGN=1 \fi % special definition for factorial(0)

748: \loop \ifnum \N>2 \advance\N by-1 % loop if (N>2) N--

749: \apMUL{\OUT}{\the\N}\repeat % OUT = OUT * N , repeat

750: \apEND % end of group

751: }

The \BINOM {a}{b} is binomial coefficient defined by(
a

b

)
=

a!
b! (a− b)!

=
a (a− 1) · · · (a− b+ 1)

b!
for integer b > 0,

(
a

0

)
= 1.

We use the formula where (a − b)! is missing in numerator and denominator (second fraction) because
of time optimization. Second advantage of such formula is that a need not to be integer. That is the
reason why the \BINOM isn’t defined simply as

\def\BINOM#1#2{\relax \evaldef{ \FAC{#1} / (\FAC{#2} * \FAC{(#1)-(#2)} }}

The macro \BINOM checks if a is integer. If it is true then we choose \C as minimum of b and
a − b. Then we calculate factorial of \C in the denominator of the formula (second fraction). And
nominator includes \C factors. If a is non-negative integer and a < b then the result is zero because one
zero occurs between the factors in the nominator. Thus we give the result zero and we skip the rest of
calculation. If a is non-integer, then \C must be b. The \step macro (it generates the factors in the
nominator) is prepared in two versions: for a integer we use \advance\A by-1 which is much faster than
\apPLUS\paramA{-1} used for a non-integer.

apnum.tex
752: \def\BINOM#1#2{\relax \apINIT % BINOM = {#1 \choose #2} ...

753: \evalmdef\apAparam{#1}\apEnum\apAparam

754: \evalmdef\apBparam{#2}\apEnum\apBparam % preparation of the parameters

755: \localcounts \A \B \C ;% % local \newcounts

756: \let\OUT=\apBparam \apROUND\OUT0% % test if B is integer

757: \ifx\XOUT\empty\else\apERR{\string\BINOM: second arg. {\apBparam} must be integer}\apRETURN\fi

758: \let\OUT=\apAparam \apROUND\OUT0% % test if A is integer

759: \ifx\XOUT\empty % A is integer:

760: \A=\apAparam \B=\apBparam % A = #1, B = #2

761: \C=\A \advance\C by-\B % C = A - B

762: \ifnum\C>\B \C=\B \fi % if (C > B) C = B fi

763: \ifnum\A<0 \C=\B % if (A < 0) C = B fi

764: \else \ifnum\A<\B \def\OUT{0}\apSIGN=0 % if (0 <= A < B) OUT = 0 return

765: \expandafter\expandafter\expandafter \apRETURN \fi\fi

766: \def\step{\advance\A by-1 \apMUL\OUT{\the\A}}%

767: \else \C=\apBparam % A is not integer

768: \def\step{\let\apBparam\OUT \do\apAparam=\apPLUS\apAparam{-1};%

769: \let\OUT=\apBparam \apMUL\OUT\apAparam}%

770: \fi

771: \ifnum\C=0 \def\OUT{1}\apSIGN=1 \apRETURN\fi

772: \do\D=\FAC{\the\C};% % D = C!

773: \let\OUT=\apAparam % OUT = #1

774: \loop \advance\C by-1 % loop C--

775: \ifnum\C>0 \step \repeat % if (C > 0) A--, OUT = OUT * A, repeat

776: \apDIV{\OUT}{\D}% % OUT = OUT / D

777: \apEND

\FAC: 3, 38, 48, 50 \BINOM: 3, 38, 48

38



2 The Implementation Arbitrary Precision Numbers

778: }

The square root is computed in the macro \SQRT {a} using Newton’s approximation method.
This method solves the equation f(x) = 0 (in this case x2 − a = 0) by following way. Guess the initial
value of the result x0. Create tangent to the graph of f in the point [x0, f(x0)] using the knowledge about
f ′(x0) value. The intersection of this line with the axis x is the new approximation of the result x1. Do
the same with x1 and find x2, etc. If you apply the general Newton method to the problem x2 − a = 0
then you get the formula

choose x0 as an initial guess, iterate: xn+1 =
1
2

(
xn +

a

xn

)
If |xn+1−xn| is sufficiently small we stop the processing. In practice, we stop the processing, if the \OUT
representation of xn+1 rounded to the \apFRAC is the same as the previous representation of xn, i. e.
\ifx\Xn\OUT in TEX language. Amazingly, we need only about four iterations for 20-digits precision and
about seven iterations for 50-digits precision, if the initial guess is good chosen.

The rest of the work in the \SQRT macro is about the right choose of the initial guess (using
\apSQRTr macro) and about shifting the decimal point in order to set the a value into the interval
[1, 100). The decimal point is shifted by -\M value. After calculation is done, the decimal point is shifted
by \M/2 value back. If user know good initial value then he/she can set it to \apSQRTxo macro. The
calcualtion of initial value x0 is skipped in such case.

apnum.tex
779: \def\SQRT#1{\relax \apINIT % OUT = SQRT(#1) ...

780: \evalmdef\A{#1}% % parameter preparation

781: \localcounts \M \E ;% % local counters

782: \E=\apE \apE=0

783: \ifnum\apSIGN=0 \apRETURN\fi % SQRT(0) = 0 (OUT is set to 0 by previous \evaldef)

784: \ifnum\apSIGN<0 \apERR{\string\SQRT: argument {\A} is out of range}\apRETURN\fi

785: \ifodd\E \apROLL\A{-1}\advance\E by1 \fi % we need the E representation with even exponent

786: \let\B=\A \let\C=\A

787: \apDIG\C\relax \M=\apnumD % M is the number of digits before decimal point

788: \advance\M by-2 \ifodd\M \advance\M by1 \fi % M = M - 2 , M must be even

789: \ifx\apSQRTxo\undefined % we need to calculate Xo

790: \ifnum\M=0 \else \apROLL\B{-\M}\divide\M by2 \fi % shift decimal point by -M, M = M / 2

791: \apSQRTr\B \let\Xn=\OUT % Xn = estimate of SQRT

792: \ifnum\M<0 \let\A=\B \fi % if (A < 1) calculate with B where decimal point is shifted

793: \ifnum\M>0 \apROLL\Xn \M \fi % if (A >= 100) shift the decial point of initial guess

794: \else \let\Xn=\apSQRTxo \fi

795: \loop % loop ... Newton’s method

796: \apDIV{\apPLUS{\Xn}{\apDIV{\A}{\Xn}}}{2}% % OUT = (Xn + A/Xn) / 2

797: \ifx\OUT\Xn \else % if (OUT != Xn)

798: \let\Xn=\OUT \repeat % Xn = OUT, repeat

799: \ifnum\M<0 \apROLL\OUT\M \fi % shift the decimal point by M back

800: \apE=\E \divide\apE by2 % correct the E exponent

801: \apEND

802: }

Note that if the input a < 1, then we start the Newton’s method with b. It is the value a with
shifted decimal point, b ∈ [1, 100). On the other hand, if a ≥ 1 then we start the Newton’s method
directly with a, because the second derivative (x2)′′ is constant so the speed of Newton’s method is
independent on the value of x. And we need to calculate the \apFRAC digits after the decimal point.

The macro \apSQRTr 〈number〉 excepts 〈number〉 in the interval [1, 100] and makes a roughly
estimation of square root of the 〈number〉 in the \OUT macro. It uses only classical 〈dimen〉 calculation,
it doesn’t use any apnum.tex operations. The result is based on the linear approximation of the function
g(x) =

√
x with known exact points [1, 1], [4, 2], [9, 3], . . . , [100, 10]. Note, that the differences between xi

values of exact points are 3, 5, 7, . . . , 19. The inverted values of these differences are pre-calculated and
inserted after \apSQRTra macro call.

The \apSQRTra macro operates repeatedly for i = 1, . . . , 10 until \dimen0 = x < xi. Then the
\apSQRTrb is executed. We are in the situation \dimen0 = x ∈ [xi−1, xi), g(xi) = i, g(xi−1) = i− 1

\SQRT: 3, 4–5, 39, 44, 47–48 \apSQRTxo: 39, 44 \apSQRTr: 39–40 \apSQRTra: 39–40
\apSQRTrb: 40

39



2 The Implementation Arbitrary Precision Numbers

and the calculation of \OUT = g(xi−1) + (x− xi−1)/(xi− xi−1) is performed. If x ∈ [1, 4) then the linear
approximation is worse. So, we calculate additional linear correction in \dimen1 using the pre-calculated
value

√
2− 1.33333

.
= 0.08088 here.

apnum.tex
803: \def\apSQRTr#1{\dimen0=#1pt \apnumB=1 \apnumC=1 \apSQRTra}

804: \def\apSQRTra{\advance\apnumB by2 \advance\apnumC by\apnumB % B = difference, C = x_i

805: \ifnum\apnumC>100 \def\OUT{10}\else

806: \ifdim\dimen0<\apnumC pt \apSQRTrb \else

807: \expandafter\expandafter\expandafter\apSQRTra\fi\fi

808: }

809: \def\apSQRTrb{% x = dimen0, B = x_i - x_{i-1}, C = x_i = i

810: \ifdim\dimen0<4pt

811: \ifdim\dimen0>2pt \dimen1=4pt \advance\dimen1 by-\dimen0 \divide\dimen1 by2

812: \else \dimen1=\dimen0 \advance\dimen1 by-1pt \fi

813: \dimen1=.080884\dimen1 % dimen1 = additional linear correction

814: \else \dimen1=0pt \fi

815: \advance\apnumC by-\apnumB % C = x_{i-1}

816: \advance\dimen0 by-\apnumC pt % dimen0 = (x - x_{i-1})

817: \divide\dimen0 by\apnumB % dimen0 = (x - x_{i-1}) / difference

818: \divide\apnumB by2 % B = i-1 = g(x_{i-1})

819: \advance\dimen0 by\apnumB pt % dimen0 = g(x_{i-1}) + (x - x_{i-1} / (x_i-x_{i-1})

820: \advance\dimen0 by\dimen1 % dimen0 += additional linear correction

821: \edef\OUT{\expandafter\apNOPT\the\dimen0}% OUT = dimen0

822: }

The exponential function ex is implemented in the \EXP macro using Taylor series at zero
point:

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·

If x ∈ (0, 1) then this series converges relatively quickly.
The macro \EXP takes its argument. If it is negative, remember this fact, remove minus sign and

do \OUT=1/\OUT in final step. Now, the argument is positive always. If the argument is “big” (greater
or equal than 4, tested by \testBig) then \apEXPb macro is used for evaluating. Else \apEXPa macro
evaluates the exponential.

apnum.tex
823: \def\EXP#1{\relax\apINIT % OUT = EXP(#1) ...

824: \evalmdef\OUT{#1}\apEnum\OUT % OUT = #1

825: \localcounts \N \K ;%

826: \ifnum\apSIGN=0 \def\OUT{1}\apSIGN=1 \apRETURN \fi

827: \edef\digits{\the\apFRAC}\advance\apFRAC by4

828: \edef\signX{\the\apSIGN}%

829: \ifnum\apSIGN<0 \apSIGN=1 \apREMfirst\OUT \fi % remove "minus" sign

830: \def\testBig ##1##2##3\relax##4{\ifx##1.\apXfalse \else

831: \ifx##2.\ifnum##1<4 \apXfalse \else \apXtrue \fi \else \apXtrue

832: \fi \fi \ifapX}%

833: \expandafter\testBig \OUT.\relax

834: \iftrue \apEXPb \else \apEXPa \fi % OUT = e^OUT

835: \ifnum\signX<0 \K=-\apE \apDIV 1\OUT \apE=\K \fi % if (signX < 0) OUT = 1 / OUT

836: \apSIGN=1 % EXP is always positive

837: \apEND

838: }

The \apEXPa macro supposes input argument (saved in \OUT macro) in the interval [0, 4). If the
argument is greater than 1, do argument = argument/2 and increase K register. Do this step in the loop
until argument < 1. Then calculate ex using Taylor series mentioned above. After \OUT is calculated
then we do \OUT=\OUT2 in the loop K times, because e2x = (ex)2. Note that K ≤ 2 in all cases.

The Taylor series is processed using the folloving variables: \S is total sum, \Sn is the new addition
in the n-th step. If \Sn is zero (in accordance to the \apFRAC register) then we stop the calculation.

apnum.tex
839: \def\apEXPa{%

840: \def\testDot ##1##2\relax##3{\ifx##1.}%

841: \K=0 \N=0 % K = 0, N = 0

842: \loop \expandafter \testDot\OUT \relax % loop if (OUT >= 1)

\EXP: 3, 4–6, 40–43, 48 \apEXPa: 40

40



2 The Implementation Arbitrary Precision Numbers

843: \iftrue \else % OUT = OUT/2

844: \apDIV\OUT{2}% % K++

845: \advance\K by1 % repeat

846: \repeat % oriOUT = 2^K * OUT, OUT < 1

847: \advance\apFRAC by\K

848: \def\S{1}\def\Sn{1}\N=0 \let\X=\OUT % S = 1, Sn = 1, N = 0, X = OUT

849: \loop \advance\N by1 % loop N++

850: \do\Sn=\apDIV{\apMUL\Sn\X}{\the\N};% % Sn = Sn * X / N

851: \apTAYLOR\iftrue \repeat % S = S + Sn (... Taylor)

852: \N=0

853: \loop \ifnum\N < \K % loop if (N < K)

854: \apPOW\OUT{2}% % OUT = OUT^2

855: \advance\N by1 \repeat % N++

856: \apFRAC=\digits\relax \apROUND\OUT\apFRAC

857: }

The macro \apTAYLOR is ready for general usage in the form:

\def\S{...}\def\Sn{...}\N=... % setting initial values for N=0
\loop
... % auxiliary calculation
\do\Sn=\apDIV{...}{...};% % calculation of new addition \Sn

% (division must be the last activity)
\apTAYLOR \iftrue \repeat % does S = S + Sn and finishes if Sn = 0

apnum.tex
858: \def\apTAYLOR#1{\ifnum\apSIGN=0 \let\OUT=\S \else \apPLUS\S\Sn \let\S=\OUT }

If the argument (saved i the \OUT macro) is greater or equal 4 then \apEXPb macro is executed.
The d = bx/ ln 10c is calculated here. This is the number of decimal digits in the result before the
decimal point. The result is in the form

ex = ex− d · ln 10 · 10d.

The argument of the exponential function is less than ln 10
.
= 2.3 for this case, so we can call the \EXP

macro recursively. And the result is returned in scientific form if d ≥ \apEX.
apnum.tex

859: \def\apEXPb{%

860: \let\X=\OUT \apLNtenexec \apDIV\X\apLNten \let\D=\OUT

861: \apROUND\D{0}% % D = floor( X/ln(X) )

862: \ifnum\D<\apEX \advance\apFRAC by\D \relax \apLNtenexec \fi

863: \EXP{\X-\D*\apLNten}% % mantissa = EXP(X-D*LN(10))

864: \ifnum\D<\apEX \apROLL\OUT\D \apE=0 \else \apE=\D \relax \fi

865: \apFRAC=\digits \apROUND\OUT\apFRAC % OUT = mantissa * 10^D

866: }

The logarithm function lnx (inverse to ex) is implemented in \LN macro by Taylor series in
the point zero of the arg tanh function:

lnx = 2 arg tanh
x− 1
x+ 1

= 2

(
x− 1
x+ 1

+
1
3

(
x− 1
x+ 1

)3
+

1
5

(
x− 1
x+ 1

)5
+ · · ·

)
.

This series converges quickly when x is approximately equal to one. The idea of the macro \LN includes
the following steps:

•Whole calculation is in the group \apINIT. . .\apEND. Enlarge the \apFRAC numeric precision by
three digits in this group.
• Read the argument \X using \evaldef.
• If the argument is non positive, print error and skip the next processing.
• If the argument is in the interval (0, 1), set new argument as 1/argument and remember the

“minus” sign for the calculated \OUT, else the \OUT remains to be positive. This uses the identity
ln(1/x) = − lnx.

\apTAYLOR: 41–42, 44, 46–47 \apEXPb: 40–41 \LN: 3, 4, 6, 41–42, 48

41



2 The Implementation Arbitrary Precision Numbers

• shift the decimal point of the argument by M positions left in order to the new argument is in
the interval [1, 10).
• Let x ∈ [1, 10) be the argument calculated as mentioned before. Calculate roughly estimated l̃nx

using \apLNr macro. This macro uses linear interpolation of the function lnx in eleven points in
the interval [1, 10].
• Calculate A = x/ exp(l̃nx). The result is approximately equal to one, because exp(lnx) = x.
• Calculate lnA using the Taylor series above.
• The result of lnx is equal to lnA+ l̃nx, because x = A · exp(l̃nx) and ln(ab) = ln a+ ln b.
• The real argument is in the form x · 10M , so \OUT is equal to lnx + M · ln(10) because ln(ab) =

ln a + ln b and ln(10M ) = M ln(10). The ln(10) value with desired precision is calculated by
\apLNtenexec macro. This macro saves its result globally when firstly calculated and use the
calculated result when the \apLNtenexec is called again.
• Round the \OUT to the \apFRAC digits.
• Append “minus” to the \OUT if the input argument was in the interval (0, 1).

apnum.tex
867: \def\LN#1{\relax \apINIT % OUT = LN(#1) ...

868: \evalmdef\X{#1}% % X = #1

869: \localcounts \M \N \E;%

870: \E=\apE

871: \edef\digits{\the\apFRAC}\advance\apFRAC by4

872: \ifnum\apSIGN>0 \else \apERR{\string\LN: argument {\X} is out of range}\apRETURN\fi

873: \apDIG\OUT\relax \M=\apnumD % find M: X = mantissa * 10^M

874: \ifnum\M>-\E \def\sgnout{1}\else % if X in (0,1):

875: \def\sgnout{-1}% % sgnout = -1

876: \do\X=\apDIV 1\X;\E=-\E % X = 1/X

877: \apDIG\OUT\relax \M=\apnumD % find M: X = mantissa * 10^M

878: \fi % else sgnout = 1

879: \advance\M by-1 % M = M - 1

880: \ifnum\M=0 \else\apROLL\X{-\M}\fi % X = X * 10^(-M), now X in (1,10)

881: \advance\M by\E % M = M + E (sientific format of numbers)

882: \do\lnX=\apLNr\X;% % lnX = LN(X) ... roughly estimate

883: \do\A=\apDIV\X{\EXP\lnX};% % A = X / EXP(lnX) ... A =approx= 1

884: \apLNtaylor % OUT = LN(A)

885: \do\LNOUT=\apPLUS\OUT\lnX;% % LNOUT = OUT + LNrOUT

886: \ifnum\M>0 % if M > 0

887: \apLNtenexec % LNtenOUT = ln(10)

888: \apPLUS\LNOUT{\apMUL{\the\M}{\apLNten}}% OUT = LNOUT + M * LNten

889: \fi

890: \ifnum\apSIGN=0 \else \apSIGN=\sgnout \fi % if (OUT != 0) apSIGN = saved sign

891: \apROUND\OUT\digits % round result to desired precision

892: \ifnum\apSIGN<0 \xdef\OUT{-\OUT}\else \global\let\OUT=\OUT \fi

893: \apEND

894: }

The macro \apLNtaylor calculates lnA for A ≈ 1 using Taylor series mentioned above.
apnum.tex

895: \def\apLNtaylor{%

896: \apDIV{\apPLUS{\A}{-1}}{\apPLUS{\A}{1}}% % OUT = (A-1) / (A+1)

897: \ifnum\apSIGN=0 \def\OUT{0}\else % ln 1 = 0 else:

898: \let\Sn=\OUT \let\Kn=\OUT \let\S=\OUT % Sn = OUT, Kn = OUT, S = OUT

899: \apPOW\OUT{2}\apROUND\OUT\apFRAC \let\XX=\OUT % XX = OUT^2

900: \N=1 % N = 1

901: \loop \advance\N by2 % loop N = N + 2

902: \do\Kn=\apMUL\Kn\XX\apROUND\OUT\apFRAC;% Kn = Kn * XX

903: \do\Sn=\apDIV\Kn{\the\N};% % Sn = Kn / N

904: \apTAYLOR\iftrue \repeat % S = S + Sn (Taylor)

905: \apMUL\S{2}% % OUT = 2 * OUT

906: \fi

907: }

The macro \apLNr finds an estimation l̃nx for x ∈ [1, 10) using linear approximation of lnx
function. Only direct 〈dimen〉 and 〈count〉 calculation with TEX registers is used, no long numbers

\apLNtaylor: 42–43 \apLNr: 42–43

42



2 The Implementation Arbitrary Precision Numbers

apnum.tex calculation. The lnxi is pre-calculated for xi = i, i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the values
are inserted after the \apLNra macro call. The input value x is set as \dimen0.

The \apLNra {〈valueA〉}{〈valueB〉} macro reads the pre-calculated values repeatedly in the loop.
The loop ends if \apnumC (i. e. xi) is greater than x. Then we know that x ∈ [xi−1, xi). The linear
interpolation is

l̃nx = f(xi−1) +
(
f(xi)− f(xi−1)

)
(x− xi−1),

where f(xi−1) = 〈valueA〉, f(xi) = 〈valueB〉 and x = \dimen0. The rest of the pre-calculated values is
skipped by processing \next to \relax.

The pre-calculated approximation of ln 10 is saved in the macro \apLNrten because we use it at
more places in the code.

apnum.tex
908: \def\apLNr#1{\dimen0=#1pt \apnumC=1

909: \apLNra {0}{.69}{1.098}{1.386}{1.609}{1.791}{1.9459}{2.079}{2.197}{\apLNrten}{}\relax

910: }

911: \def\apLNra #1#2{\advance\apnumC by1

912: \ifx\relax#2\relax \let\OUT=\apLNrten \let\apNext=\relax

913: \else

914: \ifdim\dimen0<\apnumC pt % linear interpolation:

915: \advance\dimen0 by-\apnumC pt \advance\dimen0 by1pt % dimen0 = x - x_{i-1}

916: \dimen1=#2pt \advance\dimen1 by-#1pt % dimen1 = f(x_i) - f(x_{i-1})

917: \dimen1=\expandafter\apNOPT\the\dimen0 \dimen1 % dimen1 = (x - x_{i-1}) * dimen1

918: \advance\dimen1 by#1pt % dimen1 = f(x_{i-1}) + dimen1

919: \edef\OUT{\expandafter\apNOPT\the\dimen1}% % OUT = dimen1

920: \def\apNext##1\relax{}%

921: \else \def\apNext{\apLNra{#2}}%

922: \fi\fi \apNext

923: }

924: \def\apLNrten{2.302585} % apLNrten = ln 10 (roughly)

The \apLNtenexec macro calculates the ln 10 value with the precision given by \apFRAC. The
output is prepared to the \apLNten macro. The \apLNtenexec saves globally the result to the macro
\LNten:〈apFRAC 〉 in order to use it if the value is needed again. This saves time.

apnum.tex
925: \def\apLNtenexec{% % OUT = ln 10 ...

926: \expandafter\ifx\csname LNten:\the\apFRAC\endcsname \relax

927: \begingroup \apTOT=0

928: \do\A=\apDIV{10}{\EXP\apLNrten};% % A = 10 / exp(LNrten)

929: \apLNtaylor % OUT = ln A

930: \apPLUS\OUT\apLNrten % OUT = OUT + LNrten

931: \global\expandafter\let\csname LNten:\the\apFRAC\endcsname=\OUT

932: \endgroup

933: \fi

934: \expandafter\let\expandafter \apLNten \csname LNten:\the\apFRAC\endcsname

935: }

The constant π is saved in the \apPIvalue macro initially with 30 digits. If user needs more
digits (using \apFRAC > 30) then the \apPIvalue is recalculated and the \apPIdigits is changed
appropriately.

apnum.tex
936: \def\apPIvalue{3.141592653589793238462643383279}

937: \def\apPIdigits{30}

The macro \apPIexec prepares the π constant with \apFRAC digits and saves it to the \apPI
macro. And π/2 constant with \apFRAC digits is saved to the \apPIhalf macro. The \apPIexec uses
macros \apPI:〈apFRAC 〉 and \apPIh:〈apFRAC 〉 where desired values are usually stored. If the values
are not prepared here then the macro \apPIexecA calculates them.

apnum.tex
938: \def\apPIexec{%

939: \expandafter\ifx\csname apPI:\the\apFRAC\endcsname \relax \apPIexecA \else

940: \expandafter\let\expandafter\apPI\csname apPI:\the\apFRAC\endcsname

941: \expandafter\let\expandafter\apPIhalf\csname apPIh:\the\apFRAC\endcsname

\apLNra: 43 \apLNrten: 43 \apLNtenexec: 41–43 \apLNten: 41–43 \apPIvalue: 43–44
\apPIdigits: 43–45 \apPIexec: 43, 45, 47–48 \apPI: 43–46 \apPIhalf: 43–48

43



2 The Implementation Arbitrary Precision Numbers

942: \fi

943: }

The macro \apPIexecA creates the π value with \apFRAC digits using the \apPIvalue, which
is rounded if \apFRAC < \apPIdigits. The \apPIhalf is calculated from \apPI. Finally the macros
\apPI:〈apFRAC 〉 and \apPIh:〈apFRAC 〉 are saved globally for saving time when we need such values
again.

apnum.tex
944: \def\apPIexecA{%

945: \ifnum\apPIdigits<\apFRAC \apPIexecB \fi

946: \let\apPI=\apPIvalue

947: \ifnum\apPIdigits>\apFRAC \apROUND\apPI\apFRAC \fi

948: \apnumP=\apTOT \apTOT=0 \apDIV\apPI2\let\apPIhalf=\OUT \apTOT=\apnumP

949: \global\expandafter\let\csname apPI:\the\apFRAC\endcsname=\apPI

950: \global\expandafter\let\csname apPIh:\the\apFRAC\endcsname=\apPIhalf

951: }

If \apFRAC > \apPIdigits then new \apPIvalue with desired decimal digits is generated using
\apPIexecB macro. The Chudnovsky formula is used:

π =
53360 ·

√
640320

S
, S =

∞∑
n=0

(6n)! (13591409 + 545140134n)
(3n)! (n!)3 (−262537412640768000)n

This converges very good with 14 new calculated digits per one step where new Sn is calculated. More-
over, we use the identity:

Fn =
(6n)!

(3n)! (n!)3 (−262537412640768000)n
, Fn = Fn−1 ·

8 (6n− 1) (6n− 3) (6n− 5)
n3 (−262537412640768000)

and we use auxiliary integer constants An, Bn, Cn with following properties:

A0 = B0 = C0 = 1,

An = An−1 · 8 (6n− 1) (6n− 3) (6n− 5), Bn = Bn−1 · n3, Cn = Cn−1 · (−262537412640768000),

Fn =
An

BnCn
,

Sn =
An (13591409 + 545140134n)

BnCn

apnum.tex
952: \def\apPIexecB{\apINIT

953: \localcounts \N \a \c;%

954: \apTOT=0 \advance\apFRAC by2

955: \def\apSQRTxo{800.199975006248}% initial value for Newton method for SQRT

956: \SQRT{640320}%

957: \let\sqrtval=\OUT

958: \N=0 \def\An{1}\def\Bn{1}\def\Cn{1}\def\S{13591409}%

959: \loop

960: \advance\N by 1

961: \a=\N \multiply\a by6 \advance\a by-1 \c=\a

962: \advance\a by-2 \multiply\c by\a % An = An * 8 * (6N-5) *

963: \advance\a by-2 \multiply\a by8 % * (6N-3) * (6N-1)

964: \apMUL\An{\apMUL{\the\a}{\the\c}}\let\An=\OUT

965: \c=\N \multiply\c by\N % Bn = Bn * n^3

966: \apMUL\Bn{\apMUL{\the\c}{\the\N}}\let\Bn=\OUT

967: \apMUL\Cn{-262537412640768000}\let\Cn=\OUT % Cn = Cn * K3

968: \apDIV{\apMUL\An{\apPLUS{13591409}{\apMUL{545140134}{\the\N}}}}{\apMUL\Bn\Cn}%

969: \let\Sn=\OUT % Sn = An * (K1 + K2 * N) / (Bn * Cn)

970: \apTAYLOR \iftrue \repeat

971: \advance\apFRAC by-2

972: \apDIV{\apMUL{\sqrtval}{53360}}\S

973: \global\let\apPIvalue=\OUT

\apPIexecA: 43–44 \apPIexecB: 44

44



2 The Implementation Arbitrary Precision Numbers

974: \xdef\apPIdigits{\the\apFRAC}%

975: \apEND

976: }

The macros for users \PI and \PIhalf are implemented as “function-like” macros without pa-
rameters.

apnum.tex
977: \def\PI{\relax \apPIexec \let\OUT=\apPI}

978: \def\PIhalf{\relax \apPIexec \let\OUT=\apPIhalf}

The macros \SIN and \COS use the Taylor series

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

These series converge good for |x| < 1. The main problem is to shift the given argument x ∈ R to the
range [0, 1) before the calculation of the series is started. This task is done by \apSINCOSa macro, the
common code for both, \SIN and \COS macros.

The macro \apSINCOSa does the following steps:

• It advances \apFRAC by three and evaluates the argument.
• Note, that the macro \apSINCOSx means \apSINx or \apCOSx depending on the given task.
• The macro \signK includes 1. It can be recalculated to -1 later.
• If the argument is zero then the result is set and next computation is skipped. This test is

processed by \apSINCOSo\apCOSx.
• If the argument is negative then remove minus and save \sign. This \sign will be applied to the

result. The \sign is always + when \COS is calculated. This folows the identities sin(−x) = − sinx
and cos(−x) = cosx.
• The \apFRAC is saved and \apTOT=0.
• The \apPIexec is processed. The \apPI and \apPIhalf are ready after such processing.
• After \X div \apPI (rounded to integer) we have \K in \OUT, where \X = x′+\K ·π and x′ ∈ [0, π).

We set \X := x′ because of the identities sinx = (−1)k sin(x + kπ), cosx = (−1)k cos(x + kπ).
The sign (−1)k is saved to \signK macro.
• If the x′ is zero then the result is set by \apSINCOSo\apCOSx and the rest of calculating is skipped.
• The |\X− π/2| is saved to \XmPIh macro.
• If \X ∈ (π/4, π/2) then x′ = \XmPIh. We use identities sinx = cos(π/2− x), cosx = sin(π/2− x).

Set \X = x′. The meaning of \apSINCOSx (\apSINx or \apCOSx) is flipped in such case.
• If the x′ is zero then the result is set by \apSINCOSo\apSINx and the rest of calculating is skipped.
• Now \X ∈ (0, π/4), i. e. |\X| < 1 and we can use Taylor series. The \apSINCOSx (i. e. \apSINx or
\apCOSx) macro initializes the computation of Taylor series mentioned above. The \XX = \X2 is
prepared. The Taylor series is processed in the loop as usually.
• The the sign of the output is \sign\signK.
• If the sign of the result is negative, the “minus” is added to the \OUT.

apnum.tex
980: \def\SIN{\relax \let\apSINCOSx=\apSINx \apSINCOSa}

981: \def\COS{\relax \let\apSINCOSx=\apCOSx \apSINCOSa}

982: \def\apSINCOSa#1{\apINIT

983: \advance\apFRAC by3

984: \evalmdef\X{#1}\apEnum\X

985: \def\signK{1}\apSINCOSo\apCOSx

986: \ifnum\apSIGN<0 \apREMfirst\X \def\sign{-}\else\def\sign{+}\fi

987: \ifx\apSINCOSx\apCOSx \def\sign{+}\fi

988: \edef\apFRACsave{\the\apFRAC}%

989: \apPIexec

990: \apFRAC=0 \apDIV\X\apPI % OUT = X div PI

991: \ifnum\apSIGN=0 \apSIGN=1 \else

992: \let\K=\OUT

\PI: 3, 4, 45, 48 \PIhalf: 3, 4, 45, 48 \SIN: 3, 4–5, 8, 45–46, 48–50 \COS: 3, 4–5, 45–46, 48–49
\apSINCOSa: 45–46

45



2 The Implementation Arbitrary Precision Numbers

993: \do\X=\apPLUS\X{-\apMUL\K\apPI};% X := X - K * PI

994: \apROLL\K{-1}\apROUND\K{0}%

995: \ifodd 0\XOUT\space \def\signK{-1}\else\def\signK{1}\fi

996: \fi

997: \apSINCOSo\apCOSx

998: \apFRAC=\apFRACsave \relax

999: \do\XmPIh=\apPLUS\X{-\apPIhalf};% XmPIh = | X - PI/2 |

1000: \apSINCOSo\apSINx

1001: \ifnum\apSIGN<0 \apREMfirst\XmPIh

1002: \else % X in (PI/2, PI)

1003: \do\X=\apPLUS\apPI{-\X};%

1004: \ifx\apSINCOSx\apCOSx \apSIGN=-\signK \edef\signK{\the\apSIGN}\fi

1005: \fi % X in (0, PI/2):

1006: \apMINUS\X{.78}% % OUT = X - cca PI/4

1007: \ifnum\apSIGN<0 \else % if X in (PI/4, PI/2) :

1008: \let\X=\XmPIh % X = | X - PI/2 |; SIN <-> COS

1009: \ifx\apSINCOSx\apSINx \let\apSINCOSx=\apCOSx \else \let\apSINCOSx=\apSINx \fi

1010: \fi

1011: \localcounts \N \NN;%

1012: \do\XX=\apPOW\X{2}\ROUND\OUT\apFRAC;%

1013: \apSINCOSx % X in (0, PI/4), initialize Taylor SIN X or COS X

1014: \loop

1015: \advance\N by1 \NN=\N

1016: \advance\N by1 \multiply\NN by\N

1017: \do\Sn=\apDIV{\apMUL\Sn\XX}{-\the\NN};% Sn = - Sn * X^2 / N*(N+1)

1018: \apTAYLOR \iftrue\repeat

1019: \apSIGN=\sign\signK

1020: \ifnum\apTOT=0 \advance\apFRAC by-3 \else \apFRAC=\apTOT \fi

1021: \ifnum\apFRAC<0 \apFRAC=-\apFRAC \fi

1022: \apROUND\OUT\apFRAC

1023: \def\X{0}\ifx\OUT\X \apSIGN=0 \fi

1024: \ifnum\apSIGN<0 \edef\OUT{-\OUT}\fi

1025: \apEND

1026: }

The macros \apSINx and \apCOSx initialize the calculation of the Taylor series.
apnum.tex

1027: \def\apSINx{\let\S=\X \N=1 \let\Sn=\X}

1028: \def\apCOSx{\def\S{1}\N=0 \let\Sn=\S}

The \apSINCOSo 〈sequence〉 macro is used three times in the \apSINCOSa. It tests if the current
result is zero. If it is true then the \OUT is set as zero or it is set to \signK (if processed function is equal
to the 〈sequence〉).

apnum.tex
1029: \def\apSINCOSo#1{\ifnum\apSIGN=0 \ifx#1\SCgo \apSIGN=\signK \let\OUT=\signK \fi \apRETURN\fi}

The macro \TAN uses the identity tanx = sinx/ cosx and calculates the denominator first. If it
is zero then \apERR prints “out of range” message else the result is calculated.

apnum.tex
1030: \def\TAN#1{\relax \apINIT

1031: \advance\apFRAC by3

1032: \evalmdef\X{#1}\apEnum\X

1033: \advance\apFRAC by-3

1034: \do\denom=\COS\X;%

1035: \ifnum\apSIGN=0 \apERR{\string\TAN: argument {\X} is out of range}\apRETURN\fi

1036: \SIN\X\message{\OUT/\denom}%

1037: \apDIV{\SIN\X}\denom

1038: \apEND

1039: }

The macro \ATAN calculates the inverse of tangens using series

arctan
1
x

=
x

1 + x2
+

2
3

x

(1 + x2)2
+

2
3

4
5

x

(1 + x2)3
+

2
3

4
5

6
7

x

(1 + x2)4
+ · · ·

\apSINx: 45–46 \apCOSx: 45–46 \apSINCOSo: 45–46 \TAN: 3, 4, 46, 48 \ATAN: 3, 4–5, 47–48

46



2 The Implementation Arbitrary Precision Numbers

This converges relatively good for |x| > 1. I was inspired by the Claudio Kozický’s semestral work from
the course “Typography and TEX” at ČVUT in Prague.

The macro \ATAN takes the argument x and uses identity arctan(−x) = − arctan(x) when x is
negative. If x > 1 then the identity

arctan(x) =
π

2
− arctan

1
x

is used and arctan(1/x) is calculated by \apATANox macro using the series above. Else the argument
is re-calculated x := 1/x and the \apATANox is used. When x = 1 then the \apPIhalf/2 is returned
directly.

apnum.tex
1040: \def\ATAN#1{\relax \apINIT

1041: \advance\apFRAC by3

1042: \evalmdef\X{#1}\apEnum\X

1043: \ifnum\apSIGN=0 \def\OUT{0}\apRETURN\fi

1044: \ifnum\apSIGN<0 \def\sign{-}\apREMfirst\X \else\def\sign{}\fi

1045: \let\tmp=\X \apDIG\tmp\relax

1046: \ifnum\apnumD>0 % if X > 1:

1047: \apPIexec % OUT = apPIhalf - apATANox

1048: \def\tmp{1}\ifx\tmp\X \apDIV\apPIhalf2\else \apATANox \apPLUS\apPIhalf{-\OUT}\fi

1049: \else % else

1050: \do\X=\apDIV{1}\X;% X := 1/X

1051: \apATANox % OUT = apATANox

1052: \fi

1053: \ifnum\apTOT=0 \advance\apFRAC by-3 \else \apFRAC=\apTOT \fi

1054: \ifnum\apFRAC<0 \apFRAC=-\apFRAC \fi

1055: \apROUND\OUT\apFRAC

1056: \ifx\sign\empty\apSIGN=1 \else \edef\OUT{-\OUT}\apSIGN=-1 \fi

1057: \apEND

1058: }

The macro \apATANox calculates arctan(1/x) using series mentioned above.
apnum.tex

1059: \def\apATANox{%

1060: \localcounts \N;%

1061: \do\XX=\apPLUS{1}{\apPOW\X{2}}\apROUND\OUT\apFRAC;% XX = 1 + X^2

1062: \do\Sn=\apDIV\X\XX \apROUND\OUT\apFRAC;% % Sn = X / (1+X^2)

1063: \N=1 \let\S=\Sn

1064: \loop

1065: \advance\N by1

1066: \do\Sn=\apMUL{\the\N}\Sn;%

1067: \advance\N by1

1068: \do\Sn=\apDIV\Sn{\apMUL{\the\N}\XX};% Sn = Sn * N / ((N+1) * (1+X^2))

1069: \apTAYLOR \iftrue \repeat

1070: }

The macros \ASIN and \ACOS for functions arcsin(x) and arccos(x) are implemented using follow-
ing identities:

arcsin(x) = arctan
x√

1− x2
, arccos(x) =

π

2
− arcsin(x)

apnum.tex
1071: \def\ASIN#1{\relax \apINIT

1072: \evalmdef\X{#1}\apEnum\X \edef\sign{\the\apSIGN}%

1073: \apPLUS 1{-\apPOW\X2}% OUT = 1 - X^2

1074: \ifnum\apSIGN<0 \apERR{\string\ASIN: argument {\X} is out of range}\apRETURN\fi

1075: \do\sqrt=\SQRT\OUT;% sqrt = SRQT {1 - X^1}

1076: \ifnum\apSIGN=0 \apPIexec

1077: \ifnum\sign<0 \edef\OUT{-\apPIhalf}\apSIGN=-1 % ASIN(-1) = -PI/2

1078: \else \let\OUT=\apPIhalf \apSIGN=1 \fi % ASIN(1) = PI/2

1079: \apRETURN \fi

1080: \ATAN{\X/\sqrt}% OUT = arctan ( X / SQRT {1 - X^2} )

1081: \apEND

1082: }

\apATANox: 47 \ASIN: 3, 4, 47–48 \ACOS: 3, 4, 48

47



2 The Implementation Arbitrary Precision Numbers

1083: \def\ACOS#1{\relax \apPIexec \apPLUS\apPIhalf{-\ASIN{#1}}}

2.11 Printing expressions
The \eprint {〈expression〉}{〈declaration〉} macro works in the group \bgroup...\egroup. This

means that the result in math mode is math-Ord atom. The macro interprets the 〈expression〉 in the
first step like \evaldef. This is done by \apEVALb#1\limits. The result is stored in the \tmpb macro
in Polish notation. Then the internal initialization is processed in \apEPi and user-space initialization
is added in #2. Then \tmpb is processed. The \apEPe can do something end-game play but typically it
is \relax.

apnum.tex
1087: \def\eprint#1#2{\bgroup \apnumA=0 \apnumE=1 \apEVALb#1\limits

1088: \let\apEPe=\relax \apEPi #2\tmpb \apEPe \egroup

1089: }

The \apEPi macro replaces the meaning of all macros typically used in Polish notation of the
expression. The original meaning is “to evaluate”, the new meaning is “to print”. The macro \apEPi
is set to \relax in the working group because nested 〈expressions〉 processed by nested \eprints need
not to be initialized again.

There is second initialization macro \apEPj (similar to the \apEPi) which is empty by default.
Users can define their own function-like functions and they can put the printing initialization of such
macros here.

apnum.tex
1090: \def\apEPi{\let\apPLUS=\apEPplus \let\apMINUS=\apEPminus

1091: \let\apMUL=\apEPmul \let\apDIV=\apEPdiv \let\apPOWx=\apEPpow \def\apPPn##1{##1}%

1092: \let\EXP=\apEPexp \def\LN{\apEPf{ln}}\let\SQRT=\apEPsqrt

1093: \def\SIN{\apEPf{sin}}\def\COS{\apEPf{cos}}\def\TAN{\apEPf{tan}}%

1094: \def\ASIN{\apEPf{arcsin}}\def\ACOS{\apEPf{arccos}}\def\ATAN{\apEPf{arctan}}%

1095: \let\PI=\pi \def\PIhalf{{\pi\over2}}%

1096: \let\ABS=\apEPabs \let\FAC=\apEPfac \let\BINOM=\apEPbinom

1097: \let\SGN=\apEPsgn \let\iDIV=\apEPidiv \let\iMOD=\apEPimod

1098: \let\iFLOOR=\apEPifloor \let\iFRAC=\apEPifrac

1099: \let\apEPi=\relax \apEPj

1100: }

1101: \def\apEPj{}

All parameters are processed in new group. For example we have \apPLUS{a}{\apDIV{b}{c}}
in the \tmpb. Then the {a}+{\apDIV{b}{c}} is processed and thus {a}+{{b}\over{c}} is printed.
The outer group is set by \eprint macro itself. So, the “printing” meaning of \apPLUS prepared in
\apEPplus looks like:

apnum.tex
1102: \def\apEPplus#1#2{{#1}+{#2}}

When we process the \tmpb with the output of the 〈expression〉 interpreter then the origi-
nal positions of the round brackets are lost. We must to print these brackets if it is required by
usual math syntax. For example \apMINUS{a}{\apPLUS{b}{c}} must be printed as a-(b+c). But
\apMINUS{a}{\apMUL{b}{c}} must be printed as a-bc.

The \apEPp〈parameter〉\empty\end〈a〉〈b〉〈c〉〈d〉〈e〉 is used for this feature. The result of \apEPp
is the 〈parameter〉 enclosed or not enclosed in round brackets. It depends on the main operator Mop in
the 〈parameter〉 and on the given parameters 〈a〉〈b〉〈c〉〈d〉〈e〉. If Mop is \apPLUS and 〈a〉 isn’t dot or
Mop is \apMINUS and 〈b〉 isn’t dot or Mop is (unary minus or \apMUL) and 〈c〉 isn’t dot or Mop is \apDIV
and 〈d〉 isn’t dot or Mop is \apPOWx and 〈e〉 isn’t dot then the 〈parameter〉 is enclosed in brackets using
\left(〈parameter〉\right). Else the 〈parameter〉 is enclosed in invisible group-braces only. If Mop is
nothing mentioned above (because single operand is here) then no brackets and no invisible braces are
used and the 〈parameter〉 is printed “as is”. This feature is used in the printing version of \apMINUS,
i. e. in \apEPminus macro (and in many others macros). The second parameter of \apMINUS is enclosed
in brackets only if its main operator Mop is + or -.

apnum.tex
1103: \def\apEPminus#1#2{{#1}-\apEPp#2\empty\end!!...}

\eprint: 7, 8, 48–50 \apEPe: 48–50 \apEPi: 48–50 \apEPj: 48 \apEPplus: 48, 50
\apEPminus: 48, 50

48



2 The Implementation Arbitrary Precision Numbers

The unary minus in the cases like -(a+b) are transformed to \apMUL{-1}{\apPLUS{a}{b}} by
the 〈expression〉 interpreter. But we don’t need to print -1\cdot(a+b). So, the printing version of
\apMUL stored in the macro \apEPmul have an exception. First, we do the test, if #1 is equal to -1. If
this is true, then we print the unary minus else we print the whole first parameter enclosed in braces
if its Mop is + or -. The second parameter is enclosed in braces if its Mop is + or - or *. This needs
more explanation: The multiplying chains as a*b*c are processed from left to right in the 〈expression〉
scanner and the result is \apMUL{\apMUL{a}{b}}{c}. So, no brackets are printed. But the a*-(b+c) is
converted to \apMUL{a}{\apMUL{-1}{\apPLUS{b}{c}}} and we need to print this as a\cdot(-(b+c)).
This is the reason why the second parameter of \apMUL will be in brackets when its Mop is *.

apnum.tex
1104: \def\apEPmul#1#2{\def\tmpa{#1}\def\tmpb{-1}%

1105: \ifx\tmpa\tmpb -\else \apEPp#1\empty\end!!...\apMULop\fi

1106: \apEPp#2\empty\end!!!..}

The \apEPdiv macro used for printing \apDIV is very easy. We needn’t to set the outer group
here because each parameter is enclosed in the group. We need not to add any round brackets here
because fraction generated by \over is self explanatory from priority point of view. If you need to
redefine \apEPdiv with the operator / instead \over then you need to redefine \apEPmul too because
you must enclose parameters with Mop = \apDIV by brackets in such case.

apnum.tex
1107: \def\apEPdiv#1#2{{#1}\over{#2}}

The \apEPpow macro used for printing ^ includes another speciality. When the base (the first
〈parameter〉) is a function-like macro \SIN, \COS etc. then we need to print \SIN{X}^2 as \sin^2 x. The
test if the base is such special functions-like macro is performed by \apEPpowa{〈base〉}\end{〈exponent〉}.
If this is true then \apEPpowa saves the 〈exponent〉 to the temporary macro \apEPy and only 〈base〉 is
processed (the \apEPy is printed inside this processing) else \apEPy is empty and the 〈base〉 enclosed
in brackets is followed by ^{〈exponent〉}. Note that the 〈base〉 isn’t enclosed by brackets if its Mop is
missing, i. e. the 〈base〉 is single operand.

apnum.tex
1108: \def\apEPpow#1#2{%

1109: \let\apEPy=\empty \apEPpowa{#1}\end{#2}%

1110: \ifx\apEPy\empty \apEPp#1\empty\end!!!!!^{#2}\else#1\fi

1111: }

The \apEPpowa macro detects the special function-like macro \SIN, \COS etc. by performing one
expansion step on the tested 〈base〉. If the first 〈token〉 is \apEPf then the special function-like macro is
detected. Note that \SIN, \COS etc. are defined as \apEPf in the \apEPi macro.

apnum.tex
1112: \def\apEPpowa#1{\expandafter\apEPpowb#1;}

1113: \def\apEPpowb#1#2;\end#3{\ifx#1\apEPf \def\apEPy{\let\apEPy=\empty #3}\fi}

1114: \let\apEPy=\empty

The functions like \SIN{〈expression〉} are printed by \apEPf {〈name〉}{〈expression〉}. First,
the \mathop{〈name〉}\nolimits is printed. If \apEPy is non-empty then the exponent is printed by
^{\apEPy}. Finally, the nested 〈expression〉 is printed by the nested \eprint.

apnum.tex
1115: \def\apEPf#1#2{\mathop{\rm#1}\nolimits

1116: \ifx\apEPy\empty \else ^{\apEPy}\let\apEPy=\empty \fi

1117: \eprint{#2}{\expandafter\apEPb}%

1118: }

The code \expandafter\apEPb in the 〈declaration〉 part of \eprint expands the following \tmpb
(the result of the 〈expression〉 scanner) and checks the first token. By default the 〈expression〉 will be
enclosed by brackets (see the default \next definition where closing brace is printed by \apEPe macro
used after expanded \tmpb). But if the first token is \apPPn or \apDIV then no brackets are printed
around the 〈expression〉. Note that the 〈expression〉 scanner generates \apPPn{〈operand〉} if and only if
the whole 〈expression〉 is a single operand.

\apEPmul: 48–50 \apEPdiv: 48–50 \apEPpow: 48–50 \apEPy: 49 \apEPpowa: 49
\apEPf: 48–49 \apEPb: 49–50

49



2 The Implementation Arbitrary Precision Numbers

apnum.tex
1119: \def\apEPb#1{\def\next{\left(\def\apEPe{\right)}}%

1120: \ifx\apPPn#1\let\next=\relax \fi

1121: \ifx\apDIV#1\let\next=\relax \fi

1122: \next#1%

1123: }

The meaning of \apEPp 〈parameter〉\empty\end〈a〉〈b〉〈c〉〈d〉〈e〉 is explained above, see the text
where \apEPminus is introduced. Now, we focus to the implementation of this feature. The auxiliary
macro \apEPa 〈first token〉{〈normal〉}{〈bracket〉}〈a〉〈b〉〈c〉〈d〉〈e〉 is used twice: before processing the
〈parameter〉 #1#2 and after processing. The \apEPa inserts the 〈normal〉 or 〈bracket〉 depending on the
condition described above where Mop is equal to the 〈first token〉. Note the trick with \empty which is
inserted at the end of #2 parameter. The 〈parameter〉 should be in the form \SIN{...}. If the \empty
token isn’t added then #2 becomes the text without braces and this is not desired.

apnum.tex
1124: \def\apEPp#1#2\end#3#4#5#6#7{%

1125: \apEPa#1\bgroup{\left(}#3#4#5#6#7#1#2\apEPa#1\egroup{\right)}#3#4#5#6#7}

1126: \def\apEPa#1#2#3#4#5#6#7#8{%

1127: \ifx#1\apEPplus \ifx#4.#2\else#3\fi\fi

1128: \ifx#1\apEPminus \ifx#5.#2\else#3\fi\fi

1129: \ifx#1\apEPmul \ifx#6.#2\else#3\fi\fi

1130: \ifx#1\apEPdiv \ifx#7.#2\else#3\fi\fi

1131: \ifx#1\apEPpow \ifx#8.#2\else#3\fi\fi

1132: \ifx#1-\empty \ifx#6.#2\else#3\fi\fi

1133: }

The \apMULop is used as an operation mark for multiplying. It is \cdot by default but user can
change this.

apnum.tex
1134: \let\apMULop=\cdot

The single operand like 2.18 or \X or \FAC{10} is processed directly without any additional
material. User can define “variables” as desired. The function-like macros provided by apnum.tex is
initialized in \apEPi macro and the “printing macros” \apEPabs, \apEPfac, \apEPbinom, \apEPsqrt,
\apEPexp, \apEPsgn, \apEPdivmod, \apEPidiv, \apEPimod, \apEPifloor, \apEPifrac are defined here.
The trick with \expandafter\apEPb in the declaration part of the nested \eprint was explained above.
Users can re-define these macros if they want.

apnum.tex
1135: \def\apEPabs#1{\left|\eprint{#1}{}\right|}

1136: \def\apEPfac#1{\eprint{#1}{\expandafter\apEPb}\,!}

1137: \def\apEPbinom#1#2{{\eprint{#1}{}\choose\eprint{#2}{}}}

1138: \def\apEPsqrt#1{\sqrt{\eprint{#1}{}}}

1139: \def\apEPexp#1{{\rm e}^{\eprint{#1}{}}}

1140: \def\apEPsgn#1{\mathop{\rm sign}\eprint{#1}{\expandafter\apEPb}}

1141: \def\apEPdivmod#1#2#3{\left[\eprint{#2}{\expandafter\apEPb}%

1142: \mathbin{\rm #1}\eprint{#3}{\expandafter\apEPb}\right]}

1143: \def\apEPidiv{\apEPdivmod{div}}

1144: \def\apEPimod{\apEPdivmod{mod}}

1145: \def\apEPifloor#1{\left\lfloor\eprint{#1}{}\right\rfloor}

1146: \def\apEPifrac#1{\left\{\eprint{#1}{}\right\}}

The \corrnum 〈token〉 macro expects 〈token〉 as a macro with number. It adds zero before decimal
point if the sequence of 〈digits〉 before decimal point is empty. It uses a macro \apEPc which works at
expansion level. First, the occurrence of the - is tested. If it is true then - is expanded and the \apEPc
is called again. Else the zero is added if the first token is dot (this means if the 〈digits〉 before dot is
empty).

apnum.tex
1148: \def\corrnum#1{\edef#1{\expandafter\apEPc#1\end}}

1149: \def\apEPc#1#2\end{\ifx#1-{-}\apEPc#2\end\else \ifx#1.0.#2\else #1#2\fi\fi}

\apEPp: 48–50 \apEPa: 50 \apMULop: 8, 49–50 \apEPabs: 48, 50 \apEPfac: 48, 50
\apEPbinom: 48, 50 \apEPsqrt: 48, 50 \apEPexp: 48, 50 \apEPsgn: 48, 50 \apEPdivmod: 50
\apEPidiv: 48, 50 \apEPimod: 48, 50 \apEPifloor: 48, 50 \apEPifrac: 48, 50 \corrnum: 8, 50
\apEPc: 50

50



3 Index Arbitrary Precision Numbers

2.12 Conclusion
This code is here only for backward compatibility with old versions of apnum.tex. Don’t use these

sequences if you are implementing an internal feature because users can re-define these sequences.
apnum.tex

1153: \let\PLUS=\apPLUS \let\MINUS=\apMINUS \let\MUL=\apMUL \let\DIV=\apDIV \let\POW=\apPOW

1154: \let\SIGN=\apSIGN \let\ROUND=\apROUND \let\NORM=\apNORM \let\ROLL=\apROLL

Here is my little joke. Of course, this macro file works in LaTEX without problems because only
TEX primitives (from classical TEX) and the \newcount macro are used here. But I wish to print my
opinion about LaTEX. I hope that this doesn’t matter and LaTEX users can use my macro because a
typical LaTEX user doesn’t read a terminal nor .log file.

apnum.tex
1156: \ifx\documentclass\undefined \else % please, don’t remove this message

1157: \message{WARNING: the author of apnum package recommends: Never use LaTeX.}\fi

1158: \catcode‘\@=\apnumZ

1159: \endinput

3 Index
The bold number is the number of the page where the item is documented. Other numbers are

pagenumbers of the occurrences of such item. The items marked by � are mentioned in user documen-
tation.

�\ABS: 37, 3, 5–6, 48
�\ACOS: 47, 3, 4, 48
\apADDzeros: 35, 16, 19, 23–24, 31
\apATANox: 47
\apCOSx: 46, 45
\apCOUNTS: 36
\apDIG: 33, 15–16, 19, 23–24,

29, 34, 39, 42, 47
\apDIGa: 34
\apDIGb: 34
\apDIGc: 34
\apDIGd: 34
\apDIGe: 34
\apDIGf: 34
�\apDIV: 23, 6, 11–12, 14, 24, 36–51
\apDIVa: 23, 24, 29
\apDIVcomp: 24, 23, 25
\apDIVcompA: 25
\apDIVcompB: 25
\apDIVg: 25, 24, 26
\apDIVh: 26, 25, 27
\apDIVi: 26
\apDIVj: 26
\apDIVp: 26, 27
\apDIVq: 27, 26
\apDIVr: 27
\apDIVt: 28, 27
\apDIVu: 28, 27
\apDIVv: 28, 24
\apDIVw: 28
\apDIVxA: 26, 23–24, 27
\apDIVxB: 26, 23–24, 27
�\apE: 9, 4, 5–6, 10–14, 16, 18–19,

23–24, 29, 33, 37, 39–42
�\apEadd: 33, 4, 5, 10

\apEND: 33, 10, 12, 36–42, 45–47
�\apEnum: 33, 4, 5, 37–38, 40, 45–47
\apEPa: 50
\apEPabs: 50, 48
\apEPb: 49, 50
\apEPbinom: 50, 48
\apEPc: 50
\apEPdiv: 49, 48, 50
\apEPdivmod: 50
\apEPe: 48, 49–50
\apEPexp: 50, 48
\apEPf: 49, 48
\apEPfac: 50, 48
\apEPi: 48, 49–50
\apEPidiv: 50, 48
\apEPifloor: 50, 48
\apEPifrac: 50, 48
\apEPimod: 50, 48
\apEPj: 48
\apEPminus: 48, 50
\apEPmul: 49, 48, 50
\apEPp: 50, 48–49
\apEPplus: 48, 50
\apEPpow: 49, 48, 50
\apEPpowa: 49
\apEPsgn: 50, 48
\apEPsqrt: 50, 48
\apEPy: 49
\apERR: 37, 24, 29, 38–39, 42, 46–47
\apEVALa: 10, 12
\apEVALb: 10, 11, 48
\apEVALc: 10, 11
\apEVALd: 10
\apEVALdo: 12
\apEVALe: 10

51



3 Index Arbitrary Precision Numbers

\apEVALerror: 12, 11
\apEVALf: 10
\apEVALg: 11, 10
\apEVALh: 11
\apEVALk: 11, 10
\apEVALm: 11
\apEVALn: 11, 10
\apEVALo: 11, 10
\apEVALp: 11, 10
\apEVALpush: 12, 11
\apEVALstack: 12
\apEVALxdo: 37, 36
�\apEX: 9, 5, 41
\apEXPa: 40
\apEXPb: 41, 40
�\apFRAC: 9, 3, 4, 6, 24, 37, 39–47
\apINIT: 36, 37–42, 44–47
\apIVbase: 35, 17–18, 21, 27, 30
\apIVdot: 35, 22, 28
\apIVdotA: 35
\apIVmod: 35, 15–16, 19, 24, 29
\apIVread: 34, 17, 23–26
\apIVreadA: 34, 35
\apIVreadX: 34, 23–24, 35
\apIVtrans: 35, 21, 30
\apIVwrite: 35, 18, 21, 23–24, 27–28, 30
\apLNr: 42, 43
\apLNra: 43
\apLNrten: 43
\apLNtaylor: 42, 43
\apLNten: 43, 41–42
\apLNtenexec: 43, 41–42
�\apMINUS: 15, 6, 11–12, 46, 48, 51
�\apMUL: 18, 6, 9–12, 14, 26, 36,

38, 41–42, 44, 46–49, 51
\apMULa: 19, 18, 29
\apMULb: 20, 19, 29
\apMULc: 20, 19
\apMULd: 20, 19, 29
\apMULe: 20, 21, 30
\apMULf: 20, 21, 30
\apMULg: 21, 19
\apMULh: 21
\apMULi: 21
\apMULj: 21
\apMULo: 21
�\apMULop: 50, 8, 49
\apMULt: 21, 22
\apNL: 34, 16–17, 25–26, 35
\apNOPT: 37, 40, 43
�\apNORM: 31, 5, 14, 33, 51
\apNORMa: 33, 31
\apNORMb: 33
\apNORMc: 33
\apNORMd: 33
\apNUMdigits: 35, 21, 27

\apNUMdigitsA: 35
\apOUTl: 36, 21, 26–27, 30
\apOUTn: 36, 21, 27
\apOUTs: 36, 21, 27
\apOUTx: 36, 21, 27
\apPI: 43, 44–46
\apPIdigits: 43, 44–45
\apPIexec: 43, 45, 47–48
\apPIexecA: 44, 43
\apPIexecB: 44
\apPIhalf: 43, 44–48
\apPIvalue: 43, 44
�\apPLUS: 15, 6, 9–12, 14, 37–39,

41–44, 46–49, 51
\apPLUSa: 15, 16
\apPLUSb: 16, 15
\apPLUSc: 17, 16
\apPLUSd: 17
\apPLUSe: 17
\apPLUSf: 17
\apPLUSg: 17, 15–16
\apPLUSh: 17
\apPLUSm: 17, 16
\apPLUSp: 17, 16, 18
\apPLUSw: 18, 17
\apPLUSxA: 15, 16–17
\apPLUSxB: 15, 16–17
\apPLUSxE: 18, 15–16
\apPLUSy: 18, 16
\apPLUSz: 18
�\apPOW: 28, 6, 12, 14, 36,

41–42, 46–47, 51
\apPOWa: 28, 29–30
\apPOWb: 29, 30
\apPOWd: 30, 29
\apPOWe: 30, 29
\apPOWg: 30, 29
\apPOWh: 30
\apPOWn: 30, 29
\apPOWna: 30
\apPOWnn: 30
\apPOWt: 30, 29
\apPOWu: 30
\apPOWv: 30
\apPOWx: 28, 11–12, 48
\apPPa: 13, 12, 14
\apPPab: 14, 15, 18–19, 24, 28–29, 34
\apPPb: 13, 14
\apPPc: 13
\apPPd: 13
\apPPe: 13
\apPPf: 13
\apPPg: 13
\apPPh: 13
\apPPi: 13, 14
\apPPj: 14

52



3 Index Arbitrary Precision Numbers

\apPPk: 14
\apPPl: 14
\apPPm: 14
\apPPn: 14, 12, 48–50
\apPPs: 14, 18, 31–33
\apPPt: 14
\apPPu: 14
\apREMdotR: 35, 28, 36
\apREMdotRa: 35, 36
\apREMfirst: 36, 6, 37, 40, 45–47
\apREMzerosR: 35, 18, 28, 33
\apREMzerosRa: 35
\apREMzerosRb: 35, 36
\apRETURN: 37, 38–40, 42, 46–47
�\apROLL: 31, 5, 14, 33, 39, 41–42, 46, 51
\apROLLa: 31, 18, 24, 29, 33
\apROLLc: 31
\apROLLd: 31
\apROLLe: 31
\apROLLf: 31
\apROLLg: 31, 32
\apROLLh: 31, 32
\apROLLi: 31, 32
\apROLLj: 32, 31
\apROLLk: 32, 31
\apROLLn: 32
\apROLLo: 32
�\apROUND: 31, 5, 14, 32, 37–38,

41–42, 44, 46–47, 51
\apROUNDa: 32, 14, 31, 33
\apROUNDb: 32
\apROUNDc: 32
\apROUNDd: 32, 33
\apROUNDe: 33, 32
�\apSIGN: 9, 4, 6, 10, 12–16, 18–19,

23–24, 29, 33, 37–42, 45–47, 51
\apSINCOSa: 45, 46
\apSINCOSo: 46, 45

\apSINx: 46, 45
\apSQRTr: 39, 40
\apSQRTra: 39, 40
\apSQRTrb: 39, 40
\apSQRTxo: 39, 44
\apTAYLOR: 41, 42, 44, 46–47
\apTESTdigit: 12, 10–11
�\apTOT: 9, 3, 4, 6, 24, 37, 43–47
\apVERSION: 9
�\ASIN: 47, 3, 4, 48
�\ATAN: 46, 3, 4–5, 47–48
�\BINOM: 38, 3, 48
�\corrnum: 50, 8
�\COS: 45, 3, 4–5, 46, 48–49
\do: 36, 37–38, 41–43, 46–47
�\eprint: 48, 7, 8, 49–50
�\evaldef: 10, 3, 4, 6, 8–9, 12,

28, 36–37, 39, 41, 48
�\evalmdef: 10, 4, 5–6, 37–40, 42, 45–47
�\EXP: 40, 3, 4–6, 41–43, 48
�\FAC: 38, 3, 48, 50
�\iDIV: 37, 3, 5, 48
�\iFLOOR: 37, 3, 48
�\iFRAC: 37, 3, 48
�\iMOD: 37, 3, 48
�\LN: 41, 3, 4, 6, 42, 48
\localcounts: 36, 38–40, 42, 44, 46–47
\loop: 37, 38–42, 44, 46–47
�\OUT: 10, 4, 5–6, 12–14, 16–24,

26–27, 29–30, 33, 36–47
�\PI: 45, 3, 4, 48
�\PIhalf: 45, 3, 4, 48
�\SGN: 37, 3, 5, 48
�\SIN: 45, 3, 4–5, 8, 46, 48–50
�\SQRT: 39, 3, 4–5, 44, 47–48
�\TAN: 46, 3, 4, 48
�\XOUT: 28, 6, 5, 14, 23–27,

32–33, 37–38, 46

53


	...Arbitrary Precision Numbers...
	user's documentation
	evaluation of expressions
	\evaldef
	\apTOT
	\apFRAC
	\ABS
	\SGN
	\iDIV
	\iMOD
	\iFLOOR
	\iFRAC
	\FAC
	\BINOM
	\SQRT
	\EXP
	\LN
	\SIN
	\COS
	\TAN
	\ASIN
	\ACOS
	\ATAN
	\PI
	\PIhalf
	\OUT
	\apSIGN
	\apE

	scientific notation of numbers
	\evalmdef
	\apEadd
	\apEnum
	\apROLL
	\apNORM
	\apROUND
	\apEX

	notes for macro programmers
	\apPLUS
	\apMINUS
	\apMUL
	\apDIV
	\apPOW
	\XOUT

	printing expressions
	\eprint
	\apMULop
	\corrnum

	experiments

	the implementation
	name convention, version, counters
	\apVERSION
	\apSIGN
	\apE
	\apTOT
	\apFRAC
	\apEX

	evaluation of the expression
	\evaldef
	\evalmdef
	\apEVALa
	\OUT
	\apEVALb
	\apEVALc
	\apEVALd
	\apEVALe
	\apEVALf
	\apEVALg
	\apEVALh
	\apEVALk
	\apEVALm
	\apEVALn
	\apEVALo
	\apEVALp
	\apEVALstack
	\apEVALpush
	\apEVALdo
	\apEVALerror
	\apTESTdigit

	preparation of the parameter
	\apPPa
	\apPPb
	\apPPc
	\apPPd
	\apPPe
	\apPPf
	\apPPg
	\apPPh
	\apPPi
	\apPPj
	\apPPk
	\apPPl
	\apPPm
	\apPPn
	\apPPab
	\apPPs
	\apPPt
	\apPPu

	addition and subtraction
	\apPLUS
	\apMINUS
	\apPLUSa
	\apPLUSxA
	\apPLUSxB
	\apPLUSb
	\apPLUSc
	\apPLUSe
	\apPLUSh
	\apPLUSg
	\apPLUSd
	\apPLUSf
	\apPLUSm
	\apPLUSp
	\apPLUSw
	\apPLUSy
	\apPLUSz
	\apPLUSxE

	multiplication
	\apMUL
	\apMULa
	\apMULb
	\apMULc
	\apMULd
	\apMULe
	\apMULf
	\apMULg
	\apMULh
	\apMULi
	\apMULj
	\apMULo
	\apMULt

	division
	\apDIV
	\apDIVa
	\apDIVcomp
	\apDIVcompA
	\apDIVcompB
	\apDIVg
	\apDIVh
	\apDIVi
	\apDIVj
	\apDIVp
	\apDIVxA
	\apDIVxB
	\apDIVq
	\apDIVr
	\apDIVt
	\apDIVu
	\XOUT
	\apDIVv
	\apDIVw

	power to the integer
	\apPOW
	\apPOWx
	\apPOWa
	\apPOWb
	\apPOWd
	\apPOWe
	\apPOWg
	\apPOWh
	\apPOWn
	\apPOWna
	\apPOWnn
	\apPOWt
	\apPOWu
	\apPOWv

	aproll, apround and apnorm macros
	\apROLL
	\apROUND
	\apNORM
	\apROLLa
	\apROLLc
	\apROLLd
	\apROLLe
	\apROLLf
	\apROLLg
	\apROLLh
	\apROLLi
	\apROLLj
	\apROLLk
	\apROLLn
	\apROLLo
	\apROUNDa
	\apROUNDb
	\apROUNDc
	\apROUNDd
	\apROUNDe
	\apNORMa
	\apNORMb
	\apNORMc
	\apNORMd
	\apEadd
	\apEnum

	miscelaneous macros
	\apEND
	\apDIG
	\apDIGa
	\apDIGb
	\apDIGc
	\apDIGd
	\apDIGe
	\apDIGf
	\apIVread
	\apIVreadA
	\apNL
	\apIVreadX
	\apIVwrite
	\apIVtrans
	\apIVbase
	\apIVmod
	\apIVdot
	\apIVdotA
	\apNUMdigits
	\apNUMdigitsA
	\apADDzeros
	\apREMzerosR
	\apREMzerosRa
	\apREMzerosRb
	\apREMdotR
	\apREMdotRa
	\apREMfirst
	\apOUTx
	\apOUTn
	\apOUTl
	\apOUTs
	\apINIT
	\localcounts
	\apCOUNTS
	\do
	\apEVALxdo
	\apRETURN
	\apERR
	\apNOPT
	\loop

	function-like macros
	\ABS
	\SGN
	\iDIV
	\iMOD
	\iFLOOR
	\iFRAC
	\FAC
	\BINOM
	\SQRT
	\apSQRTxo
	\apSQRTr
	\apSQRTra
	\apSQRTrb
	\EXP
	\apEXPa
	\apTAYLOR
	\apEXPb
	\LN
	\apLNtaylor
	\apLNr
	\apLNra
	\apLNrten
	\apLNtenexec
	\apLNten
	\apPIvalue
	\apPIdigits
	\apPIexec
	\apPI
	\apPIhalf
	\apPIexecA
	\apPIexecB
	\PI
	\PIhalf
	\SIN
	\COS
	\apSINCOSa
	\apSINx
	\apCOSx
	\apSINCOSo
	\TAN
	\ATAN
	\apATANox
	\ASIN
	\ACOS

	printing expressions
	\eprint
	\apEPe
	\apEPi
	\apEPj
	\apEPplus
	\apEPminus
	\apEPmul
	\apEPdiv
	\apEPpow
	\apEPy
	\apEPpowa
	\apEPf
	\apEPb
	\apEPp
	\apEPa
	\apMULop
	\apEPabs
	\apEPfac
	\apEPbinom
	\apEPsqrt
	\apEPexp
	\apEPsgn
	\apEPdivmod
	\apEPidiv
	\apEPimod
	\apEPifloor
	\apEPifrac
	\corrnum
	\apEPc

	conclusion

	index

