Package ‘tidypopgen’

January 24, 2026
Title Tidy Population Genetics
Version 0.4.3

Description We provide a tidy grammar of population genetics, facilitating
the manipulation and analysis of data on biallelic single nucleotide
polymorphisms (SNPs). 'tidypopgen' scales to very large genetic datasets
by storing genotypes on disk, and performing operations on them in
chunks, without ever loading all data in memory. The full
functionalities of the package are described in Carter et al. (2025)
<doi:10.1111/2041-210x.70204>.

License GPL (>=3)
Encoding UTF-8
Language en-GB

URL https://github.com/EvolEcolGroup/tidypopgen,
https://evolecolgroup.github.io/tidypopgen/

BugReports https://github.com/EvolEcolGroup/tidypopgen/issues
RoxygenNote 7.3.3
Depends R (>=3.5.0), dplyr, tibble

Imports bigparallelr, bigsnpr, bigstatsr, foreach, generics, ggplot2,
methods, MASS, patchwork, runner, rlang, sf, stats, tidyselect,
tidyr, utils, Repp, UpSetR, vctrs

Suggests adegenet, admixtools, broom, data.table, hierfstat, knitr,
detectRUNS, LEA, RhpcBLASctl, rmarkdown, rnaturalearth,
rnaturalearthdata, readr, reticulate, testthat (>= 3.0.0),
vcfR, xgboost, spelling

Additional_repositories https://evolecolgroup.r-universe.dev/

VignetteBuilder knitr

Config/testthat/edition 3

LinkingTo Rcpp, ReppArmadillo (>= 0.9.600), bigstatsr, rmio

LazyData true

Config/Needs/website rmarkdown

https://doi.org/10.1111/2041-210x.70204
https://github.com/EvolEcolGroup/tidypopgen
https://evolecolgroup.github.io/tidypopgen/
https://github.com/EvolEcolGroup/tidypopgen/issues
https://evolecolgroup.r-universe.dev/

NeedsCompilation yes

Author Evie Carter [aut],

Eirlys Tysall [aut],

Andrea Manica [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-1895-450X>),

Chang Christopher [ctb] (Author of Hardy-Weinberg Equilibrium algorithm
in PLINK 1.90, used in loci_hwe()),

Shaun Purcell [ctb] (Author of Hardy-Weinberg Equilibrium algorithm in
PLINK 1.90, used in loci_hwe()),

Bengtsson Henrik [ctb] (Author of countLines in R.utils, modified for
.vef in count_vcf_variants())

Maintainer Andrea Manica <am315@cam. ac.uk>
Repository CRAN
Date/Publication 2026-01-24 00:30:02 UTC

Contents

arrange.gen_tblo
arrange.grouped_gen_tblo L Lo
augment.gt_dapc L. e
augment_gt pca L. e e e e
augment_locio
augment_loci_gt pca
augment_q_matriX e e e e e e e
autoplot.gt_cluster_pca L.
autoplot.gt_dapc. oL
autoplot.qc_report_indiv oL
autoplot.qc_report_loci
autoplot_gt_admix
autoplot_gt_pca e e e e e
autoplot_gt_pcadapt
autoplot_gq_matrix
cgtadmix
cbind.gen_tbl
count_loCi e
distruct_colours e e e
filter.gen_tbl
filter.grouped_gen_tbl
filter_high_relatedness
find_duplicated_loci
gen_tibble
GELP_MALIIX . . . v v ot e e e e e e e e e e e
CeL_Q_MATIX e e e e e e e e e e e
gt add_sf
gtadmixture
gt_admix_reorder_q.

Contents

https://orcid.org/0000-0003-1895-450X

Contents

3
gtas_genind e e e e e 37
gt as genlight. 38
gtas_geno_lea e 39
gt_as_hierfstat 40
gtas_plink . . .o e 40
gtoas_vel oL e 41
gtcluster_pca e 42
gt_cluster_pca_best_ k. 44
gtdapc ... e 46
gteextract_f2 49
gt_from_genlight 51
gt_get file_names L 52
gt_has_imputed L 53
gt_impute_simple 54
gt_impute_XgbooSt L e e e e e 55
gt load e 56
gtorder_loci 57
SLPCA .« v o e e e e e e e e e 58
gtopcadapt e e e e e 59
gt_pca_autoSVD Lo 60
gt_pca_partialSVDo 62
gt_pca_randomSVD oL 64
gt_pseudohaploid 66
SESAVE . . e e e e 67
gtoset_imputed L. e e e e e 68
gtosnmf . ..o e e 68
gt_update_backingfile 70
gt_uses_imputed e 71
indiv_het_obs e e 72
indiv_inbreeding L e 73
INdIV_mMISSINGNESS oo e e e e 74
indiv_ploidy e e e 75
is_loci_table_ordered 76
load_example_gt e 77
loci_alt_freq o 78
loci_chromosomes e e e e e e e e 81
loci_ hwe e e 82
loci_ld_clump o e 83
[oCIi_MiSSINGNESS v v o o e e e e e e e e e 85
loci_names e e 87
LOCIPL . . . o o e 88
Joci_transSitions e e e e e e e e 90
[OCI_tranSversions v it i e 90
mutate.gen_tbl Lo 91
mutate.grouped_gen_tbl 92
NWISE_POP_PDS .« . o o o o e e e e e e e e e e 93
pairwise_allele_sharing Lo 94

PAITWISE_EIM o ot i e e e e e 95

4 arrange.gen_tbl

pairwise_ibs L e e 96
pairwise_King L. 97
pairwise_pop_fst e e 98
POP_fiS. o . o 100
POP_fSt . e 101
pop_global_stats e e e 102
pop_het_exp L 105
pop_het_obs L e 106
pop_tajimas_d 108
predict.gt_pca L. 109
ge_report_indiv L L e e e e e 111
qo_report_loci 112
QUMATIX « . v v e 113
rbind.gen_tblo 114
rbind_dry_runo e 115
read_q_files 117
scale fill_distruct, 118
select_1oCl e e 119
select_loci_if 120
ShOW_gEeNnotypes o o e e e e e e 121
show_1oCi o e e 121
show_ploidy L 122
snp_allele_sharing 123
SNP_ibS . . . 124
SNP_KING e e e e e 126
summary.gt_admixX oL e 127
summary.rbind_report 128
theme_distruct e e 129
tidy.gt_dapc 130
dy.gt pca e e e 131
tidy.q_matriX e e e 133
windows_indiv_roh L 134
windows_nwise_pop_pbs e 136
windows_pairwise_pop_fst oL 138
windows_pop_tajimas_d e 139
WIndows_Stats_@eneriC oo e e e e 141
$<-.gen_tbl 143
Index 144
arrange.gen_tbl An arrange method for gen_tibble objects
Description

An arrange method for gen_tibble objects

arrange.grouped_gen_tbl

Usage
S3 method for class 'gen_tbl'
arrange(..., deparse.level = 1)
Arguments

a gen_tibble and a data.frame or tibble

deparse.level an integer controlling the construction of column names.

Value

agen_tibble

Examples

test_gt <- load_example_gt("gen_tbl")
test_gt %>% arrange(id)

arrange.grouped_gen_tbl
An arrange method for grouped gen_tibble objects

Description

An arrange method for grouped gen_tibble objects

Usage
S3 method for class 'grouped_gen_tbl'
arrange(..., deparse.level = 1)
Arguments

a gen_tibble and a data.frame or tibble

deparse.level an integer controlling the construction of column names.

Value

a grouped gen_tibble

Examples

test_gt <- load_example_gt("grouped_gen_tbl")
test_gt %>% arrange(id)

test_gt <- load_example_gt("grouped_gen_tbl_sf")
test_gt %>% arrange(id)

6 augment.gt_dapc

augment.gt_dapc Augment data with information from a gt_dapc object

Description

Augment for gt_dapc accepts a model object and a dataset and adds scores to each observation
in the dataset. Scores for each component are stored in a separate column, which is given name
with the pattern ".fittedLD1", ".fittedLD2", etc. For consistency with broom::augment.prcomp, a
column ".rownames" is also returned; it is a copy of ’id’, but it ensures that any scripts written for
data augmented with broom::augment.prcomp will work out of the box (this is especially helpful
when adapting plotting scripts).

Usage
S3 method for class 'gt_dapc'
augment(x, data = NULL, k = NULL, ...)
Arguments
X A gt_dapc object returned by gt_dapc().
data the gen_tibble used to run the PCA.
k the number of components to add

Not used. Needed to match generic signature only.

Value

A gen_tibble containing the original data along with additional columns containing each observa-
tion’s projection into PCA space.

See Also

gt_dapc() gt_dapc_tidiers

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)
Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > @)

lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA and run DAPC

augment_gt_pca 7

pca <- gt_pca_partialSVD(lobsters)
populations <- as.factor(lobsters$population)
dapc_res <- gt_dapc(pca, n_pca = 6, n_da = 2, pop = populations)

Augment the gen_tibble with the DAPC scores
augment (dapc_res, data = lobsters, k = 2)

augment_gt_pca Augment data with information from a gt_pca object

Description

Augment for gt_pca accepts a model object and a dataset and adds scores to each observation in
the dataset. Scores for each component are stored in a separate column, which is given name with
the pattern "fittedPC1", ".fittedPC2", etc. For consistency with broom::augment.prcomp, a column
".rownames" is also returned; it is a copy of ’id’, but it ensures that any scripts written for data
augmented with broom::augment.prcomp will work out of the box (this is especially helpful when
adapting plotting scripts).

Usage
S3 method for class 'gt_pca'
augment(x, data = NULL, k = NULL, ...)
Arguments
X A gt_pca object returned by one of the gt_pca_* functions.
data the gen_tibble used to run the PCA.
k the number of components to add

Not used. Needed to match generic signature only.

Value
A gen_tibble containing the original data along with additional columns containing each observa-
tion’s projection into PCA space.

See Also

gt_pca_autoSVD() gt_pca_tidiers

8 augment_loci

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("”lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > @)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object
pca <- gt_pca_partialSVD(lobsters)

Augment the gen_tibble with PCA scores
augment(pca, data = lobsters)

Adjust the number of components to add
augment(pca, data = lobsters, k = 2)

augment_loci Augment the loci table with information from a analysis object

Description

augment_loci add columns to the loci table of a gen_tibble related to information from a given

analysis.
Usage
augment_loci(x, data, ...)
Arguments
X An object returned by one of the gt_ functions (e.g. gt_pca()).
data the gen_tibble used to run the PCA.
Additional parameters passed to the individual methods.
Value

A loci tibble with additional columns. If data is missing, a tibble of the information, with a column
.rownames giving the loci names.

augment_loci_gt _pca 9

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata”, "lobster”, "lobster.bed", package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > 0)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA
pca <- gt_pca_partialSVD(lobsters)

Augment the gen_tibble with the PCA scores
augment_loci(pca, data = lobsters)

augment_loci_gt_pca Augment the loci table with information from a gt_pca object

Description

Augment for gt_pca accepts a model object and a gen_tibble and adds loadings for each locus
to the loci table. Loadings for each component are stored in a separate column, which is given
name with the pattern ".loadingPC1", ".loadingPC2", etc. If data is missing, then a tibble with the
loadings is returned.

Usage
S3 method for class 'gt_pca'
augment_loci(x, data = NULL, k = NULL, ...)
Arguments
X A gt_pca object returned by one of the gt_pca_x* functions.
data the gen_tibble used to run the PCA.
k the number of components to add

Not used. Needed to match generic signature only.

Value

A gen_tibble with a loadings added to the loci tibble (accessible with show_loci(). If data is
missing, a tibble of loadings.

10 augment_q_matrix

See Also

gt_pca_autoSVD() gt_pca_tidiers

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > 0)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA
pca <- gt_pca_partialSVD(lobsters)

Augment the gen_tibble with the PCA scores
augment_loci(pca, data = lobsters)

augment_qg_matrix Augment data with information from a q_matrix object

Description

Augment for q_matrix accepts a model object and a dataset and adds Q values to each observa-
tion in the dataset. Q values are stored in separate columns, which is given name with the pat-
tern ".Q1",".Q2", etc. For consistency with broom::augment.prcomp, a column ".rownames" is
also returned; it is a copy of ’id’, but it ensures that any scripts written for data augmented with
broom::augment.prcomp will work out of the box (this is especially helpful when adapting plotting

scripts).
Usage
S3 method for class 'g_matrix'
augment(x, data = NULL, ...)
Arguments
X A g_matrix object
data the gen_tibble used to run the clustering algorithm

Not used. Needed to match generic signature only.

autoplot.gt_cluster_pca 11

Value

A gen_tibble containing the original data along with additional columns containing each observa-
tion’s Q values.

Examples

run the example only if we have the package installed
if (requireNamespace("LEA", quietly = TRUE)) {
example_gt <- load_example_gt("gen_tbl")

Create a gt_admix object

admix_obj <- example_gt %>% gt_snmf(k = 1:3, project = "force")

Extract a Q matrix
g_mat_k3 <- get_qg_matrix(admix_obj, k = 3, run = 1)

Augment the gen_tibble with Q values
augment (g_mat_k3, data = example_gt)

autoplot.gt_cluster_pca
Autoplots for gt_cluster_pca objects

Description

For gt_cluster_pca, autoplot produces a plot of a metric of choice (BIC’, AIC’ or "WSS’)
against the number of clusters (k). This plot is can be used to infer the best value of k, which
corresponds to the smallest value of the metric (the minimum in an elbow’ shaped curve). In some
cases, there is not "elbow’ and the metric keeps decreasing with increasing k; in such cases, it is
customary to choose the value of k at which the decrease in the metric reaches as plateau. For a
programmatic way of choosing k, use gt_cluster_pca_best_k().

Usage
S3 method for class 'gt_cluster_pca'
autoplot(object, metric = c("BIC", "AIC", "WSS"), ...)
Arguments
object an object of class gt_dapc
metric the metric to plot on the y axis, one of 'BIC’, *AIC’, or *"WSS’ (with sum of
squares)

not currently used.

Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

12

Value

a ggplot2 object

Examples

Create a gen_tibble of lobster genotypes

bed_file <-

autoplot.gt_dapc

system.file("extdata”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),

quiet = TRUE
)

Remove monomorphic loci and impute

lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > @)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object

pca <- gt_pca_partialSVD(lobsters)

Run clustering on the first 10 PCs
cluster_pca <- gt_cluster_pca(

X = pca,
n_pca = 10,

k_clusters = c(1, 5),

method = "kmeans”,
n_iter = 1e5,
n_start = 10,
quiet = FALSE

)

Autoplot BIC

autoplot(cluster_pca, metric = "BIC")

Autoplot AIC

autoplot(cluster_pca, metric = "AIC")

Autoplot WSS

autoplot(cluster_pca, metric = "WSS")

autoplot.gt_dapc

Autoplots for gt_dapc objects

Description

For gt_dapc, the following types of plots are available:

* screeplot: a plot of the eigenvalues of the discriminant axes

* scores a scatterplot of the scores of each individual on two discriminant axes (defined by 1d)

autoplot.gt_dapc 13

* loadings a plot of loadings of all loci for a discriminant axis (chosen with 1d)

* components a bar plot showing the probability of assignment to each cluster

Usage
S3 method for class 'gt_dapc'
autoplot(
object,
type = c("screeplot”, "scores”, "loadings", "components"),
1d = NULL,
group = NULL,
n_col =1,
)
Arguments
object an object of class gt_dapc
type the type of plot (one of "screeplot”, "scores”, "loadings", and "components")
1d the principal components to be plotted: for scores, a pair of values e.g. c(1,2);
for loadings either one or more values.
group a vector of group memberships to order the individuals in "components" plot. If
NULL, the clusters used for the DAPC will be used.
n_col for loadings plots, if multiple LD axis are plotted, how many columns should
be used.
not currently used.
Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot?2 to produce publication ready plots.

Value

a ggplot2 object

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > @)
lobsters <- gt_impute_simple(lobsters, method = "mode")

14 autoplot.qc_report_indiv

Create PCA and run DAPC

pca <- gt_pca_partialSVD(lobsters)

populations <- as.factor(lobsters$population)

dapc_res <- gt_dapc(pca, n_pca = 6, n_da = 2, pop = populations)

Screeplot
autoplot(dapc_res, type = "screeplot”)

Scores plot
autoplot(dapc_res, type = "scores”, 1d = c(1, 2))

Loadings plot
autoplot(dapc_res, type = "loadings”, 1d = 1)

Components plot
autoplot(dapc_res, type = "components”, group = populations)

autoplot.qc_report_indiv
Autoplots for qc_report_indiv objects

Description
For qc_report_indiv, the following types of plots are available:

* scatter: aplot of missingness and observed heterozygosity within individuals.
* relatedness: a histogram of paired kinship coefficients

* histogram: for gen_tibbles containing pseudohaploid data, a histogram of missingness, split

by ploidy.
Usage
S3 method for class 'qc_report_indiv'
autoplot(
object,
type = c("scatter"”, "relatedness”, "histogram”),

miss_threshold = 0.05,
kings_threshold = NULL,

)
Arguments
object an object of class qc_report_indiv
type the type of plot (scatter,relatedness,histogram)

miss_threshold a threshold for the accepted rate of missingness within individuals

autoplot.qc_report_loci 15

kings_threshold
an optional numeric, a threshold of relatedness for the sample

not currently used.

Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

Value

a ggplot2 object

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata”, "lobster"”, "lobster.bed", package = "tidypopgen")
example_gt <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)

Create QC report for individuals
indiv_report <- example_gt %>% qc_report_indiv()

Autoplot missingness and observed heterozygosity
autoplot(indiv_report, type = "scatter”, miss_threshold = 0.1)

Create QC report with kinship filtering
indiv_report_rel <-
example_gt %>% qc_report_indiv(kings_threshold = "second")

Autoplot relatedness
autoplot(indiv_report_rel, type = "relatedness”, kings_threshold = "second")

autoplot.qc_report_loci
Autoplots for qc_report_loci objects

Description

For qc_report_loci, the following types of plots are available:

* overview: an UpSet plot, giving counts of snps over the threshold for missingness, minor
allele frequency, and Hardy-Weinberg equilibrium P-value, and visualising the interaction
between these

16 autoplot.qc_report_loci

¢ all: afour panel plot, containingmissing high maf,missing low maf, hwe, and significant hwe
plots
* missing: a histogram of proportion of missing data

* missing low maf: a histogram of the proportion of missing data for snps with low minor
allele frequency

* missing high maf:a histogram of the proportion of missing data for snps with high minor
allele frequency

» maf: a histogram of minor allele frequency

* hwe: a histogram of HWE exact test p-values

e significant hwe: a histogram of significant HWE exact test p-values

Usage
S3 method for class 'qc_report_loci'
autoplot(
object,
type = c("overview"”, "all"”, "missing”, "missing low maf"”, "missing high maf", "maf",
"hwe", "significant hwe"),

maf_threshold = 0.05,
miss_threshold = 0.01,

hwe_p = 0.01,
)
Arguments
object an object of class qc_report_loci
type the type of plot (one of overview, all,missing, missing low maf,missing high maf,

maf, hwe, and significant hwe)
maf_threshold default 0.05, a threshold for the accepted rate of minor allele frequency of loci
miss_threshold default 0.01, a threshold for the accepted rate of missingness per loci
hwe_p default 0.01, a threshold of significance for Hardy-Weinberg exact p-values

not currently used.

Details
autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

Value

a ggplot2 object

autoplot_gt_admix

Examples

Create a gen_tibble
bed_file <-
system.file("extdata”, "related”, "families.bed"”, package = "tidypopgen")
example_gt <- gen_tibble(bed_file,
backingfile = tempfile("families"),
quiet = TRUE,
valid_alleles = c("1", "2")
)

loci_report <- example_gt %>% qc_report_loci()

Plot the QC report overview
autoplot(loci_report, type = "overview")

Plot the QC report all
autoplot(loci_report, type = "all")

Plot missing data
autoplot(loci_report, type = "missing”)

Plot missing with low maf
autoplot(loci_report, type = "missing low maf”, maf_threshold = 0.05)

Plot missing with high maf
autoplot(loci_report, type = "missing high maf"”, maf_threshold = 0.05)

Plot maf
autoplot(loci_report, type = "maf"”, maf_threshold = 0.05)

Plot hwe
autoplot(loci_report, type = "hwe”, hwe_p = 0.01)

Plot significant hwe
autoplot(loci_report, type = "significant hwe"”, hwe_p = 0.01)

autoplot_gt_admix Autoplots for gt_admix objects

Description
For gt_admix, the following types of plots are available:

e cv: the cross-validation error for each value of k
* barplot a standard barplot of the admixture proportions

Usage

S3 method for class 'gt_admix'
autoplot(object, type = c("cv", "barplot"”), k = NULL, run = NULL, ...)

18 autoplot_gt_admix

Arguments
object an object of class gt_admixture
type the type of plot (one of "cv", and "barplot™)
k the value of k to plot (for barplot type only) param repeat the repeat to plot (for
barplot type only)
run the run to plot (for barplot type only)
additional arguments to be passed to autoplot method for q_matrices autoplot_q_matrix(),
used when type is barplot.
Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

This autoplot will automatically rearrange individuals according to their id and any grouping vari-
ables if an associated ’data’ gen_tibble is provided. To avoid any automatic re-sorting of individuals,
set arrange_by_group and arrange_by_indiv to FALSE. See autoplot.q_matrix for further
details.

Value

a ggplot2 object

Examples

Read example gt_admix object
admix_obj <-
readRDS(system.file("extdata”, "anolis", "anole_adm_k3.rds",
package = "tidypopgen"
))
Cross-validation plot
autoplot(admix_obj, type = "cv")

Basic barplot
autoplot(admix_obj, k = 3, run = 1, type = "barplot"”)

Barplot with individuals arranged by Q proportion

(using additional arguments, see ~“autoplot.g_matrix™ for details)

autoplot(admix_obj,
k =3, run = 1, type = "barplot”, annotate_group = TRUE,
arrange_by_group = TRUE, arrange_by_indiv = TRUE,
reorder_within_groups = TRUE

)

autoplot_gt_pca 19

autoplot_gt_pca Autoplots for gt_pca objects

Description

For gt_pca, the following types of plots are available:
» screeplot: a plot of the eigenvalues of the principal components (currently it plots the sin-
gular value)

* scores a scatterplot of the scores of each individual on two principal components (defined by
pc)

* loadings a plot of loadings of all loci for a given component (chosen with pc)

Usage

S3 method for class 'gt_pca'

autoplot(object, type = c("screeplot”, "scores”, "loadings"), k = NULL, ...)
Arguments

object an object of class gt_pca

type the type of plot (one of "screeplot”, "scores" and "loadings")

k the principal components to be plotted: for scores, a pair of values e.g. c(1,2);

for loadings either one or more values.

not currently used.

Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-
ommend that you use ggplot2 to produce publication ready plots.

Value

a ggplot2 object

Examples

library(ggplot2)
Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata”, "lobster”, "lobster.bed", package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("”lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute

20 autoplot_gt_pcadapt

lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > 0)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object
pca <- gt_pca_partialSVD(lobsters)

Screeplot
autoplot(pca, type = "screeplot"”)

Scores plot
autoplot(pca, type = "scores")

Colour by population
autoplot(pca, type = "scores"”) + aes(colour = lobsters$population)

Scores plot of different components
autoplot(pca, type = "scores”, k = c(1, 3)) +
aes(colour = lobsters$population)

autoplot_gt_pcadapt Autoplots for gt_pcadapt objects

Description

For gt_pcadapt, the following types of plots are available:

* gq: a quantile-quantile plot of the p-values from pcadapt (wrapping bigsnpr

* manhattan a manhattan plot of the p-values from pcadapt (wrapping bigsnpr

Usage

S3 method for class 'gt_pcadapt'

autoplot(object, type = c("qq”, "manhattan"), ...)
Arguments

object an object of class gt_pcadapt

type the type of plot (one of "qq", and "manhattan")

::snp_qa())
::snp_manhattan())

further arguments to be passed to bigsnpr: :snp_qq() orbigsnpr: :snp_manhattan().

Details

autoplot produces simple plots to quickly inspect an object. They are not customisable; we rec-

ommend that you use ggplot2 to produce publication ready plots.

Value

a ggplot2 object

autoplot_q_matrix 21

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("”lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > @)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object
pca <- gt_pca_partialSVD(lobsters)

Create a gt_pcadapt object
pcadapt_obj <- gt_pcadapt(lobsters, pca, k = 2)

Plot the p-values from pcadapt
autoplot(pcadapt_obj, type = "qq")

Plot the manhattan plot of the p-values from pcadapt
autoplot(pcadapt_obj, type = "manhattan”)

autoplot_qg_matrix Autoplots for q_matrix objects

Description

This autoplot will automatically rearrange individuals according to their id and any grouping vari-
ables if an associated *data’ gen_tibble is provided. To avoid any automatic re-sorting of individuals,
set arrange_by_group and arrange_by_indiv to FALSE.

Usage

S3 method for class 'q_matrix'
autoplot(
object,
data = NULL,
annotate_group = TRUE,
arrange_by_group = TRUE,
arrange_by_indiv = TRUE,
reorder_within_groups = FALSE,

22 autoplot_q_matrix
Arguments

object A Q matrix object (as returned by q_matrix()).

data An associated tibble (e.g. a gen_tibble), with the individuals in the same order

as the data used to generate the Q matrix

annotate_group Boolean determining whether to annotate the plot with the group information

arrange_by_group
Boolean determining whether to arrange the individuals by group. If the group-
ing variable in the gen_tibble or the metadata of the gt_admixt object is a
factor, the data will be ordered by the levels of the factor; else it will be ordered
alphabetically.

arrange_by_indiv
Boolean determining whether to arrange the individuals by their individual id
(if arrange_by_group is TRUE, they will be arranged by group first and then by
individual id, i.e. within each group). If id in the get_tibble or the metadata
of the gt_admix object is a factor, it will be ordered by the levels of the factor;
else it will be ordered alphabetically.

reorder_within_groups
Boolean determining whether to reorder the individuals within each group based
on their ancestry proportion (note that this is not advised if you are making
multiple plots, as you would get a different order for each plot!). If TRUE,
annotate_group must also be TRUE.

not currently used.

Value

a barplot of individuals, coloured by ancestry proportion

Examples

Read example gt_admix obejct
admix_obj <-
readRDS(system.file("extdata”, "anolis”, "anole_adm_k3.rds",
package = "tidypopgen”
D)

Extract a Q matrix
g_mat_k3 <- get_qg_matrix(admix_obj, k = 3, run = 1)

Basic autoplot
autoplot(g_mat_k3, annotate_group = FALSE, arrange_by_group = FALSE)

To arrange individuals by group and by Q proportion
autoplot(g_mat_k3,
annotate_group = TRUE, arrange_by_group = TRUE,
arrange_by_indiv = TRUE, reorder_within_groups = TRUE

)

c.gt_admix 23

c.gt_admix Combine method for gt_admix objects

Description

Combine method for gt_admix objects

Usage
S3 method for class 'gt_admix'
c(..., match_attributes = TRUE)
Arguments

A list of gt_admix objects

match_attributes

boolean, determining whether all attributes (id, group and algorithm) of the
gt_admix objects to be combined must be an exact match (TRUE, the default),
or whether non-matching attributes should be ignored (FALSE)

Value

A gt_admix object with the combined data

Examples

run the example only if we have the package installed
if (requireNamespace("LEA", quietly = TRUE)) {
example_gt <- load_example_gt("gen_tbl")

Create a gt_admix object
admix_obj <- example_gt %>% gt_snmf(k = 1:3, project = "force")

Create a second gt_admix object
admix_obj2 <- example_gt %>% gt_snmf(k = 2:4, project = "force")

Combine the two gt_admix objects
new_admix_obj <- c(admix_obj, admix_obj2)
summary (new_admix_obj)

24 count_loci

cbind.gen_tbl Combine a gen_tibble to a data.frame or tibble by column

Description

A cbind() method to merge gen_tibble objects with data.frames and normal tibbles. Whilst this
works, it is not ideal as it does not check the order of the tables, and we suggest that you use
dplyr::left_join() instead. Note that cbind will not combine two gen_tibbles (i.e. it will
NOT combine markers for the same individuals)

Usage
S3 method for class 'gen_tbl'
cbind(..., deparse.level = 1)
Arguments

a gen_tibble and a data.frame or tibble

deparse.level an integer controlling the construction of column names. See cbind for details.

Value

agen_tibble

Examples

example_gt <- load_example_gt("gen_tbl")

Create a dataframe to combine with the gen_tibble
d_f: <- data.frame(region = C(”A", "A”, “B”, an’ eru’ nBuy uBu))

Combine the gen_tibble with the dataframe
example_gt <- cbind(example_gt, df)

count_loci Count the number of loci in a gen_tibble

Description

Count the number of loci in gen_tibble (or directly from its genotype column).

distruct_colours 25

Usage

count_loci(.x, ...)

S3 method for class 'tbl_df'
count_loci(.x, ...)

S3 method for class 'vctrs_bigSNP'

count_loci(.x, ...)
Arguments
X agen_tibble, ora vector of class vetrs_bigSNP (usually the genotype column

of a gen_tibble object).

currently unused.

Value

the number of loci

Examples

example_gt <- load_example_gt("gen_tbl")

example_gt %>% count_loci()

distruct_colours Distruct colours

Description

Colours in the palette used by distruct

Usage

distruct_colours

Format

A vector of 60 hex colours

26

filter.grouped_gen_tbl

filter.gen_tbl Tidyverse methods for gt objects

Description

A filter method for gen_tibble objects

Usage
S3 method for class 'gen_tbl'
filter(..., deparse.level = 1)
Arguments

a gen_tibble and a data.frame or tibble

deparse.level an integer controlling the construction of column names.

Value

agen_tibble

Examples

test_gt <- load_example_gt("gen_tbl")
test_gt %>% filter(id %in% c("a", "c"))

filter.grouped_gen_tbl
A filter method for grouped gen_tibble objects

Description

A filter method for grouped gen_tibble objects

Usage
S3 method for class 'grouped_gen_tbl'
filter(..., deparse.level = 1)
Arguments

a gen_tibble and a data.frame or tibble

deparse.level an integer controlling the construction of column names.

filter_high_relatedness 27

Value

a grouped gen_tibble

Examples

test_gt <- load_example_gt("grouped_gen_tbl")
test_gt %>% filter(id %in% c("a", "c"))

test_gt <- load_example_gt("grouped_gen_tbl_sf")
test_gt %>% filter(id %in% c("a", "c"))

filter_high_relatedness
Filter individuals based on a relationship threshold

Description

This function takes a matrix of x by y individuals containing relatedness coefficients and returns the
maximum set of individuals that contains no relationships above the given threshold.

Usage

filter_high_relatedness(
matrix,
.x = NULL,
kings_threshold = NULL,
verbose = FALSE

)

Arguments
matrix a square symmetric matrix of individuals containing relationship coefficients
X agen_tibble object

kings_threshold
a threshold over which

verbose boolean whether to report to screen

Value

a list where "1’ is individual ID’s to retain, 2’ is individual ID’s to remove, and ’3’ is a boolean
where individuals to keep are TRUE and individuals to remove are FALSE

28 find_duplicated_loci

Examples

example_gt <- load_example_gt("gen_tbl")

Calculate relationship matrix
king_matrix <- example_gt %>% pairwise_king(as_matrix = TRUE)

Filter individuals with threshold above 0.2
filter_high_relatedness(king_matrix, example_gt, kings_threshold = 0.2)

find_duplicated_loci Find duplicates in the loci table

Description

This function finds duplicated SNPs by checking the positions within each chromosome. It can
return a list of duplicated SNPs or a logical value indicating whether there are any duplicated loci.

Usage

find_duplicated_loci(.x, error_on_false = FALSE, list_duplicates = TRUE, ...)
Arguments

X a vector of class vetrs_bigSNP (usually the genotype column of a gen_tibble

object), or a gen_tibble.

error_on_false logical, if TRUE an error is thrown if duplicated loci are found.
list_duplicates
logical, if TRUE returns duplicated SNP names.

other arguments passed to specific methods.

Value

If list_duplicates is TRUE, returns a character vector of duplicated loci names (character(0)
when none). If 1ist_duplicates is FALSE, returns TRUE when no duplicates exist and FALSE
when duplicates are present. If error_on_false is TRUE and duplicates exist, an error is thrown.

Examples

example_gt <- load_example_gt("gen_tbl")
show_loci(example_gt) <- test_loci <- data.frame(
big_index = c(1:6),
name = paste@("rs”, 1:6),
chromosome = paste@("chr”, c(1, 1, 1, 1, 1, 1)),
position = as.integer(c(3, 3, 5, 65, 343, 46)),
genetic_dist = as.double(rep(0, 6)),
allele_ref = c("A", "T", "C", "G", "C", "T"),
allele_alt = c("T", "C", NA, "C", "G", "A")

gen_tibble

show_loci(example_gt)

Find which loci are duplicated
example_gt %>% find_duplicated_loci()

gen_tibble Constructor for a gen_tibble

Description

A gen_tibble stores genotypes for individuals in a tidy format. DESCRIBE here the format

Usage

gen_tibble(
X’

valid_alleles = c("A", "T", "C", "G"),
missing_alleles = c("0", "."),
backingfile = NULL,
allow_duplicates = FALSE,
quiet = FALSE

)

S3 method for class 'character'
gen_tibble(
X,
parser = c("cpp”, "vcfR"),
n_cores = 1,
chunk_size = NULL,
valid_alleles = c("A", "T", "C", "G"),
missing_alleles = c("0", "."),
backingfile = NULL,
allow_duplicates = FALSE,
quiet = FALSE
)

S3 method for class 'matrix'
gen_tibble(

X,
indiv_meta,
loci,

ploidy = 2,

valid_alleles = c("A", "T", "C", "G"),

30

gen_tibble

missing_alleles = c("0", "."),

backingfile =

NULL,

allow_duplicates = FALSE,

quiet = FALSE

Arguments

X

valid_alleles
missing_alleles

backingfile

can be:

* astring giving the path to a PLINK BED or PED file. The associated BIM
and FAM files for the BED, or MAP for PED are expected to be in the same
directory and have the same file name.

* a string giving the path to a RDS file storing a bigSNP object from the
bigsnpr package (usually created with bigsnpr: :snp_readBed())

* astring giving the path to a vcf file. Only biallelic SNPs will be considered.

* astring giving the path to a packedancestry .geno file. The associated .ind
and .snp files are expected to be in the same directory and share the same
file name prefix.

* agenotype matrix of dosages (0, 1, 2, NA) giving the dosage of the alternate
allele.

if x is the name of a vcf file, additional arguments passed to vcfR: : read.vcfR().
Otherwise, unused.

a vector of valid allele values; it defaults to "A’,’T’, 'C’ and ’G’.

a vector of values in the BIM file/loci dataframe that indicate a missing value for
the allele value (e.g. when we have a monomorphic locus with only one allele).
It defaults to ’0” and ’.’ (the same as PLINK 1.9).

the path, including the file name without extension, for backing files used to
store the data (they will be given a .bk and .RDS automatically). This is not
needed if x is already an .RDS file. If x is a.BED or a VCF file and backingfile
is left NULL, the backing file will be saved in the same directory as the bed or
vcf file, using the same file name but with a different file type (.bk rather than
.Jbed or .vcf). If x is a genotype matrix and backingfile is NULL, then a
temporary file will be created (but note that R will delete it at the end of the
session!)

allow_duplicates

quiet

parser

n_cores

logical. If TRUE, the tibble will allow duplicated loci (those with genomic
coordinate (chromosome + position) or locus name appearing more than once).
If FALSE, an error will be thrown if duplicated loci are found. These validations
run before backing files are saved. Default is FALSE.

provide information on the files used to store the data

the name of the parser used for VCF, either "cpp" to use a fast C++ parser (the
default), or "vcfR" to use the R package vcfR. The latter is slower but more
robust; if "cpp" gives an error, try using "vcfR" in case your VCF has an unusual
structure.

the number of cores to use for parallel processing

gen_tibble
chunk_size

indiv_meta

loci

ploidy

Details

31

the number of loci or individuals (depending on the format) processed at a time
(currently used if x is a vcf with parser "vcfR")

a list, data.frame or tibble with compulsory columns ’id” and ’population’, plus
any additional metadata of interest. This is only used if x is a genotype matrix.
Otherwise this information is extracted directly from the files.

a data.frame or tibble, with compulsory columns 'name’, ’chromosome’, and
“position’,’ genetic_dist’, ’allele_ref” and ’allele_alt’. This is only used if x is a
genotype matrix. Otherwise this information is extracted directly from the files.
the ploidy of the samples (either a single value, or a vector of values for mixed

ploidy). Only used if creating a gen_tibble from a matrix of data; otherwise,
ploidy is determined automatically from the data as they are read.

» VCF files: the fast cpp parser is used by default. Both cpp and vcfR parsers attempt to estab-
lish ploidy from the first variant; if that variant is found in a sex chromosome (or mtDNA),
the parser will fail with ’Error: a genotype has more than max_ploidy alleles...”. To suc-
cessful import such a VCF, change the order of variants so that the first chromosome is an
autosome using a tool such as vcftools. Currently, only biallelic SNPs are supported. If
haploid variants (e.g. sex chromosomes) are included in the VCF, they are not transformed
into homozygous calls. Instead, reference alleles will be coded as 0 and alternative alleles will
be coded as 1.

* packedancestry files: When loading packedancestry files, missing alleles will be converted
from *X’ to NA

Value

an object of the class gen_tbl.

Note

Helper functions for accessing gen_tibble object attributes and checking gen_tibble ploidy can be
found in gt_helper_functions.R

Examples

Create a gen_tibble from a .bed file

bed_file <-

system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
gen_tibble(bed_file,
backingfile = tempfile("lobsters"),

quiet = TRUE
)
Create a gen_tibble from a .vcf file
vcf_path <-

system.file("extdata”, "anolis”,

"punctatus_t70_s10_n46_filtered.recode.vcf.gz",
package = "tidypopgen"”

32 get_p_matrix

)
gen_tibble(vcf_path, quiet = TRUE, backingfile = tempfile(”anolis_"))

Create a gen_tibble from a matrix of genotypes:
test_indiv_meta <- data.frame(
id = c("a", "b", "c"),
population = c("pop1”, "pop1"”, "pop2")
)
test_genotypes <- rbind(
c(l, 1, 0, 1, 1, @),
c(2, 1, 0, 0, 0, 9),
c(2, 2, 0,0, 1, 1)
)
test_loci <- data.frame(
name = paste@("rs”, 1:6),
chromosome = paste@("chr”, c(1, 1, 1, 1, 2, 2)),
position = as.integer(c(3, 5, 65, 343, 23, 456)),
genetic_dist = as.double(rep(0, 6)),
allele_ref = c("A", "T", "C", "G", "C", "T"),
allele_alt = c("T", "C", NA, "C", "G", "A")
)

gen_tibble(
X = test_genotypes,
loci = test_loci,
indiv_meta = test_indiv_meta,
valid_alleles = c("A", "T", "C", "G"),

quiet = TRUE
)
get_p_matrix Return a single P matrix from a gt_admix object
Description

This function retrieves a single P matrix from a gt_admix object based on the specified k value and

run number.
Usage
get_p_matrix(x, ..., k, run)
Arguments
X A gt_admix object containing P matrices
Not used
k The k value of the desired P matrix

run The run number of the desired P matrix

get_q_matrix 33

Value

A single P matrix from the gt_admix object

Examples

Read example gt_admix object
admix_obj <-
readRDS(system.file("extdata”, "anolis”, "anole_adm_k3.rds",
package = "tidypopgen”
»

Extract a P matrix
get_p_matrix(admix_obj, k = 3, run = 1)

get_g_matrix Return a single Q matrix from a gt_admix object

Description

This function retrieves a single Q matrix from a gt_admix object based on the specified k value and
run number.

Usage
get_qg_matrix(x, ..., k, run)
Arguments
X A gt_admix object containing multiple Q matrices
Not used
k The k value of the desired Q matrix
run The run number of the desired Q matrix
Value

A single Q matrix from the gt_admix object

Examples

Read example gt_admix obejct
admix_obj <-
readRDS(system.file("extdata”, "anolis”, "anole_adm_k3.rds",
package = "tidypopgen"”
»

Extract a Q matrix
get_g_matrix(admix_obj, k = 3, run = 1)

34 gt_add_sf

gt_add_sf Add an simple feature geometry to a gen_tibble

Description

gt_add_sf adds an active sf geometry column to a gen_tibble object. The resulting gen_tbl
inherits from sf and can be used with functions from the sf package. It is possible to either create
a sf::sfc geometry column from coordinates, or to provide an existing geometry column (which
will then become the active geometry for sf).

Usage

gt_add_sf(x, coords = NULL, crs = NULL, sfc_column = NULL)

Arguments
X agen_tibble object
coords a vector of length 2, giving the names of the x and y columns in x (i.e. the co-
ordinates, e.g. longitude and latitude). If coords is not provided, the geometry
column must be provided.
crs the coordinate reference system of the coordinates. If this is not set, it will be
set to the default value of sf::st_crs(4326).
sfc_column the name of an sf: : sfc column to be used as the geometry
Value

a gen_tibble object with an additional geometry column (and thus belonging also to sf class).

Examples

example_gt <- load_example_gt("gen_tbl")

Add some coordinates

example_gt <- example_gt %>% mutate(
longitude = c(0, 0, 2, 2, 0, 2, 2),
latitude = c(51, 51, 49, 49, 51, 41, 41)

)

Convert lat and long to sf:
example_gt <- gt_add_sf(x = example_gt, coords = c("longitude”, "latitude"))

Check class
class(example_gt)

gt_admixture 35

gt_admixture Run ADMIXTURE from R

Description

This function runs ADMIXTURE, taking either a gen_tibble or a file as an input. This is a wrapper
that runs ADMIXTURE from the command line, and reads the output into R. It can run multiple
values of k and multiple repeats for each k.

Usage
gt_admixture(
X,
K,
n_runs = 1,
crossval = FALSE,
n_cores = 1,
seed = NULL,
conda_env = "auto”
)
Arguments
X a gen_tibble or a character giving the path of the input PLINK bed file
k an integer giving the number of clusters
n_runs the number of runs for each k value (defaults to 1)
crossval boolean, should cross validation be used to assess the fit (defaults to FALSE)
n_cores number of cores (defaults to 1)
seed the seed for the random number generator (defaults to NULL)
conda_env the name of the conda environment to use. "none" forces the use of a local copy,
whilst any other string will direct the function to use a custom conda environ-
ment.
Details

This is a wrapper for the command line program ADMIXTURE. It can either use a binary present
in the main environment, or use a copy installed in a conda environment.

Value
an object of class gt_admix consisting of a list with the following elements:

* k the number of clusters
* Q a matrix with the admixture proportions

* P a matrix with the allele frequencies

36 gt_admix_reorder_q

* log a log of the output generated by ADMIXTURE (usually printed on the screen when
running from the command line)

¢ cv the cross validation error (if crossval is TRUE)

* loglik the log likelihood of the model

* id the id column of the input gen_tibble (if applicable)

* group the group column of the input gen_tibble (if applicable)

References

Alexander, D.H., Novembre, J. and Lange, K. (2009) ‘Fast model-based estimation of ancestry in
unrelated individuals’, Genome Research, 19(9), pp. 1655-1664. Available at: https://doi.org/10.1101/gr.094052.109.

Examples

run the example only if we have the package installed
Not run:
bed_file <-

system.file("extdata”, "lobster”, "lobster.bed", package = "tidypopgen")
lobsters <- gen_tibble(bed_file,

backingfile = tempfile("”lobsters"),

quiet = TRUE
)
lobsters <- lobsters %>% group_by(population)
gt_admixture(lobsters,

k = 2:3, seed = c(1, 2),

n_runs = 2, crossval = TRUE

)

End(Not run)

gt_admix_reorder_q Reorder the g matrices based on the grouping variable

Description

This function reorders the q matrices in a gt_admix object based on the grouping variable. This
is useful before plotting when the samples from each group are not adjacent to each other in the q
matrix.

Usage

gt_admix_reorder_q(x, group = NULL)

Arguments
X a gt_admix object, possibly with a grouping variable
group a character vector with the grouping variable (if there is no grouping variable

info in x)

gt_as_genind 37

Value

a gt_admix object with the q matrices reordered

Examples

run the example only if we have the package installed
if (requireNamespace("LEA", quietly = TRUE)) {
example_gt <- load_example_gt("gen_tbl")

Create a gt_admix object
admix_obj <- example_gt %>% gt_snmf(k = 1:3, project = "force")

The $id in admix_obj is the same as in the gen_tibble
admix_obj$id

Reorder the g matrices based on the grouping variable
admix_obj <- gt_admix_reorder_qg(admix_obj,

group = example_gt$population
)

The $id in admix_obj is now reordered according to the population
admix_obj$id

gt_as_genind Convert a gen_tibble to a genind object from adegenet

Description

This function converts a gen_tibble to a genind object from adegenet

Usage

gt_as_genind(x)

Arguments

X a gen_tibble, with population coded as "population’

Value

a genind object

38 gt_as_genlight

Examples
example_gt <- load_example_gt("gen_tbl")

Convert to genind
gt_genind <- example_gt %>% gt_as_genind()

Check object class
class(gt_genind)

gt_as_genlight Convert a gen_tibble fo a genlight object from adegenet

Description

This function converts a gen_tibble to a genlight object from adegenet

Usage

gt_as_genlight(x)

Arguments

X a gen_tibble, with population coded as "population’

Value

a genlight object

Examples

example_gt <- load_example_gt("gen_tbl")

Convert to genlight
gt_genlight <- example_gt %>% gt_as_genlight()

Check object class
class(gt_genlight)

gt_as_geno_lea 39

gt_as_geno_lea Convert a gentibble fo a .geno file for sNMF from the LEA package

Description

This function writes a .geno file from a gen_tibble. Unless a file path is given, a file with suffix
.geno is written in the same location as the .rds and .bk files that underpin the gen_tibble.

Usage

gt_as_geno_lea(x, file = NULL)

Arguments
X agen_tibble
file the .geno filename with a path, or NULL (the default) to use the location of the
backing files.
Details

NOTE that we currently read all the data into memory to write the file, so this function is not suitable
for very large datasets.

Value

the path of the .geno file

See Also

LEA: :geno()

Examples
example_gt <- load_example_gt("gen_tbl")

Write a geno file
gt_as_geno_lea(example_gt, file = paste@(tempfile(),

n

_example.geno"))

40 gt_as_plink

gt_as_hierfstat Convert a gen_tibble to a data.frame compatible with hierfstat

Description

This function converts a gen_tibble to a data.frame formatted to be used by hierfstat functions.

Usage

gt_as_hierfstat(x)

Arguments

X a gen_tibble, with population coded as "population’

Value
a data.frame with a column ’pop’ and further column representing the genotypes (with alleles re-
coded as 1 and 2)

Examples

example_gt <- load_example_gt("gen_tbl")

Convert to hierfstat format
gt_hierfstat <- example_gt %>% gt_as_hierfstat()

Check object class
class(gt_hierfstat)

gt_as_plink Export a gen_tibble object to PLINK bed format

Description

This function exports all the information of a gen_tibble object into a PLINK bed, ped or raw file
(and associated files, i.e. .bim and .fam for .bed; .fam for .ped).

Usage

gt_as_plink(
X,
file = NULL,
type = c("bed”, "ped”, "raw"),
overwrite = TRUE,
chromosomes_as_int = FALSE

gt_as_vcf 41

Arguments
X a gen_tibble object
file a character string giving the path to output file. If left to NULL, the output file
will have the same path and prefix of the backingfile.
type one of "bed", "ped" or "raw"
overwrite boolean whether to overwrite the file.

chromosomes_as_int
boolean whether to use the integer representation of the chromosomes

Details

If the gen_tibble has been read in from vcf format, family.ID in the resulting plink files will be the
same as sample.ID. If the gen_tibble has a grouping variable, this will be used as the family.ID in
the resulting plink files. NOTE that writing to bed has been optimised for speed, but writing to ped
or raw is slower, especially for large datasets.

Value

the path of the saved file

Examples

example_gt <- load_example_gt("gen_tbl")

Write a bed file
example_gt %>% gt_as_plink(type

"pbed"”, file = paste@(tempfile(), "_plink"))

Write a ped file
example_gt %>% gt_as_plink(type = "ped"”, file = paste@(tempfile(), "_plink"))

Write a raw file
example_gt %>% gt_as_plink(type

n

raw”, file = paste@(tempfile(), "_plink"))

gt_as_vcf Convert a gen_tibble to a VCF

Description

This function write a VCF from a gen_tibble.

Usage

gt_as_vcf(x, file = NULL, chunk_size = NULL, overwrite = FALSE)

42 gt_cluster_pca

Arguments
X a gen_tibble, with population coded as *population’
file the .vcf file name with a path, or NULL (the default) to use the location of the
backing files.
chunk_size the number of loci processed at a time. Automatically set if left to NULL
overwrite logical, should the file be overwritten if it already exists?
Value

the path of the .vcf file

Examples
example_gt <- load_example_gt("gen_tbl")

Write a vcf file
example_gt %>% gt_as_vcf()

gt_cluster_pca Run K-clustering on principal components

Description

This function implements the clustering procedure used in Discriminant Analysis of Principal Com-
ponents (DAPC, Jombart et al. 2010). This procedure consists in running successive K-means with
an increasing number of clusters (k), after transforming data using a principal component analysis
(PCA). For each model, several statistical measures of goodness of fit are computed, which allows to
choose the optimal k using the function gt_cluster_pca_best_k(). See details for a description
of how to select the optimal k and vignette("adegenet-dapc") for a tutorial.

Usage
gt_cluster_pca(
x = NULL,
n_pca = NULL,
k_clusters = c(1, round(nrow(x$u)/10)),
method = c("kmeans”, "ward"),

n_iter = 1e+05,
n_start = 10,
quiet = FALSE

gt_cluster_pca

Arguments
X
n_pca

k_clusters

method
n_iter
n_start

quiet

Value

43

a gt_pca object returned by one of the gt_pca_x* functions.
number of principal components to be fed to the LDA.

number of clusters to explore, either a single value, or a vector of length 2 giving
the minimum and maximum (e.g. 1:5). If left NULL, it will use 1 to the number
of pca components divided by 10 (a reasonable guess).

either ’kmeans’ or *ward’
number of iterations for kmeans (only used if method="kmeans")
number of starting points for kmeans (only used if method="kmeans")

boolean on whether to silence outputting information to the screen (defaults to
FALSE)

a gt_cluster_pca object, which is a subclass of gt_pca with an additional element ’cluster’, a list

with elements:

* 'method’ the clustering method (either kmeans or ward)

* 'n_pca’ number of principal components used for clustering

* 'k’ the k values explored by the function

* "WSS’ within sum of squares for each k
* "AIC’ the AIC for each k
* 'BIC’ the BIC for each k

* “groups’ a list, with each element giving the group assignments for a given k

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new

method for the analysis of genetically structured populations. BMC Genetics 11:94. doi:10.1186/1471-

2156-11-94

Examples

Create a gen_tibble of lobster genotypes

bed_file <-

system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),

quiet = TRUE

)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > @)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object

44 gt_cluster_pca_best_k

pca <- gt_pca_partialSVD(lobsters)

Run clustering on the first 10 PCs
gt_cluster_pca(

X = pca,
n_pca = 10,
k_clusters = c(1, 5),
method = "kmeans",
n_iter = 1e5,

n_start = 10,

quiet = FALSE

)

Alternatively, use method "ward”
gt_cluster_pca(

X = pca,

n_pca = 10,

k_clusters = c(1, 5),

method = "ward”,

quiet = FALSE

gt_cluster_pca_best_k Find the best number of clusters based on principal components

Description

This function selects the best k value based on a chosen metric and criterion. It is equivalent
to plotting the metric against the k values, and selecting the k that fulfills a given criterion (see
details for an explanation of each criterion). This function simply adds an element ’best_k’ to
the gt_cluster_pca returned by gt_cluster_pca(). The choice can be over-ridden simply by
assigning a different value to that element (e.g. for an object x and a desired k of 8, simply use
x$best_k <- 8)

Usage
gt_cluster_pca_best_k(
X’
stat = c("BIC", "AIC", "WSS"),
criterion = c("diffNgroup”, "min", "goesup”, "smoothNgoesup”, "goodfit"),
quiet = FALSE
)
Arguments
X a gt_cluster_pca object obtained with gt_cluster_pca()

stat a statistics, one of "BIC", "AIC" or "WSS"

gt_cluster_pca_best_k 45

non non non non

criterion one of "diffNgroup", "min", "goesup", "smoothNgoesup", "goodfit", see details
for a discussion of each approach.

quiet boolean on whether to silence outputting information to the screen (defaults to
FALSE)

Details

The analysis of data simulated under various population genetics models (see reference) suggested
an ad-hoc rule for the selection of the optimal number of clusters. First important result is that BIC
seems more efficient than AIC and WSS to select the appropriate number of clusters (see example).
The rule of thumb consists in increasing K until it no longer leads to an appreciable improvement
of fit (i.e., to a decrease of BIC). In the most simple models (island models), BIC decreases until
it reaches the optimal K, and then increases. In these cases, the best rule amounts to choosing the
lowest K. In other models such as stepping stones, the decrease of BIC often continues after the
optimal K, but is much less steep, so a change in slope can be taken as an indication of where the
best k lies.

This function provides a programmatic way to select k. Note that it is highly recommended to look
at the graph of BIC versus the numbers of clusters, to understand and validate the programmatic
selection. The criteria available in this function are:

» "diffNgroup": differences between successive values of the summary statistics (by default,
BIC) are split into two groups using a Ward’s clustering method (see ?hclust), to differentiate
sharp decrease from mild decreases or increases. The retained K is the one before the first
group switch. This criterion appears to work well for island/hierarchical models, and decently
for isolation by distance models, albeit with some instability. It can be confounded by an
initial, very sharp decrease of the test statistics. IF UNSURE ABOUT THE CRITERION TO
USE, USE THIS ONE.

* "min": the model with the minimum summary statistics (as specified by stat argument, BIC by
default) is retained. Is likely to work for simple island model, using BIC. It is likely to fail in
models relating to stepping stones, where the BIC always decreases (albeit by a small amount)
as K increases. In general, this approach tends to over-estimate the number of clusters.

» "goesup": the selected model is the K after which increasing the number of clusters leads to
increasing the summary statistics. Suffers from inaccuracy, since i) a steep decrease might
follow a small ’bump’ of increase of the statistics, and ii) increase might never happen, or
happen after negligible decreases. Is likely to work only for clear-cut island models.

* "smoothNgoesup": a variant of "goesup", in which the summary statistics is first smoothed
using a lowess approach. Is meant to be more accurate than "goesup" as it is less prone to
stopping to small bumps’ in the decrease of the statistics.

* "goodfit": another criterion seeking a good fit with a minimum number of clusters. This
approach does not rely on differences between successive statistics, but on absolute fit. It
selects the model with the smallest K so that the overall fit is above a given threshold.

Value

a ’gt_cluster_pca’ object with an added element ’best_k’

46 gt_dapc

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new
method for the analysis of genetically structured populations. BMC Genetics 11:94. doi:10.1186/1471-
2156-11-94

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata”, "lobster"”, "lobster.bed", package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > 0)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object
pca <- gt_pca_partialSVD(lobsters)

Run clustering on the first 10 PCs
cluster_pca <- gt_cluster_pca(

X = pca,
n_pca = 10,
k_clusters = c(1, 5),
method = "kmeans",

n_iter = 1e5,

n_start = 10,

quiet = FALSE
)

Find best K through minimum BIC
cluster_pca <- gt_cluster_pca_best_k(cluster_pca,

stat = "BIC",
criterion = "min”,
quiet = FALSE

)
Best K is stored in the object

cluster_pca$best_k

gt_dapc Discriminant Analysis of Principal Components for gen_tibble

Description

This function implements the Discriminant Analysis of Principal Components (DAPC, Jombart et
al. 2010). This method describes the diversity between pre-defined groups. When groups are

gt _dapc 47

unknown, use gt_cluster_pca() to infer genetic clusters. See ’details’ section for a succinct de-
scription of the method, and the vignette in the package adegenet ("adegenet-dapc") for a tutorial.

Usage

gt_dapc(x, pop = NULL, n_pca = NULL, n_da = NULL, loadings_by_locus = TRUE)

Arguments

X an object of class gt_pca, or its subclass gt_cluster_pca

pop either a factor indicating the group membership of individuals; or an integer
defining the desired kif xisa gt_cluster_pca; or NULL, if X’ isagt_cluster_pca
and contain an element "best_k’, usually generated with gt_cluster_pca_best_k(),
which will be used to select the clustering level.

n_pca number of principal components to be used in the Discriminant Analysis. If
NULL, k-1 will be used.

n_da an integer indicating the number of axes retained in the Discriminant Analysis
step.

loadings_by_locus
a logical indicating whether the loadings and contribution of each locus should
be stored (TRUE, default) or not (FALSE). Such output can be useful, but can
also create large matrices when there are a lot of loci and many dimensions.

Details

The Discriminant Analysis of Principal Components (DAPC) is designed to investigate the genetic
structure of biological populations. This multivariate method consists in a two-steps procedure.
First, genetic data are transformed (centred, possibly scaled) and submitted to a Principal Compo-
nent Analysis (PCA). Second, principal components of PCA are submitted to a Linear Discriminant
Analysis (LDA). A trivial matrix operation allows to express discriminant functions as linear com-
bination of alleles, therefore allowing one to compute allele contributions. More details about the
computation of DAPC are to be found in the indicated reference.

Results can be visualised with autoplot.gt_dapc(), see the help of that method for the available
plots. There are also gt_dapc_tidiers for manipulating the results. For the moment, this func-
tion returns objects of class adegenet: :dapc which are compatible with methods from adegenet;
graphical methods for DAPC are documented in adegenet::scatter.dapc (see ?scatter.dapc). This is
likely to change in the future, so make sure you do not rely on the objects remaining compatible.

This function aligns with the guidelines proposed by Thia (2023) for the standardized application
of DAPC to genotype data. Our default settings are designed to follow these recommendations, so
that the number of principal components (n_pca) defaults to the smaller of k-1 and the number of
available principal components (where & is the number of populations or clusters), and the number
of discriminant functions (n_da) is set to the minimum of k-1 and n_pca. The user can override
these defaults by specifying the n_pca and n_da arguments, but caution is advised when adjusting
n_pca to avoid potential overfitting. We recommend users consult these guidelines and consider
their individual dataset to ensure best practices.

Note that there is no current method to predict scores for individuals not included in the original
analysis. This is because we currently do not have a mechanism to store the pca information in the
object, and that is needed for prediction.

48 gt_dapc

Value

an object of class adegenet::dapc

References

Jombart T, Devillard S and Balloux F (2010) Discriminant analysis of principal components: a new

method for the analysis of genetically structured populations. BMC Genetics 11:94. doi:10.1186/1471-

2156-11-94 Thia, J. A. (2023). Guidelines for standardizing the application of discriminant analysis

of principal components to genotype data. Molecular Ecology Resources, 23, 523-538. https://doi.org/10.1111/1755-
0998.13706

See Also

gt_cluster_pca() gt_cluster_pca_best_k() adegenet: :dapc()

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("”lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > @)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object
pca <- gt_pca_partialSVD(lobsters)

Run DAPC on the “gt_pca” object, providing “pop~ as factor
populations <- as.factor(lobsters$population)
gt_dapc(pca, n_pca = 6, n_da = 2, pop = populations)

Run clustering on the first 10 PCs
cluster_pca <- gt_cluster_pca(

X = pca,
n_pca = 10,
k_clusters = c(1, 5),
method = "kmeans",

n_iter = 1e5,

n_start = 10,

quiet = FALSE
)

Find best k

cluster_pca <- gt_cluster_pca_best_k(cluster_pca,
stat = "BIC”,
criterion = "min"

gt_extract_f2

)

Run DAPC on the “gt_cluster_pca” object
gt_dapc(cluster_pca, n_pca

#
#

should be stored (TRUE, default) or not (FALSE). This information is
required to predict group membership of new individuals using predict, but
makes the object slightly bigger.

49

gt_extract_f2

Compute and store blocked f2 statistics for ADMIXTOOLS 2

Description

Compute and store blocked f2 statistics for ADMIXTOOLS 2

Usage

gt

_extract_f2(

X,

outdir = NULL,
blgsize = 0.05,
maxmem = 8000,
maxmiss = 0,

minmaf = @,

maxmaf = 0.5,

minac2 = FALSE,
outpop = NULL,
outpop_scale = TRUE,
transitions = TRUE,
transversions = TRUE,
overwrite = FALSE,

adjust_pseudohaploid = NULL,

fst = TRUE,

afprod = TRUE,
poly_only = c("f2"),
apply_corr = TRUE,
n_cores = 1,

quiet = FALSE

Arguments

X
outdir

blgsize

agen_tibble

Directory where data will be stored.

SNP block size in Morgan. Default is 0.05 (5 cM). If blgsize is 100 or greater,

it will be interpreted as base pair distance rather than centimorgan distance.

50

maxmem

maxmiss
minmaf
maxmaf

minac2

outpop

outpop_scale

transitions
transversions

overwrite

gt_extract_f2

Maximum amount of memory to be used. If the required amount of memory
exceeds maxmem, allele frequency data will be split into blocks, and the compu-
tation will be performed separately on each block pair. This doesn’t put a precise
cap on the amount of memory used (it used to at some point). Set this parameter
to lower values if you run out of memory while running this function. Set it to
higher values if this function is too slow and you have lots of memory.

Discard SNPs which are missing in a fraction of populations higher than maxmiss
Discard SNPs with minor allele frequency less than minmaf
Discard SNPs with minor allele frequency greater than maxmaf

Discard SNPs with allele count lower than 2 in any population (default FALSE).
This option should be set to TRUE when computing f3-statistics where one pop-
ulation consists mostly of pseudohaploid samples. Otherwise heterozygosity
estimates and thus f3-estimates can be biased. minac2 == 2 will discard SNPs
with allele count lower than 2 in any non-singleton population (this option is
experimental and is based on the hypothesis that using SNPs with allele count
lower than 2 only leads to biases in non-singleton populations). Note that while
the minac2 option discards SNPs with allele count lower than 2 in any popula-
tion, the qp3pop function will only discard SNPs with allele count lower than 2
in the first (target) population (when the first argument is the prefix of a geno-
type file; i.e. it is applied directly to a genotype file, not via precomputing {2
from a gen_tibble).

Keep only SNPs which are heterozygous in this population

Scale f2-statistics by the inverse outpop heterozygosity (1/(p*(1-p))). Pro-
viding outpop and setting outpop_scale to TRUE will give the same results as
the original gpGraph when the outpop parameter has been set, but it has the dis-
advantage of treating one population different from the others. This may limit
the use of these f2-statistics for other models.

Set this to FALSE to exclude transition SNPs

Set this to FALSE to exclude transversion SNPs

Overwrite existing files in outdir

adjust_pseudohaploid

fst

afprod

Genotypes of pseudohaploid samples are usually coded as @ or 2, even though
only one allele is observed. adjust_pseudohaploid ensures that the observed
allele count increases only by 1 for each pseudohaploid sample. If TRUE (de-
fault), samples that don’t have any genotypes coded as 1 among the first 1000
SNPs are automatically identified as pseudohaploid. This leads to slightly more
accurate estimates of f-statistics. Setting this parameter to FALSE treats all sam-
ples as diploid and is equivalent to the ADMIXTOOLS inbreed: NO option. Set-
ting adjust_pseudohaploid to an integer n will check the first n SNPs instead
of the first 1000 SNPs. NOW DEPRECATED, set the ploidy of the gen_tibble
with gt_pseudohaploid().

Write files with pairwise FST for every population pair. Setting this to FALSE
can make extract_f2 faster and will require less memory.

Write files with allele frequency products for every population pair. Setting this
to FALSE can make extract_f2 faster and will require less memory.

gt_from_genlight 51

poly_only Specify whether SNPs with identical allele frequencies in every population should
be discarded (poly_only = TRUE), or whether they should be used (poly_only
= FALSE). By default (poly_only = c("f2")), these SNPs will be used to com-
pute FST and allele frequency products, but not to compute f2 (this is the default
option in the original ADMIXTOOLS).

apply_corr Apply small-sample-size correction when computing f2-statistics (default TRUE)
n_cores Parallelize computation across n_cores cores.
quiet Suppress printing of progress updates

Value

SNP metadata (invisibly)

References

Maier R, Patterson N (2024). admixtools: Inferring demographic history from genetic data. R
package version 2.0.4, https://github.com/ugrmaie 1/admixtools.

This function prepares data for various ADMIXTOOLS 2 functions from the package ADMIXTOOLS
2. It takes a gen_tibble, computes allele frequencies and blocked f2-statistics, and writes the
results to outdir. It is equivalent to admixtools: :extract_f2().

Examples

bed_file <-
system.file("extdata”, "lobster”, "lobster.bed"”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("”lobsters"),
quiet = TRUE
)
lobsters <- lobsters %>% group_by(population)
f2_path <- tempfile()
gt_extract_f2(lobsters, outdir = f2_path, quiet = TRUE)
admixtools::f2_from_precomp(f2_path, verbose = FALSE)

gt_from_genlight Convert a genlight object from adegenet to a gen_tibble

Description

This function converts a genlight object from the adegenet package to a gen_tibble object

Usage
gt_from_genlight(x, backingfile = NULL, ...)

52 gt_get_file_names

Arguments
X A genlight object
backingfile the path, including the file name without extension, for backing files used to
store the data (they will be given a .bk and .rds automatically). If NULL (default),
backing files are placed in the temporary directory.
Additional arguments passed to gen_tibble().
Details

* Currently supports diploid genlight objects only (all values in @ploidy must be 2).

* Requires non-missing slots: loc.names, n.loc, loc.all, chromosome, position, ploidy,
ind.names. The pop slot is optional; if absent, the returned gen_tibble will omit the popula-
tion column.

Value

A gen_tibble object

Examples

Create a simple genlight object
x <- new("genlight",

list(
indivl = ¢(1, 1, 0, 1, 1, 0),
indiv2 = c(2, 1, 1, 0, 0, 0)
),

ploidy = c(2, 2),

loc.names = paste@("locus”, 1:6),

chromosome = c("chr1”, "chr1”, "chr2", "chr2", "chr3", "chr3"),
position = c(100, 200, 150, 250, 300, 400),

loc.all = c("A/T", "C/G", "G/C", "A/T", "T/C", "G/A"),

pop = c("pop1”, "pop2")

file <- paste0@(tempfile(), "gt_from_genlight")
Convert to gen_tibble
new_gt <- gt_from_genlight(x, backingfile = file)

gt_get_file_names Get the names of files storing the genotypes of a gen_tibble

Description

A function to return the names of the files used to store data in a gen_tibble. Specifically, this
returns the .rds file storing the big

gt_has_imputed 53

Usage

gt_get_file_names(x)

Arguments

X agen_tibble

Value

a character vector with the names and paths of the two files
Examples
example_gt <- load_example_gt("gen_tbl")

To retrieve the names of and paths to the .bk and .rds files use:
gt_get_file_names(example_gt)

gt_has_imputed Checks if a gen_tibble has been imputed

Description
This function checks if a dataset has been imputed. Note that having imputation does not mean that
the imputed values are used.

Usage

gt_has_imputed(x)

Arguments

X agen_tibble

Value

boolean TRUE or FALSE depending on whether the dataset has been imputed
Examples
example_gt <- load_example_gt("gen_tbl")

The initial gen_tibble contains no imputed values
example_gt %>% gt_has_imputed()

Now impute the gen_tibble
example_gt <- example_gt %>% gt_impute_simple()

54 gt_impute_simple

And we can check it has been imputed
example_gt %>% gt_has_imputed()

gt_impute_simple Simple imputation based on allele frequencies

Description

This function provides a very simple imputation algorithm for gen_tibble objects by using the
mode, mean or sampling from the allele frequencies. Each locus is imputed independently (and
thus linkage information is ignored).

Usage
gt_impute_simple(x, method = c("mode”, "mean®”, "random”), n_cores = 1)
Arguments
X a gen_tibble with missing data
method one of
* 'mode’: the most frequent genotype
* 'mean()’: the mean rounded to the nearest integer
* ‘random’: randomly sample a genotype based on the observed allele fre-
quencies
n_cores the number of cores to be used
Details

This function is a wrapper around bigsnpr: :snp_fastImputeSimple().

Value

a gen_tibble with imputed genotypes

See Also

bigsnpr::snp_fastImputeSimple () which this function wraps.

Examples

example_gt <- load_example_gt("gen_tbl")

Impute the gen_tibble
example_gt <- example_gt %>% gt_impute_simple()

And we can check it has been imputed
example_gt %>% gt_has_imputed()

gt_impute_xgboost

55

gt_impute_xgboost Imputation based XGBoost

Description

This function provides a simple imputation algorithm for gen_tibble objects based on local XG-

Boost models.

Usage

gt_impute_xgboost(

X

alpha = 1e-04,

size = 200,

p_train = 0.8,
n_cor = nrow(x),

seed = NA,
n_cores = 1,
append_error

Arguments
X
alpha

size
p_train
n_cor
seed

n_cores

append_error

Details

= TRUE

a gen_tibble with missing data
Type-I error for testing correlations. Default is 1e-4.

Number of neighbour SNPs to be possibly included in the model imputing this
particular SNP. Default is 200.

Proportion of non missing genotypes that are used for training the imputation
model while the rest is used to assess the accuracy of this imputation model.
Default is 0. 8.

Number of rows that are used to estimate correlations. Default uses them all.
An integer, for reproducibility. Default doesn’t use seeds.
the number of cores to be used

boolean, should the xgboost error estimates be appended as an attribute to the
genotype column of the gen_tibble. If TRUE (the default), a matrix of two rows
(the number of missing values, and the error estimate) and as many columns as
the number of loci will be appended to the gen_tibble. attr(missing_gt$genotypes,
"imputed_errors")

This function is a wrapper around bigsnpr: :snp_fastImpute(). The error rates from the xg-
boost, if appended, can be retrieved with attr(x$genotypes, "imputed_errors”) where x is the

gen_tibble.

56 gt_load

Value

a gen_tibble with imputed genotypes

See Also

bigsnpr::snp_fastImpute() which this function wraps.

Examples

example_gt <- load_example_gt("gen_tbl")

Impute the gen_tibble
example_gt <- example_gt %>% gt_impute_xgboost()

And we can check it has been imputed
example_gt %>% gt_has_imputed()

gt_load Load a gen_tibble

Description

Load a gen_tibble previously saved with gt_save (). If the .rds and . bk files have not been moved,
they should be found automatically. If they were moved, use reattach_to to point to the .rds file
(the .bk file needs to be in the same directory as the .rds file).

Usage

gt_load(file = NULL, reattach_to = NULL)

Arguments
file the file name, including the full path. If it does not end with .gz, the extension
will be added.
reattach_to the file name, including the full path, of the .rds file if it was moved. It assumes
that the .bk file is found in the same path. You should be able to leave this to
NULL unless you have moved the files.
Value

agen_tibble

See Also

gt_save()

gt_order_loci 57

Examples

example_gt <- load_example_gt("gen_tbl")

remove some individuals
example_gt_filtered <- example_gt %>% filter(id != "a")

save the filtered gen_tibble object

backing_files <- gt_save(example_gt_filtered,
file_name = paste@(tempfile(), "_example_filtered")

)

backing_files[1] contains the name of the saved .gt file
backing_files[1]

To load the saved gen_tibble object, use the path to the saved .gt file
reloaded_gt <- gt_load(backing_files[1])

And we have loaded the gt without individual "a"
reloaded_gt

gt_order_loci Order the loci table of a gen_tibble

Description

This function reorders the loci table so that positions within a chromosome are sequential. It also
re-saves the genotypes into a new file backed matrix with the new order, so that it can be used by
functions such as loci_ld_clump() and gt_pca_autoSVD(). If the loci table is already ordered,
the original gen_tibble is returned. This function will update the backingfiles of the gen_tibble
and return the gen_tibble object, use <- as per the example provided to ensure that the names of
the newly updated backingfiles are stored in the gen_tibble object.

Usage

gt_order_loci(
X,
use_current_table = FALSE,
ignore_genetic_dist = TRUE,
quiet = FALSE,

Arguments

. X agen_tibble

use_current_table
boolean, if FALSE (the default), the table will be reordered; if TRUE, then the
current loci table, which might have been reordered manually, will be used, but
only if the positions within each chromosome are sequential

58 gt _pca

ignore_genetic_dist

boolean to ignore the genetic distance when checking. Note that, if genetic_dist
are being ignored and they are not sorted, the function will set them to zero to
avoid problems with other software.

quiet boolean to suppress information about the files

other arguments

Value

A gen_tibble

Examples
example_gt <- load_example_gt("gen_tbl") %>% select_loci(c(1, 5, 2, 6, 4, 3))

Loci are in the wrong order
show_loci(example_gt)

Reorder the loci, ignoring genetic distance
example_gt_ordered <- gt_order_loci(example_gt, ignore_genetic_dist = TRUE)

Loci are now in the correct order
show_loci(example_gt_ordered)

gt_pca Principal Component Analysis for gen_tibble objects

Description

There are a number of PCA methods available for gen_tibble objects. They are mostly designed
to work on very large datasets, so they only compute a limited number of components. For smaller
datasets, gt_partialSVD allows the use of partial (truncated) SVD to fit the PCA; this method is
suitable when the number of individuals is much smaller than the number of loci. For larger dataset,
gt_randomSVD is more appropriate. Finally, there is a method specifically designed for dealing
with LD in large datasets, gt_autoSVD. Whilst this is arguably the best option, it is somewhat data

hungry, and so only suitable for very large datasets (hundreds of individuals with several hundred
thousands markers, or larger).

Details

NOTE: using gt _pca_autoSVD with a small dataset will likely cause an error, see man page for
details.

NOTE: monomorphic markers must be removed before PCA is computed. The error message ’Er-
ror: some variables have zero scaling; remove them before attempting to scale.” indicates that
monomorphic markers are present.

gt_pcadapt 59

gt_pcadapt pcadapt analysis on a gen_tibble object

Description

pcadapt is an algorithm that detects genetic markers under selection. It is based on the principal
component analysis (PCA) of the genotypes of the individuals. The method is described in Luu et
al. (2017). See the R package pcadapt, which provides extensive documentation and examples.

Usage

gt_pcadapt(x, pca, k, n_cores = 1)

Arguments
X A gen_tibble object.
pca agt_pcaobject, as returned by gt_pca_partialSVD() or gt_pca_randomSVD().
k Number of principal components to use in the analysis.
n_cores Number of cores to use.
Details

Internally, this function uses the snp_pcadapt function from the bigsnpr package.

Value

An object of subclass gt_pcadapt, a subclass of mhtest.

References

Luu, K., Bazin, E., Blum, M. G. B., & Francois, O. (2017). pcadapt: an R package for genome
scans for selection based on principal component analysis. Molecular Ecology Resources, 17(1),
67-77.

See Also

bigsnpr::snp_pcadapt () which this function wraps.

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)

60

gt_pca_autoSVD

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > @)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object
pca <- gt_pca_partialSVD(lobsters)

Create a gt_pcadapt object
gt_pcadapt(lobsters, pca, k = 2)

gt_pca_autoSVD PCA controlling for LD for gen_tibble objects

Description

Usage

This function performs Principal Component Analysis on a gen_tibble, using a fast truncated
SVD with initial pruning and then iterative removal of long-range LD regions. This function is a
wrapper for bigsnpr: :snp_autoSVD()

gt_pca_autoSVD(

X,

k =10,

fun_scaling = bigsnpr::snp_scaleBinom(),
thr_r2 = 0.2,
use_positions = TRUE,
size = 100/thr_r2,
roll_size = 50,
int_min_size = 20,
alpha_tukey = 0.05,
min_mac = 10,
max_iter = 5,

n_cores = 1,

verbose = TRUE,
total_var = TRUE

Arguments

a gen_tbl object

Number of singular vectors/values to compute. Default is 10. This algorithm
should be used to compute a few singular vectors/values.

fun_scaling Usually this can be left unset, as it defaults to bigsnpr: :snp_scaleBinom(),

which is the appropriate function for biallelic SNPs. Alternatively it is possible
to use custom function (see bigsnpr: :snp_autoSVD() for details.

gt_pca_autoSVD 61

thr_r2 Threshold over the squared correlation between two SNPs. Default is 0. 2. Use
NA if you want to skip the clumping step. size

use_positions a boolean on whether the position is used to define size, or whether the size
should be in number of SNPs. Default is TRUE

size For one SNP, window size around this SNP to compute correlations. Default is
100 / thr_r2 for clumping (0.2 -> 500; 0.1 -> 1000; 0.5 -> 200). If not providing
infos.pos (NULL, the default), this is a window in number of SNPs, otherwise it
is a window in kb (genetic distance). I recommend that you provide the positions
if available.

roll_size Radius of rolling windows to smooth log-p-values. Default is 50.

int_min_size Minimum number of consecutive outlier SNPs in order to be reported as long-
range LD region. Default is 20.

alpha_tukey Default is @.05. The type-I error rate in outlier detection (that is further cor-
rected for multiple testing).

min_mac Minimum minor allele count (MAC) for variants to be included. Default is 10.
max_iter Maximum number of iterations of outlier detection. Default is 5.

n_cores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr
verbose Output some information on the iterations? Default is TRUE.

total_var a boolean indicating whether to compute the total variance of the matrix. Default

is TRUE. Using FALSE will speed up computation, but the total variance will not
be stored in the output (and thus it will not be possible to assign a proportion of
variance explained to the components).

Details

Using gt_pca_autoSVD requires a reasonably large dataset, as the function iteratively removes re-
gions of long range LD. If you encounter: ’Error in rollmean(): Parameter ’size’ is too large.’,
roll_size exceeds the number of variants on at least one of your chromosomes. Try reducing
’roll_size’ to avoid this error.

Note: rather than accessing these elements directly, it is better to use tidy and augment. See
gt_pca_tidiers.

Value

a gt_pca object, which is a subclass of bigSVD; this is an S3 list with elements: A named list (an
S3 class "big_SVD") of

* d, the eigenvalues (singular values, i.e. as variances),

* u, the scores for each sample on each component (the left singular vectors)

* v, the loadings (the right singular vectors)

* center, the centering vector,

* scale, the scaling vector,

* method, a string defining the method (in this case autoSVD’),

* call, the call that generated the object.

* loci, the loci used after long range LD removal.

::nb_cores().

62 gt_pca_partialSVD

See Also

bigsnpr::snp_autoSVD() which this function wraps.

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > @)
lobsters <- gt_impute_simple(lobsters, method = "mode")

show_loci(lobsters)$chromosome <- "1"

Create PCA object, including total variance
gt_pca_autoSVD(lobsters,

k =10,
roll_size = 20,
total_var = TRUE

)
Change number of components and exclude total variance
gt_pca_autoSVD(lobsters,

k =5,
roll_size = 20,
total_var = FALSE
)
gt_pca_partialSVD PCA for gen_tibble objects by partial SVD
Description

This function performs Principal Component Analysis on a gen_tibble, by partial SVD through
the eigen decomposition of the covariance. It works well if the number of individuals is much
smaller than the number of loci; otherwise, gt_pca_randomSVD() is a better option. This function
is a wrapper for bigstatsr::big_SVD().

Usage

gt_pca_partialSVD(

X)
k =109,

gt_pca_partialSVD 63

fun_scaling = bigsnpr::snp_scaleBinom(),
total_var = TRUE

)
Arguments
X a gen_tbl object
k Number of singular vectors/values to compute. Default is 10. This algorithm
should be used to compute a few singular vectors/values.
fun_scaling Usually this can be left unset, as it defaults to bigsnpr: :snp_scaleBinom(),
which is the appropriate function for biallelic SNPs. Alternatively it is possible
to use custom function (see bigsnpr: :snp_autoSVD() for details.
total_var a boolean indicating whether to compute the total variance of the matrix. Default
is TRUE. Using FALSE will speed up computation, but the total variance will not
be stored in the output (and thus it will not be possible to assign a proportion of
variance explained to the components).
Value

a gt_pca object, which is a subclass of bigSVD; this is an S3 list with elements: A named list (an
S3 class "big_SVD") of

* d, the eigenvalues (singular values, i.e. as variances),

* u, the scores for each sample on each component (the left singular vectors)

* v, the loadings (the right singular vectors)

e center, the centering vector,

* scale, the scaling vector,

* method, a string defining the method (in this case ’partialSVD’),

* call, the call that generated the object.

* square_frobenius, used to compute the proportion of variance explained by the components
(optional)
Note: rather than accessing these elements directly, it is better to use tidy and augment. See
gt_pca_tidiers.

See Also

bigstatsr::big_SVD() which this function wraps.

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)

64 gt_pca_randomSVD

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > @)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object, including total variance
gt_pca_partialSVD(lobsters,

k = 10,

total_var = TRUE
)
Change number of components and exclude total variance
gt_pca_partialSVD(lobsters,

k =5,
total_var = FALSE
)
gt_pca_randomSVD PCA for gen_tibble objects by randomized partial SVD
Description

This function performs Principal Component Analysis on a gen_tibble, by randomised partial

SVD based on the algorithm in RSpectra (by Yixuan Qiu and Jiali Mei).

This algorithm is linear in time in all dimensions and is very memory-efficient. Thus, it can be used

on very large big.matrices. This function is a wrapper for bigstatsr: :big_randomSVD()

Usage
gt_pca_randomSVD(
X)
k =10,
fun_scaling = bigsnpr::snp_scaleBinom(),
tol = 1e-04,

verbose = FALSE,

n_cores = 1,

fun_prod = bigstatsr::big_prodVec,
fun_cprod = bigstatsr::big_cprodVec,
total_var = TRUE

)
Arguments
a gen_tibble object
k Number of singular vectors/values to compute. Default is 10. This algorithm
should be used to compute a few singular vectors/values.
fun_scaling Usually this can be left unset, as it defaults to bigsnpr: :snp_scaleBinom(),

which is the appropriate function for biallelic SNPs. Alternatively it is possible

to use custom function (see bigsnpr: :snp_autoSVD() for details.

gt_pca_randomSVD

tol
verbose
n_cores

fun_prod

fun_cprod

total_var

Value

65

Precision parameter of svds. Default is Te-4.

Should some progress be printed? Default is FALSE.

Number of cores used.

Function that takes 6 arguments (in this order):

a matrix-like object X,

a vector X,

a vector of row indices ind. row of X,

a vector of column indices ind.col of X,

a vector of column centers (corresponding to ind. col),

a vector of column scales (corresponding to ind.col), and compute the
product of X (subsetted and scaled) with x.

Same as fun.prod, but for the transpose of X.

aboolean indicating whether to compute the total variance of the matrix. Default
is TRUE. Using FALSE will speed up computation, but the total variance will not
be stored in the output (and thus it will not be possible to assign a proportion of
variance explained to the components).

a gt_pca object, which is a subclass of bigSVD; this is an S3 list with elements: A named list (an

S3 class "big_SVD") of

* d, the eigenvalues (singular values, i.e. as variances),

* u, the scores for each sample on each component (the left singular vectors)

* v, the loadings (the right singular vectors)

* center, the centering vector,

* scale, the scaling vector,

* method, a string defining the method (in this case 'randomSVD’),

 call, the call that generated the object.

Note: rather than accessing these elements directly, it is better to use tidy and augment. See

gt_pca_tidiers.

See Also

bigstatsr::big_randomSVD() which this function wraps.

Examples

vcf_path <-

system.file("extdata”, "anolis”,
"punctatus_t70_s10_n46_filtered.recode.vcf.gz",
package = "tidypopgen”

)

anole_gt <-

66 gt_pseudohaploid

gen_tibble(vcf_path, quiet = TRUE, backingfile = tempfile("anolis_"))

Remove monomorphic loci and impute
anole_gt <- anole_gt %>% select_loci_if(loci_maf(genotypes) > @)
anole_gt <- gt_impute_simple(anole_gt, method = "mode")

Create PCA object, including total variance
gt_pca_randomSVD(anole_gt, k = 10, total_var = TRUE)

gt_pseudohaploid Set the ploidy of a gen_tibble fo include pseudohaploids

Description

If a gen_tibble includes pseudohaploid data, its ploidy is set to -2 to indicate that some individuals
are coded as pseudohaploids. The ploidy of the individuals is updated, with pseudohaploids set to 1
and diploids set to 2. However, the dosages are not changed, meaning that pseudohaploids are still
coded as O or 2. If the gen_tibble is already set to pseudohaploid, running gt_pseudohaploid will
update the ploidy values again, if pseudohaploid individuals have been removed then ploidy is reset
to 2.

Usage

gt_pseudohaploid(x, test_n_loci = 10000)

Arguments
X a gen_tibble object
test_n_loci the number of loci to test to determine if an individual is pseudohaploid. If there
are no heterozygotes in the first test_n_loci loci, the individual is considered
a pseudohaploid. If NULL, all loci are tested.
Value

a gen_tibble object with the ploidy set to -2 and the individual ploidy values updated to 1 or 2.
Examples
example_gt <- load_example_gt("gen_tbl")

Detect pseudohaploids and set ploidy for the whole gen_tibble
example_gt <- example_gt %>% gt_pseudohaploid(test_n_loci = 3)

Ploidy is now set to -2
show_ploidy(example_gt)

Individual ploidy now varies between 1 (pseudohaploid) and 2 (diploid)
indiv_ploidy(example_gt)

gt_save 67

gt_save Save a gen_tibble

Description

Save the tibble (and update the backing files). The gen_tibble object is saved to a file with exten-
sion .gt, together with update its .rds and .bk files. Note that multiple . gz files can be linked to the
same .rds and .bk files; generally, this occurs when we create multiple subsets of the data. The .g¢
file then stores the information on what subset of the full dataset we are interested in, whilst the .rds
and .bk file store the full dataset. To reload a gen_tibble, you can pass the name of the . gz file with
gt_load().

Usage

gt_save(x, file_name = NULL, quiet = FALSE)

Arguments
X agen_tibble
file_name the file name, including the full path. If it does not end with .gz, the extension
will be added.
quiet boolean to suppress information about the files
Value

the file name and path of the . gt file, together with the .rds and . bk files

See Also

gt_load()

Examples

example_gt <- load_example_gt("gen_tbl")

remove some individuals
example_gt <- example_gt %>% filter(id != "a")

save filtered gen_tibble object
gt_save(example_gt, file_name = paste@(tempfile(), "_example_filtered”))

68 gt_snmf

gt_set_imputed Sets a gen_tibble to use imputed data

Description

This function sets or unsets the use of imputed data. For some analysis, such as PCA, that does not
allow for missing data, we have to use imputation, but for other analysis it might be preferable to
allow for missing data.

Usage

gt_set_imputed(x, set = NULL)

Arguments

X agen_tibble

set a boolean defining whether imputed data should be used
Value

the gen_tibble, invisibly

Examples

example_gt <- load_example_gt("gen_tbl")

Impute the gen_tibble
example_gt <- example_gt %>% gt_impute_simple()

Check whether the gen_tibble uses imputed values
example_gt %>% gt_uses_imputed()

Set the gen_tibble to use imputed values
example_gt %>% gt_set_imputed(TRUE)

And check that the gen_tibble uses imputed values again
example_gt %>% gt_uses_imputed()

gt_snmf Run SNMF from R in tidypopgen

Description

Run SNMF from R in tidypopgen

gt_snmf 69
Usage
gt_snmf(
X)
K,
project = "continue”,
n_runs = 1,
alpha,
tolerance = 1e-05,
entropy = FALSE,
percentage = 0.05,
I,
iterations = 200,
ploidy = 2,
seed = -1
)
Arguments
X a gen_tibble or a character giving the path to the input geno file
k an integer giving the number of clusters
project one of "continue", "new", and "force": "continue" stores files in the current
project, "new" creates a new project, and "force" stores results in the current
project even if the .geno input file has been altered,
n_runs the number of runs for each k value (defaults to 1)
alpha numeric snmf regularization parameter. See LEA::snmf for details
tolerance numeric value of tolerance (default 0.00001)
entropy boolean indicating whether to estimate cross-entropy
percentage numeric value indicating percentage of masked genotypes, ranging between 0
and 1, to be used when entropy = TRUE
I number of SNPs for initialising the snmf algorithm
iterations numeric integer for maximum iterations (default 200)
ploidy the ploidy of the input data (defaults to 2)
seed the seed for the random number generator
Details

This is a wrapper for LEA: : snmf ().

Value

an object of class gt_admix consisting of a list with the following elements:

¢ k the number of clusters

* Q a matrix with the admixture proportions

* P a matrix with the allele frequencies

70 gt_update_backingfile

* log a log of the output generated by ADMIXTURE (usually printed on the screen when
running from the command line)

* cv the masked cross-entropy (if entropy is TRUE)
* loglik the log likelihood of the model
* id the id column of the input gen_tibble (if applicable)

* group the group column of the input gen_tibble (if applicable)

See Also

LEA: :snmf ()

Examples

run the example only if we have the package installed
example_gt <- load_example_gt("gen_tbl")

To run SNMF on a gen_tibble:

example_gt %>% gt_snmf(
k = 1:3, project = "force"”, entropy = TRUE,
percentage = 0.5, n_runs = 1, seed = 1, alpha = 100

)

gt_update_backingfile Update the backing matrix

Description

This functions forces a re-write of the file backing matrix to match the gen_tibble. Individuals
and loci are subsetted and reordered according to the current state of the gen_tibble. A .gt, .bk
and . rds file will be created.

Usage

gt_update_backingfile(
X,
backingfile = NULL,
chunk_size = NULL,
rm_unsorted_dist = TRUE,
quiet = FALSE

gt_uses_imputed

Arguments

X

backingfile

chunk_size

71

a gen_tibble object

the path, including the file name without extension, for backing files used to
store the data (they will be given a .bk and .rds automatically). If left to NULL
(the default), the file name will be based on the name f the current backing file.

the number of loci to process at once

rm_unsorted_dist

quiet

Details

boolean to set genetic_dist to zero (i.e. remove it) if it is unsorted within the
chromosomes.

boolean to suppress information about the files

This function does not check whether the positions of your genetic loci are sorted. To check
this, and update the file backing matrix, use gt_order_loci(). Tests for this function are in
test_gt_order_loci.R

Value

a gen_tibble with updated .gt, .bk, and . rds files (i.e. a new File Backed Matrix)

Examples

example_gt <- load_example_gt("gen_tbl")

Here, new backingfiles are created, but without using “<-° the object
loaded in the R session is not updated
gt_update_backingfile(example_gt)

Make sure to use “<-° to update the file names associated with the
gen_tibble object loaded in the R session
example_gt <- example_gt %>% gt_update_backingfile()

gt_uses_imputed

Checks if a gen_tibble uses imputed data

Description

This function checks if a dataset uses imputed data. Note that it is possible to have a dataset that
has been imputed but it is currently not using imputation.

Usage

gt_uses_imputed(x)

72 indiv_het_obs

Arguments

X agen_tibble

Value

boolean TRUE or FALSE depending on whether the dataset is using the imputed values

Examples

example_gt <- load_example_gt("gen_tbl")

Impute the gen_tibble
example_gt <- example_gt %>% gt_impute_simple()

Check whether the gen_tibble uses imputed values
example_gt %>% gt_uses_imputed()

indiv_het_obs Estimate individual observed heterozygosity

Description
Estimate observed heterozygosity (H_obs) for each individual (i.e. the frequency of loci that are
heterozygous in an individual).

Usage

indiv_het_obs(.x, as_counts = FALSE, ...)

S3 method for class 'tbl_df'
indiv_het_obs(.x, as_counts = FALSE, ...)

S3 method for class 'vctrs_bigSNP'

indiv_het_obs(.x, as_counts = FALSE, ...)
Arguments
. X a vector of class vetrs_bigSNP (usually the genotype column of a gen_tibble

object), or a gen_tibble.

as_counts logical, if TRUE, return a matrix with two columns: the number of heterozygotes
and the number of missing values for each individual. These quantities can be
useful to compute more complex quantities.

currently unused.

indiv_inbreeding 73

Value
either:

* a vector of heterozygosities, one per individuals in the gen_tibble

* a matrix with two columns, where the first is the number of heterozygous loci for each indi-
vidual and the second is the number of missing values for each individual

Examples
example_gt <- load_example_gt("gen_tbl")
example_gt %>% indiv_het_obs()

For observed heterozygosity as counts:
example_gt %>% indiv_het_obs(as_counts = TRUE)

indiv_inbreeding Individual inbreeding coefficient

Description

This function calculates the inbreeding coefficient for each individual based on the beta estimate
from Weir and Goudet (2017).

Usage
indiv_inbreeding(.x, method = c("WG17"), allele_sharing_mat = NULL, ...)
S3 method for class 'tbl_df'
indiv_inbreeding(.x, method = c("WG17"), allele_sharing_mat = NULL, ...)
S3 method for class 'vctrs_bigSNP'
indiv_inbreeding(.x, method = c("WG17"), allele_sharing_mat = NULL, ...)
S3 method for class 'grouped_df'
indiv_inbreeding(.x, method = c("WG17"), allele_sharing_mat = NULL, ...)
Arguments
X a vector of class vetrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.
method currently only "WG17" (for Weir and Goudet 2017).

allele_sharing_mat
optional and only relevant for "WG17", the matrix of Allele Sharing returned by
pairwise_allele_sharing() with as_matrix=TRUE. As a number of statistics
can be derived from the Allele Sharing matrix, it is sometimes more efficient to
pre-compute this matrix. It is not possible to use this with grouped tibbles.

currently unused.

74 indiv_missingness

Value

a numeric vector of inbreeding coefficients.

References

Weir, BS and Goudet J (2017) A Unified Characterization of Population Structure and Relatedness.
Genetics (2017) 206:2085

Examples

example_gt <- load_example_gt("gen_tbl")

example_gt %>% indiv_inbreeding(method = "WG17")

indiv_missingness Estimate individual missingness

Description

Estimate missingness for each individual (i.e. the frequency of missing genotypes in an individual).

Usage

indiv_missingness(.x, as_counts, block_size, ...)

S3 method for class 'tbl_df'
indiv_missingness(
X,
as_counts = FALSE,
block_size = bigstatsr::block_size(nrow(.x), 1),

)

S3 method for class 'vctrs_bigSNP'
indiv_missingness(

X,

as_counts = FALSE,

block_size = bigstatsr::block_size(length(.x), 1),

Arguments

X a vector of class vctrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.

indiv_ploidy 75

as_counts boolean defining whether the count of NAs (rather than the rate) should be re-
turned. It defaults to FALSE (i.e. rates are returned by default).

block_size maximum number of loci read at once.

currently unused.

Value

a vector of missingness, one per individuals in the gen_tibble

Examples

example_gt <- load_example_gt("gen_tbl")
example_gt %>% indiv_missingness()

For missingness as counts:
example_gt %>% indiv_missingness(as_counts = TRUE)

indiv_ploidy Return individual ploidy

Description

Returns the ploidy for each individual.

Usage

indiv_ploidy(.x, ...)

S3 method for class 'tbl_df'
indiv_ploidy(.x, ...)

S3 method for class 'vctrs_bigSNP'
indiv_ploidy(.x, ...)
Arguments

X agen_tibble, ora vector of class vetrs_bigSNP (usually the genotype column
of a gen_tibble object)

currently unused.

Value

a vector of ploidy, one per individuals in the gen_tibble

76 is_loci_table_ordered

Examples

example_gt <- load_example_gt("gen_tbl")

example_gt %>% indiv_ploidy()

is_loci_table_ordered Test if the loci table is ordered

Description

This functions checks that all SNPs in a chromosome are adjacent in the loci table, and that positions
are sorted within chromosomes.

Usage

is_loci_table_ordered(
X,
error_on_false = FALSE,
ignore_genetic_dist = TRUE,

)

S3 method for class 'tbl_df'
is_loci_table_ordered(
X,
error_on_false = FALSE,
ignore_genetic_dist = TRUE,

)

S3 method for class 'vctrs_bigSNP'
is_loci_table_ordered(
X,
error_on_false = FALSE,
ignore_genetic_dist = TRUE,

Arguments
X a vector of class vetrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.

error_on_false logical, if TRUE an error is thrown if the loci are not ordered.
ignore_genetic_dist
logical, if TRUE the physical position is not checked.

other arguments passed to specific methods.

load_example_gt 77

Value

a logical vector defining which loci are transversions

Examples

example_gt <- load_example_gt("gen_tbl")

example_gt %>% is_loci_table_ordered()

load_example_gt Load example gen_tibble

Description

This function creates a gen_tibble object for use in examples in documentation.

Usage

load_example_gt(
type = c("gen_tbl", "grouped_gen_tbl"”, "grouped_gen_tbl_sf", "gen_tbl_sf")
)

Arguments
type a character string indicating the type of gen_tibble to create:
» "gen_tbl": a basic gen_tibble with genotype data and metadata
* "grouped_gen_tbl": same as "gen_tbl" but grouped by population
 "grouped_gen_tbl_sf": adds spatial features (longitude/latitude) and groups
by population

» "gen_tbl_sf": adds spatial features without grouping

Value

an example object of the class gen_tbl.

Examples

This function creates an example gen_tibble object
example_gt <- load_example_gt("gen_tbl")

78 loci_alt_freq

loci_alt_freq Estimate allele frequencies at each locus

Description

Allele frequencies can be estimates as minimum allele frequencies (MAF) with loci_maf () or the
frequency of the alternate allele (with loci_alt_freq()). The latter are in line with the genotypes
matrix (e.g. as extracted by show_loci()). Most users will be in interested in the MAF, but
the raw frequencies might be useful when computing aggregated statistics. Both loci_maf () and
loci_alt_freq() have efficient methods to support grouped gen_tibble objects. These can return
a tidied tibble, a list, or a matrix.

Usage

loci_alt_freq(
X,
.col = "genotypes”,
as_counts = FALSE,
n_cores,
block_size,

type,
)

S3 method for class 'tbl_df'
loci_alt_freq(
X,
.col = "genotypes”,
as_counts = FALSE,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1),

)

S3 method for class 'vctrs_bigSNP'
loci_alt_freq(
X,
.col = "genotypes”,
as_counts = FALSE,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(length(.x), 1),

)

S3 method for class 'grouped_df'
loci_alt_freq(
X,

loci_alt_freq

79

.col = "genotypes"”,
as_counts = FALSE,

n_cores

bigstatsr::nb_cores(),

block_size = bigstatsr::block_size(nrow(.x), 1),
type = c("tidy", "list”, "matrix"),

)

loci_maf(.x,

.col = "genotypes"”, n_cores, block_size, type, ...)

S3 method for class 'tbl_df'

loci_maf(
X,

.col = "genotypes"”,
n_cores = bigstatsr::nb_cores(),

block_size

)

bigstatsr::block_size(nrow(.x), 1),

S3 method for class 'vctrs_bigSNP'

loci_maf(
X,

.col = "genotypes”,

n_cores

bigstatsr::nb_cores(),

block_size = bigstatsr::block_size(length(.x), 1),

)

S3 method for class 'grouped_df'
loci_maf(

X,

.col = "genotypes”,

n_cores = bigstatsr::nb_cores(),

block_size = bigstatsr::block_size(nrow(.x), 1),
type = c("tidy"”, "list”, "matrix"),

Arguments

X

.col

as_counts

a vector of class vetrs_bigSNP (usually the genotypes column of a gen_tibble
object), or a gen_tibble.

the column to be used when a tibble (or grouped tibble is passed directly to
the function). This defaults to "genotypes" and can only take that value. There
is no need for the user to set it, but it is included to resolve certain tidyselect
operations.

boolean defining whether the count of alternate and valid (i.e. total number)
alleles (rather than the frequencies) should be returned. It defaults to FALSE

80

loci_alt_freq

(i.e. frequencies are returned by default).

n_cores number of cores to be used, it defaults to bigstatsr: :nb_cores()
block_size maximum number of loci read at once.
type type of object to return, if using grouped method. One of "tidy", "list", or "ma-
trix". Default is "tidy".
other arguments passed to specific methods, currently unused.
Value

a vector of frequencies, one per locus, if as_counts = FALSE; else a matrix of two columns, the
count of alternate alleles and the count valid alleles (i.e. the sum of alternate and reference)

Examples

example_gt <- load_example_gt("gen_tbl")

For alternate allele frequency
example_gt %>% loci_alt_freq()

For alternate allele frequency per locus per population
example_gt %>%

group_by(population) %>%

loci_alt_freq()
alternatively, return a list of populations with their frequencies
example_gt %>%

group_by(population) %>%

loci_alt_freq(type = "list")
or a matrix with populations in columns and loci in rows
example_gt %>%

group_by(population) %>%

loci_alt_freq(type = "matrix")
or within reframe (not recommended, as it much less efficient
than using it directly as shown above)
library(dplyr)
example_gt %>%

group_by(population) %>%

reframe(alt_freq = loci_alt_freq(genotypes))
For MAF
example_gt %>% loci_maf()

For minor allele frequency per locus per population
example_gt %>%

group_by(population) %>%

loci_maf ()
alternatively, return a list of populations with their frequencies
example_gt %>%

group_by(population) %>%

loci_maf(type = "list")
or a matrix with populations in columns and loci in rows
example_gt %>%

group_by(population) %>%

loci_chromosomes 81

loci_maf(type = "matrix")
loci_chromosomes Get the chromosomes of loci in a gen_tibble
Description

Extract the loci chromosomes from a gen_tibble (or directly from its genotype column).

Usage

loci_chromosomes(.x, .col = "genotypes”, ...)

S3 method for class 'tbl_df'
loci_chromosomes(.x, .col = "genotypes”, ...)

S3 method for class 'vctrs_bigSNP'

loci_chromosomes(.x, .col = "genotypes”, ...)
Arguments
X agen_tibble, ora vector of class vctrs_bigSNP (usually the genotype column

of a gen_tibble object).

.col the column to be used when a tibble (or grouped tibble is passed directly to
the function). This defaults to "genotypes" and can only take that value. There
is no need for the user to set it, but it is included to resolve certain tidyselect
operations.

currently unused.

Value

a character vector of chromosomes

Examples

example_gt <- load_example_gt("gen_tbl")
example_gt %>% loci_chromosomes()

82 loci_hwe

loci_hwe Test Hardy-Weinberg equilibrium at each locus

Description

Return the p-value from an exact test of HWE.

Usage

loci_hwe(.x, .col = "genotypes”, ...)

S3 method for class 'tbl_df'

loci_hwe(.x, .col = "genotypes”, mid_p = TRUE, ...)
S3 method for class 'vctrs_bigSNP'
loci_hwe(.x, .col = "genotypes”, mid_p = TRUE, ...)

S3 method for class 'grouped_df'

loci_hwe(
X,
.col = "genotypes"”,
mid_p = TRUE,

n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1),
type = c("tidy"”, "list”, "matrix"),

Arguments

X a vector of class vetrs_bigSNP (usually the genotypes column of agen_tibble
object), or a gen_tibble.

.col the column to be used when a tibble (or grouped tibble is passed directly to
the function). This defaults to "genotypes" and can only take that value. There
is no need for the user to set it, but it is included to resolve certain tidyselect
operations.
not used.

mid_p boolean on whether the mid-p value should be computed. Default is TRUE, as
in PLINK.

n_cores number of cores to be used, it defaults to bigstatsr::nb_cores()

block_size maximum number of loci read at once.

type type of object to return, if using grouped method. One of "tidy", "list", or "ma-

trix". Default is "tidy".

loci_Id_clump 83

Details

This function uses the original C++ algorithm from PLINK 1.90.

Value

a vector of probabilities from HWE exact test, one per locus

Author(s)

the C++ algorithm was written by Christopher Chang for PLINK 1.90, based on original code by
Jan Wigginton (the code was released under GPL3).

Examples

example_gt <- load_example_gt("gen_tbl")

For HWE
example_gt %>% loci_hwe()

For loci_hwe per locus per population, use reframe
example_gt %>%

group_by(population) %>%

reframe(loci_hwe = loci_hwe(genotypes))

loci_ld_clump Clump loci based on a Linkage Disequilibrium threshold

Description

This function uses clumping to remove SNPs at high LD. When used with its default options,
clumping based on MAF is similar to standard pruning (as done by PLINK with "—indep-pairwise
(size+1) 1 thr.r2", but it results in a better spread of SNPs over the chromosome. This function is a
wrapper around bigsnpr: :snp_clumping(). See https://privefl.github.io/bigsnpr/articles/pruning-
vs-clumping.html for more information on the differences between pruning and clumping.

Usage

loci_ld_clump(.x, .col = "genotypes”, ...)

S3 method for class 'tbl_df'
loci_ld_clump(.x, .col = "genotypes”, ...)

S3 method for class 'vctrs_bigSNP'
loci_ld_clump(

X,

.col = "genotypes"”,

S = NULL,

84 loci_Id_clump
thr_r2 = 0.2,
size = 100/thr_r2,
exclude = NULL,
use_positions = TRUE,
n_cores = 1,
return_id = FALSE,
)
Arguments
X a gen_tibble object
.col the column to be used when a tibble (or grouped tibble is passed directly to
the function). This defaults to "genotypes" and can only take that value. There
is no need for the user to set it, but it is included to resolve certain tidyselect
operations.
currently not used.
S A vector of loci statistics which express the importance of each SNP (the more
important is the SNP, the greater should be the corresponding statistic).
For example, if S follows the standard normal distribution, and "important"
means significantly different from 0, you must use abs(S) instead.
If not specified, MAFs are computed and used.
thr_r2 Threshold over the squared correlation between two SNPs. Default is 0. 2.
size For one SNP, window size around this SNP to compute correlations. Default is
100 / thr_r2 for clumping (0.2 -> 500; 0.1 -> 1000; 0.5 -> 200). If use_positions
= FALSE, this is a window in number of SNPs, otherwise it is a window in kb
(genetic distance). Ideally, use positions, as they provide a more sensible ap-
proach.
exclude Vector of SNP indices to exclude anyway. For example, can be used to exclude

use_positions

long-range LD regions (see Price2008). Another use can be for thresholding
with respect to p-values associated with S.

boolean, if TRUE (the default), size is in kb, if FALSE size is the number of
SNPs.

n_cores number of cores to be used
return_id boolean on whether the id of SNPs to keep should be returned. It defaults to
FALSE, which returns a vector of booleans (TRUE or FALSE)
Details

Any missing values in the genotypes of a gen_tibble passed to loci_1ld_clump will cause an error.
To deal with missingness, see gt_impute_simple().

Value

a boolean vector indicating whether the SNP should be kept (if "return_id = FALSE’, the default),
else a vector of SNP indices to be kept (if "return_id = TRUE’)

loci_missingness 85

See Also

bigsnpr::snp_clumping() which this function wraps.
Examples

example_gt <- load_example_gt("gen_tbl") %>% gt_impute_simple()

To return a boolean vector indicating whether the SNP should be kept
example_gt %>% loci_ld_clump()

To return a vector of SNP indices to be kept

example_gt %>% loci_ld_clump(return_id = TRUE)

loci_missingness Estimate missingness at each locus

Description

Estimate the rate of missingness at each locus. This function has an efficient method to support
grouped gen_tibble objects, which can return a tidied tibble, a list, or a matrix.

Usage
loci_missingness(
X,
.col = "genotypes”,

as_counts = FALSE,

n_cores = bigstatsr::nb_cores(),
block_size,

type,

S3 method for class 'tbl_df'
loci_missingness(
X,
.col = "genotypes”,
as_counts = FALSE,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1),

S3 method for class 'vctrs_bigSNP'
loci_missingness(
X,

.col = "genotypes”,

as_counts = FALSE,

n_cores = bigstatsr::nb_cores(),

block_size = bigstatsr::block_size(length(.x), 1),

S3 method for class 'grouped_df'
loci_missingness(

X,

.col = "genotypes”,

as_counts = FALSE,

n_cores = bigstatsr::nb_cores(),

block_size = bigstatsr::block_size(nrow(.x), 1),

type = c("tidy"”, "list", "matrix"),

loci_missingness

)
Arguments

X a vector of class vetrs_bigSNP (usually the genotypes column of a gen_tibble
object), or a gen_tibble.

.col the column to be used when a tibble (or grouped tibble is passed directly to
the function). This defaults to "genotypes" and can only take that value. There
is no need for the user to set it, but it is included to resolve certain tidyselect
operations.

as_counts boolean defining whether the count of NAs (rather than the rate) should be re-
turned. It defaults to FALSE (i.e. rates are returned by default).

n_cores number of cores to be used, it defaults to bigstatsr: :nb_cores()

block_size maximum number of loci read at once.

type type of object to return, if using grouped method. One of "tidy", "list", or "ma-
trix". Default is "tidy".
other arguments passed to specific methods.

Value

a vector of frequencies, one per locus

Examples

example_gt <- load_example_gt("gen_tbl")

For missingness
example_gt %>% loci_missingness()

For missingness per locus per population
example_gt %>%

loci_names 87

group_by(population) %>%

loci_missingness()
alternatively, return a list of populations with their missingness
example_gt %>%

group_by(population) %>%

loci_missingness(type = "list")
or a matrix with populations in columns and loci in rows
example_gt %>%

group_by(population) %>%

loci_missingness(type = "matrix")
or within reframe (not recommended, as it much less efficient
than using it directly as shown above)
example_gt %>%

group_by(population) %>%

reframe(missing = loci_missingness(genotypes))

loci_names Get the names of loci in a gen_tibble

Description

Extract the loci names from a gen_tibble (or directly from its genotype column).
Usage
loci_names(.x, .col = "genotypes"”, ...)

S3 method for class 'tbl_df'
loci_names(.x, .col = "genotypes”, ...)

S3 method for class 'vctrs_bigSNP'

loci_names(.x, .col = "genotypes”, ...)
Arguments
X a vector of class vetrs_bigSNP (usually the genotype column of a gen_tibble

object), or a gen_tibble.

.col the column to be used when a tibble (or grouped tibble is passed directly to
the function). This defaults to "genotypes" and can only take that value. There
is no need for the user to set it, but it is included to resolve certain tidyselect
operations.

currently unused.

Value

a character vector of names

88 loci_pi

Examples

example_gt <- load_example_gt("gen_tbl")
example_gt %>% loci_names()

loci_pi Estimate nucleotide diversity (pi) at each locus

Description

Estimate nucleotide diversity (pi) at each locus, accounting for missing values. This uses the for-
mula: c_0O*c_1/(n* (n-1)/2)

Usage

loci_pi(.x, .col = "genotypes”, n_cores, block_size, type, ...)

S3 method for class 'tbl_df'
loci_pi(
X,
.col = "genotypes”,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1),

)
S3 method for class 'vctrs_bigSNP'
loci_pi(

X,

.col = "genotypes”,

n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(length(.x), 1),

)
S3 method for class 'grouped_df'
loci_pi(

X,

.col = "genotypes”,

n_cores = bigstatsr::nb_cores(),

block_size = bigstatsr::block_size(nrow(.x), 1),
type = c("tidy"”, "list", "matrix"),

loci_pi 89

Arguments

X a vector of class vetrs_bigSNP (usually the genotypes column of a gen_tibble
object), or a gen_tibble.

.col the column to be used when a tibble (or grouped tibble is passed directly to
the function). This defaults to "genotypes" and can only take that value. There
is no need for the user to set it, but it is included to resolve certain tidyselect
operations.

n_cores number of cores to be used, it defaults to bigstatsr: :nb_cores()

block_size maximum number of loci read at once.

type type of object to return, if using grouped method. One of "tidy", "list", or "ma-
trix". Default is "tidy".
other arguments passed to specific methods, currently unused.

Value

a vector of frequencies, one per locus

Examples

example_gt <- load_example_gt("grouped_gen_tbl")

For pi
example_gt %>% loci_pi()

For pi per locus per population
example_gt %>%

group_by(population) %>%

loci_pi()
alternatively, return a list of populations with their pi
example_gt %>%

group_by(population) %>%

loci_pi(type = "list")
or a matrix with populations in columns and loci in rows
example_gt %>%

group_by(population) %>%

loci_pi(type = "matrix")
or within reframe (not recommended, as it much less efficient
than using it directly as shown above)
example_gt %>%

group_by(population) %>%

reframe(pi = loci_pi(genotypes))

90 loci_transversions

loci_transitions Find transitions

Description

Use the loci table to define which loci are transitions

Usage

loci_transitions(.x, .col = "genotypes”, ...)

S3 method for class 'tbl_df'
loci_transitions(.x, .col = "genotypes"”, ...)

S3 method for class 'vctrs_bigSNP'

loci_transitions(.x, .col = "genotypes”, ...)
Arguments
X a vector of class vetrs_bigSNP (usually the genotype column of a gen_tibble

object), or a gen_tibble.

.col the column to be used when a tibble (or grouped tibble is passed directly to
the function). This defaults to "genotypes" and can only take that value. There
is no need for the user to set it, but it is included to resolve certain tidyselect
operations.

other arguments passed to specific methods.

Value

a logical vector defining which loci are transitions

Examples

example_gt <- load_example_gt("gen_tbl")
example_gt %>% loci_transitions()

loci_transversions Find transversions

Description

Use the loci table to define which loci are transversions

mutate.gen_tbl 91
Usage
loci_transversions(.x, .col = "genotypes", ...)

S3 method for class 'tbl_df'
loci_transversions(.x, .col = "genotypes", ...)

S3 method for class 'vctrs_bigSNP'

loci_transversions(.x, .col = "genotypes", ...)
Arguments
X a vector of class vetrs_bigSNP (usually the genotype column of a gen_tibble

object), or a gen_tibble.

.col the column to be used when a tibble (or grouped tibble is passed directly to
the function). This defaults to "genotypes" and can only take that value. There
is no need for the user to set it, but it is included to resolve certain tidyselect
operations.

other arguments passed to specific methods.

Value

a logical vector defining which loci are transversions

Examples

example_gt <- load_example_gt("gen_tbl")
example_gt %>% loci_transversions()

mutate.gen_tbl A mutate method for gen_tibble objects

Description

A mutate method for gen_tibble objects

Usage
S3 method for class 'gen_tbl'
mutate(..., deparse.level = 1)
Arguments

a gen_tibble and a data.frame or tibble

deparse.level an integer controlling the construction of column names.

92 mutate.grouped_gen_tbl

Value

agen_tibble

Examples
example_gt <- load_example_gt("gen_tbl")

Add a new column
example_gt %>% mutate(region = "East")

mutate.grouped_gen_tbl
A mutate method for grouped gen_tibble objects

Description

A mutate method for grouped gen_tibble objects

Usage
S3 method for class 'grouped_gen_tbl'
mutate(..., deparse.level = 1)
Arguments

a gen_tibble and a data.frame or tibble

deparse.level an integer controlling the construction of column names.

Value

a grouped gen_tibble

Examples

test_gt <- load_example_gt("grouped_gen_tbl")
test_gt %>% mutate(region = "East")

test_gt <- load_example_gt("grouped_gen_tbl_sf")
test_gt %>% mutate(region = "East")

nwise_pop_pbs 93

nwise_pop_pbs Compute the Population Branch Statistics for each combination of
populations

Description

The function computes the population branch statistics (PBS) for each combination of populations
at each locus. The PBS is a measure of the genetic differentiation between one focal population and
two reference populations, and is used to identify outlier loci that may be under selection.

Usage

nwise_pop_pbs(
X,
type = c("tidy"”, "matrix"),
fst_method = c("Hudson”, "Nei87", "WC84"),
return_fst = FALSE

)
Arguments
X A grouped gen_tibble
type type of object to return. One of "tidy" or "matrix". Default is "tidy".
fst_method the method to use for calculating Fst, one of "Hudson’, *Nei87°, and "WC84’.
See pairwise_pop_fst() for details.
return_fst A logical value indicating whether to return the Fst values along with the PBS
values. Default is FALSE.
Value

Either a matrix with locus ID as rownames and the following columns:
* pbs_a.b.c: the PBS value for population a given b & c (there will be multiple such columns
covering all 3 way combinations of populations in the grouped gen_tibble object)
* pbsni_a.b.c: the normalized PBS value for population a given b & c.

e fst_a.b: the Fst value for population a and b, if return_fst is TRUE or a tidy tibble with
the following columns:

¢ loci: the locus ID

* stat_name: the name of populations used in the pbs calculation (e.g. "pbs_pop1.pop2.pop3").
If return_fst is TRUE, stat_name will also include "fst" calculations in the same column (e.g.

"fst_popl.pop2").

* value: the pbs value for the populations

94 pairwise_allele_sharing

References

Yi X, et al. (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science
329: 75-78.

Examples

example_gt <- load_example_gt()

We can compute the PBS for all populations using "Hudson" method
example_gt %>%

group_by(population) %>%

nwise_pop_pbs(fst_method = "Hudson")

pairwise_allele_sharing
Compute the Pairwise Allele Sharing Matrix for a gen_tibble object

Description

This function computes the Allele Sharing matrix. Estimates Allele Sharing (equivalent to the
quantity estimated by hierfstat: :matching()) between pairs of individuals (for each locus, gives
1 if the two individuals are homozygous for the same allele, 0 if they are homozygous for a different
allele, and 1/2 if at least one individual is heterozygous. Matching is the average of these 0, 1/2 and
1s)

Usage

pairwise_allele_sharing(
X!
as_matrix = FALSE,
block_size = bigstatsr::block_size(nrow(x))

)
Arguments
X a gen_tibble object.
as_matrix boolean, determining whether the results should be a square symmetrical matrix
(TRUE), or a tidied tibble (FALSE, the default)
block_size maximum number of loci read at once. More loci should improve speed, but
will tax memory.
Value

a matrix of allele sharing between all pairs of individuals

See Also

hierfstat::matching()

pairwise_grm

95
Examples
example_gt <- load_example_gt("gen_tbl")

Compute allele sharing between individuals

example_gt %>% pairwise_allele_sharing(as_matrix = FALSE)

Alternatively, return as a tibble

example_gt %>% pairwise_allele_sharing(as_matrix = TRUE)

pairwise_grm

Compute the Genomic Relationship Matrix for a gen_tibble object

Description

This function computes the Genomic Relationship Matrix (GRM). This is estimated by computing
the pairwise kinship coefficients (coancestries) between all pairs of individuals from a matrix of
Allele Sharing following the approach of Weir and Goudet 2017 based on beta estimators).

Usage

pairwise_grm(
X’

allele_sharing_mat = NULL,

block_size = bigstatsr::block_size(nrow(x))
)

Arguments

X a gen_tibble object.
allele_sharing_mat

optional, the matrix of Allele Sharing returned by pairwise_allele_sharing()
with as_matrix=TRUE. As a number of statistics can be derived from the Allele
Sharing matrix, it is sometimes more efficient to pre-compute this matrix.

block_size

the size of the blocks to use for the computation of the allele sharing matrix.
Details

The GRM is twice the coancestry matrix (e.g. as estimated by hierfstat: :beta.dosage() with
inb=FALSE).

Value

a matrix of GR between all pairs of individuals

See Also

hierfstat::beta.dosage()

96 pairwise_ibs

Examples

example_gt <- load_example_gt("gen_tbl")

Compute the GRM from the allele sharing matrix
example_gt %>% pairwise_grm()

To calculate using a precomputed allele sharing matrix, use:
allele_sharing <- example_gt %>% pairwise_allele_sharing(as_matrix = TRUE)
example_gt %>% pairwise_grm(allele_sharing_mat = allele_sharing)

pairwise_ibs Compute the Identity by State Matrix for a gen_tibble object

Description

This function computes the IBS matrix.

Usage
pairwise_ibs(
X ’
as_matrix = FALSE,
type = c("proportion”, "adjusted_counts”, "raw_counts"),
block_size = bigstatsr::block_size(nrow(x))
)
Arguments
X a gen_tibble object.
as_matrix boolean, determining whether the results should be a square symmetrical matrix
(TRUE), or a tidied tibble (FALSE, the default)
type one of "proportion” (equivalent to "ibs" in PLINK), "adjusted_counts" ("dis-
tance" in PLINK), and "raw_counts" (the counts of identical alleles and non-
missing alleles, from which the two other quantities are computed)
block_size maximum number of loci read at once. More loci should improve speed, but
will tax memory.
Details

Note that monomorphic sites are currently considered. Remove monomorphic sites before running
pairwise_king if this is a concern.
Value

a bigstatsr::FBM of proportion or adjusted counts, or a list of two bigstatsr::FBM matrices, one of
counts of IBS by alleles, and one of number of valid alleles (i.e. 2n_loci - 2missing_loci)

pairwise_king 97
Examples

example_gt <- load_example_gt("gen_tbl")

pairwise_ibs(example_gt, type = "proportion”)

Alternatively, return a matrix
pairwise_ibs(example_gt, type = "proportion”, as_matrix = TRUE)

Adjust block_size
pairwise_ibs(example_gt, block_size = 2)

Change type

pairwise_ibs(example_gt, type = "adjusted_counts”)
pairwise_ibs(example_gt, type = "raw_counts")
pairwise_king Compute the KING-robust Matrix for a gen_tibble object
Description

This function computes the KING-robust estimator of kinship, reimplementing the KING algorithm
of Manichaikul et al. (2010).

Usage

pairwise_king(
X,
as_matrix = FALSE,
block_size = bigstatsr::block_size(nrow(x))

)
Arguments
X agen_tibble object.
as_matrix boolean, determining whether the results should be a square symmetrical matrix
(TRUE), or a tidied tibble (FALSE, the default)
block_size maximum number of loci read at once. More loci should improve speed, but
will tax memory.
Value

a square symmetrical matrix of relationship coefficients between individuals if as_matrix is TRUE,
or a tidied tibble of coefficients if as_matrix is FALSE.

98 pairwise_pop_{st

References

Manichaikul, A. et al. (2010) Robust relationship inference in genome-wide association studies.
Bioinformatics, 26(22), 2867-2873. https://doi.org/10.1093/bioinformatics/btq559.

Note that monomorphic sites are currently considered. Remove monomorphic sites before running
pairwise_king if this is a concern.

Examples

example_gt <- load_example_gt("gen_tbl")

Compute the KING-robust matrix
pairwise_king(example_gt, as_matrix = TRUE)

Or return a tidy tibble
pairwise_king(example_gt, as_matrix = FALSE)

Adjust block_size
pairwise_king(example_gt, block_size = 2)

pairwise_pop_fst Compute pairwise population Fst

Description

This function computes pairwise Fst. The following methods are implemented:

* "Hudson’: Hudson’s formulation, as derived in Bhatia et al (2013) for diploids. This is the
only method that can also be used with pseudohaploid data.

* ’Nei87’ : Fst according to Nei (1987) - includes the correction for heterozygosity when com-
puting Ht (it uses the same formulation as in hierfstat: :pairwise.neifst()),

* "WC84’ : Weir and Cockerham (1984), correcting for missing data (it uses the same formula-
tion as in hierfstat: :pairwise.WCfst()).

Usage

pairwise_pop_fst(
X,
type = c("tidy"”, "pairwise"),
by_locus = FALSE,
by_locus_type = c("tidy"”, "matrix", "list"),
method = c("Hudson”, "Nei87", "WC84"),
return_num_dem = FALSE,
n_cores = bigstatsr::nb_cores()

pairwise_pop_fst

Arguments

X

type
by_locus
by_locus_type

method

return_num_dem

n_cores

Details

99

a grouped gen_tibble (as obtained by using dplyr: :group_by())

type of object to return One of "tidy" or "pairwise" for a pairwise matrix of
populations. Default is "tidy".

boolean, determining whether Fst should be returned by locus(TRUE), or as a
single genome wide value obtained by taking the ratio of the mean numerator
and denominator (FALSE, the default).

type of object to return. One of "tidy", "matrix" or "list". Default is "tidy".
one of "Hudson’, *Nei87’, and "WC84’

returns a list of numerators and denominators for each locus. This is useful for
creating windowed estimates of Fst (as we need to compute the mean numerator
and denominator within each window). Default is FALSE.

number of cores to be used, it defaults to bigstatsr::nb_cores()

For all formulae, the genome wide estimate is obtained by taking the ratio of the mean numerators
and denominators over all relevant SNPs.

Value

if type=tidy, a tibble of genome-wide pairwise Fst values with each pairwise combination as
a row if "by_locus=FALSE", else a list including the tibble of genome-wide values as well as a
matrix with pairwise Fst by locus with loci as rows and and pairwise combinations as columns. If
type=pairwise, a matrix of genome-wide pairwise Fst values is returned.

References

Bhatia G, Patterson N, Sankararaman S, Price AL. (2013) Estimating and Interpreting FST: The
Impact of Rare Variants. Genome Research, 23(9):1514-1521.

Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population
structure. Evolution, 38(6): 1358-1370.

See Also

hierfstat::pairwise.neifst()

Examples

example_gt <- load_example_gt("gen_tbl")

For a basic global pairwise Fst calculation:

example_gt %>%

group_by(population) %>%
pairwise_pop_fst(method = "Nei87")

100

pop_fis

With a pairwise matrix:

example_gt %>%

group_by(population) %>%
pairwise_pop_fst(method = "Nei87", type = "pairwise")

To calculate Fst by locus:

example_gt %>%

group_by(population) %>%
pairwise_pop_fst(method = "Hudson”, by_locus = TRUE)

pop_fis

Compute population specific FIS

Description

This function computes population specific FIS, using either the approach of Nei 1987 (with an
algorithm equivalent to the one used by hierfstat: :basic.stats()) or of Weir and Goudet 2017
(with an algorithm equivalent to the one used by hierfstat::fis.dosage()).

Usage

pop_fis(
X,

method = c("Nei87", "WG17"),
by_locus = FALSE,
include_global = FALSE,
allele_sharing_mat = NULL

Arguments

X

method

by_locus

a grouped gen_tibble (as obtained by using dplyr: :group_by())

one of "Nei87" (based on Nei 1987, eqn 7.41) or "WG17" (for Weir and Goudet
2017) to compute FIS

boolean, determining whether FIS should be returned by locus(TRUE), or as a
single genome wide value (FALSE, the default). Note that this is only relevant
for "Nei87", as "WG17" always returns a single value.

include_global boolean determining whether, besides the population specific estimates, a global

estimate should be appended. Note that this will return a vector of n populations
plus 1 (the global value), or a matrix with n+1 columns if by_locus=TRUE.

allele_sharing_mat

optional and only relevant for "WG17", the matrix of Allele Sharing returned by
pairwise_allele_sharing() with as_matrix=TRUE. As a number of statistics
can be derived from the Allele Sharing matrix, it is sometimes more efficient to
pre-compute this matrix.

pop_fst 101

Value

a vector of population specific fis (plus the global value if include_global=TRUE)

References

Nei M. (1987) Molecular Evolutionary Genetics. Columbia University Press Weir, BS and Goudet
J (2017) A Unified Characterization of Population Structure and Relatedness. Genetics (2017)
206:2085

See Also

hierfstat::basic.stats() hierfstat::fis.dosage()

Examples

example_gt <- load_example_gt("grouped_gen_tbl")

Compute FIS using Nei87
example_gt %>% pop_fis(method = "Nei87")

Compute FIS using WG17
example_gt %>% pop_fis(method = "WG17")

To include the global FIS, set include_global = TRUE
example_gt %>% pop_fis(method = "Nei87", include_global = TRUE)

To return FIS by locus, set by_locus = TRUE
example_gt %>% pop_fis(method = "Nei87", by_locus = TRUE)

To calculate from a pre-computed allele sharing matrix:
allele_sharing_mat <- pairwise_allele_sharing(example_gt, as_matrix = TRUE)
example_gt %>% pop_fis(

method = "WG17",

allele_sharing_mat = allele_sharing_mat

)

pop_fst Compute population specific Fst

Description
This function computes population specific Fst, using the approach in Weir and Goudet 2017 (as
computed by hierfstat::fst.dosage()).

Usage

pop_fst(.x, include_global = FALSE, allele_sharing_mat = NULL)

102 pop_global_stats

Arguments

X a grouped gen_tibble (as obtained by using dplyr: :group_by())

include_global boolean determining whether, besides the population specific Fst, a global Fst
should be appended. Note that this will return a vector of n populations plus 1
(the global value)

allele_sharing_mat
optional, the matrix of Allele Sharing returned by pairwise_allele_sharing()
with as_matrix=TRUE. As a number of statistics can be derived from the Allele
Sharing matrix,

Value

a vector of population specific Fst (plus the global value if include_global=TRUE)

References
Weir, BS and Goudet J (2017) A Unified Characterization of Population Structure and Relatedness.
Genetics (2017) 206:2085

See Also

hierfstat::fst.dosage()

Examples

example_gt <- load_example_gt("grouped_gen_tbl")

Compute FIS using Nei87
example_gt %>% pop_fst()

To include the global Fst, set include_global = TRUE
example_gt %>% pop_fst(include_global = TRUE)

To calculate from a pre-computed allele sharing matrix:
allele_sharing_mat <- pairwise_allele_sharing(example_gt, as_matrix = TRUE)
example_gt %>% pop_fst(allele_sharing_mat = allele_sharing_mat)

pop_global_stats Compute basic population global statistics

Description

This function computes basic population global statistics, following the notation in Nei 1987 (which
in turn is based on Nei and Chesser 1983):

* observed heterozygosity (h, column header Ho)

* expected heterozygosity, also known as gene diversity (hs, Hs)

pop_global_stats 103

Usage

total heterozygosity (hy, Ht)
genetic differentiation between subpopulations (D, Dst)
corrected total population diversity (h}, Htp)

corrected genetic differentiation between subpopulations (D,

> Dstp)
F, ‘s (column header, Fst)

corrected F” s1 (column header Fstp)

FIS (column header, Fis)

Jost’s D (column header, Dest)

pop_global_stats(.x, by_locus = FALSE, n_cores = bigstatsr::nb_cores())

Arguments
. X a gen_tibble (usually grouped, as obtained by using dplyr: :group_by(); use
on a single population will return a number of quantities as NA/NaN)
by_locus boolean, determining whether the statistics should be returned by locus(TRUE),
or as a single genome wide value (FALSE, the default).
n_cores number of cores to be used, it defaults to bigstatsr::nb_cores()
Details

We use the notation of Nei 1987. That notation was for loci with m alleles, but in our case we only
have two alleles, so m=2.

* Within population observed heterozygosity h,, for a locus with m alleles is defined as:

ho =1- 22:1 Z;Zl ini/s

where

Xii represents the proportion of homozygote ¢ in the sample for the kth population and
s the number of populations,

following equation 7.38 in Nei(1987) on pp.164.

Within population expected heterozygosity (gene diversity) h, for a locus with m alleles is
defined as:

hs = () (R = 1)1 = 3272, "F — ho/271)
#nolint where
i = s/ 1/ny (i.e the harmonic mean of ny) and

Ai = 2 3%/
following equation 7.39 in Nei(1987) on pp.164.

Total heterozygosity (total gene diversity) hy for a locus with m alleles is defined as:
he = 1= S0, F o+ o (5) — o/ (25)

where

T = Thifs

following equation 7.40 in Nei(1987) on pp.164.

104 pop_global_stats

* The amount of gene diversity among samples D7 is defined as:
DST - ht - hs
following the equation provided in the text at the top of page 165 in Nei(1987).

* The corrected amount of gene diversity among samples D' is defined as:

Dy = (s/(s =1))Dgr
following the equation provided in the text at the top of page 165 in Nei(1987).

* Total corrected heterozygosity (total gene diversity) hy is defined as:

h'y = hs + Diyp

following the equation provided in the text at the top of page 165 in Nei(1987).
. FIS is defined as:

Frs =1~ ho/hs
following equation 7.41 in Nei(1987) on pp.164.

. E‘ST is defined as: .
Fsp =1—hg/hy = Dsr/hy
following equation 7.43 in Nei(1987) on pp.165.

e F'gr is defined as:

F/ST = DIST/ﬁ/t
following the explanation provided in the text at the top of page 165 in Nei(1987).

« Jost’s D is defined as:

D =(s/(s— 1))((W¢ — hs)/(1 = hs))
as defined by Jost(2008)

All these statistics are first computed by locus, and then averaged across loci (including any
monomorphic locus) to obtain genome-wide values. The function uses the same algorithm as
hierfstat::basic.stats() but is optimized for speed and memory usage.

Value

a tibble of population statistics, with populations as rows and statistics as columns

References

Nei M, Chesser R (1983) Estimation of fixation indexes and gene diversities. Annals of Human
Genetics, 47, 253-259.

Nei M. (1987) Molecular Evolutionary Genetics. Columbia University Press, pp. 164-165.

Jost L (2008) GST and its relatives do not measure differentiation. Molecular Ecology, 17, 4015-
4026.

See Also

hierfstat::basic.stats()

pop_het_exp 105
Examples

example_gt <- load_example_gt("grouped_gen_tbl")

Compute population global statistics
example_gt %>% pop_global_stats()

To return by locus, set by_locus = TRUE
example_gt %>% pop_global_stats(by_locus = TRUE)

pop_het_exp Compute the population expected heterozygosity

Description

This function computes expected population heterozygosity (also referred to as gene diversity, to
avoid the potentially misleading use of the term "expected" in this context), using the formula of
Nei (1987).

Usage

pop_het_exp(
X,
by_locus = FALSE,
include_global = FALSE,
n_cores = bigstatsr::nb_cores()

)

pop_gene_div(
X,
by_locus = FALSE,
include_global = FALSE,
n_cores = bigstatsr::nb_cores()

)
Arguments
X agen_tibble (usually grouped, as obtained by using dplyr: : group_by (), oth-
erwise the full tibble will be considered as belonging to a single population).
by_locus boolean, determining whether Hs should be returned by locus(TRUE), or as a

single genome wide value (FALSE, the default).

include_global boolean determining whether, besides the population specific estimates, a global
estimate should be appended. Note that this will return a vector of n populations
plus 1 (the global value), or a matrix with n+1 columns if by_locus=TRUE.

n_cores number of cores to be used, it defaults to bigstatsr::nb_cores()

106 pop_het_obs

Details

Within population expected heterozygosity (gene diversity) h. for a locus with m alleles is defined
as: _
he=n/(h—1)[1 =" "¢ — h,/27)]
#nohnt

where
it = s/, 1/ny (i.e the harmonic mean of ny) and

A‘@? =2k hi/s
following equation 7.39 in Nei(1987) on pp.164. In our specific case, there are only two alleles, so
m = 2. hg at the genome level for each population is simply the mean of the locus estimates for

each population.

Value
a vector of mean population observed heterozygosities (if by_locus=FALSE), or a matrix of esti-
mates by locus (rows are loci, columns are populations, by_locus=TRUE)

References

Nei M. (1987) Molecular Evolutionary Genetics. Columbia University Press

Examples

example_gt <- load_example_gt("grouped_gen_tbl")

Compute expected heterozygosity
example_gt %>% pop_het_exp()

To include the global expected heterozygosity, set include_global = TRUE
example_gt %>% pop_het_exp(include_global = TRUE)

To return by locus, set by_locus = TRUE
example_gt %>% pop_het_exp(by_locus = TRUE)

pop_het_obs Compute the population observed heterozygosity

Description

This function computes population heterozygosity, using the formula of Nei (1987).

pop_het_obs 107

Usage

pop_het_obs(
X,
by_locus = FALSE,
include_global = FALSE,
n_cores = bigstatsr::nb_cores()

)
Arguments
. X agen_tibble (usually grouped, as obtained by using dplyr: : group_by (), oth-
erwise the full tibble will be considered as belonging to a single population).
by_locus boolean, determining whether Ho should be returned by locus(TRUE), or as a

single genome wide value (FALSE, the default).

include_global boolean determining whether, besides the population specific estimates, a global
estimate should be appended. Note that this will return a vector of n populations
plus 1 (the global value), or a matrix with n+1 columns if by_locus=TRUE.

n_cores number of cores to be used, it defaults to bigstatsr::nb_cores()

Details

Within population observed heterozygosity h,, for a locus with m alleles is defined as:

ho=1- 22:1 221 Xkii/s

where

Xis represents the proportion of homozygote ¢ in the sample for the kth population and

s the number of populations,

following equation 7.38 in Nei(1987) on pp.164. In our specific case, there are only two alleles,
so m = 2. For population specific estimates, the sum is done over a single value of k. h,, at the
genome level is simply the mean of the locus estimates.

Value

a vector of mean population observed heterozygosities (if by_locus=FALSE), or a matrix of esti-
mates by locus (rows are loci, columns are populations, by_locus=TRUE)

References

Nei M. (1987) Molecular Evolutionary Genetics. Columbia University Press

Examples

example_gt <- load_example_gt("grouped_gen_tbl")

Compute expected heterozygosity
example_gt %>% pop_het_obs()

To include the global expected heterozygosity, set include_global = TRUE
example_gt %>% pop_het_obs(include_global = TRUE)

108 pop_tajimas_d

To return by locus, set by_locus = TRUE
example_gt %>% pop_het_obs(by_locus = TRUE)

pop_tajimas_d Estimate Tajima’s D for the whole genome

Description

Note that Tajima’s D estimates from data that have been filtered or ascertained can be difficult to
interpret. This function should ideally be used on sequence data prior to filtering.

Usage

pop_tajimas_d(.x, n_cores, block_size, ...)

S3 method for class 'tbl_df'
pop_tajimas_d(
X,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1),

)

S3 method for class 'vctrs_bigSNP'
pop_tajimas_d(
X,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(length(.x), 1),

)

S3 method for class 'grouped_df'
pop_tajimas_d(
X,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1),

)
Arguments
X a vector of class vetrs_bigSNP (usually the genotypes column of a gen_tibble
object), or a gen_tibble.
n_cores number of cores to be used, it defaults to bigstatsr: :nb_cores()
block_size maximum number of loci read at once.

other arguments passed to specific methods, currently unused.

predict.gt_pca 109

Value

A single numeric value (Tajima’s D D) for the whole data set, NA when the statistic is not defined.
For grouped data a list of Tajima’s D D values (one per group) is returned.

Examples

example_gt <- load_example_gt("grouped_gen_tbl")

Compute Tajima's D
example_gt %>% pop_tajimas_d()

predict.gt_pca Predict scores of a PCA

Description

Predict the PCA scores for a gt_pca, either for the original data or projecting new data.

Usage
S3 method for class 'gt_pca'
predict(
object,
new_data = NULL,
project_method = c("none”, "simple"”, "OADP", "least_squares"),

1sq_pcs = c(1, 2),
block_size = NULL,
n_cores = 1,

as_matrix = TRUE,
)
Arguments
object the gt_pca object
new_data a gen_tibble if scores are requested for a new dataset

project_method a string taking the value of either "simple", "OADP" (Online Augmentation,
Decomposition, and Procrustes (OADP) projection), or "least_squares" (as done
by SMARTPCA)

1sq_pcs a vector of the indices of the principal components to use for the least square
fitting. Only relevant if project_method = 'least_squares'. It defaults to
the first two components.

block_size number of loci read simultaneously (larger values will speed up computation,
but require more memory)

110 predict.gt_pca

n_cores number of cores
as_matrix logical, whether to return the result as a matrix (default) or a tibble.
no used
Value

a matrix of predictions (in line with predict using a prcomp object) or a tibble, with samples as rows
and components as columns. The number of components depends on how many were estimated in
the gt_pca object.

References

Zhang et al (2020). Fast and robust ancestry prediction using principal component analysis 36(11):
3439-3446.

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata”, "lobster"”, "lobster.bed", package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("”lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > 0)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Subset into two datasets: one original and one to predict
original_lobsters <- lobsters[c(1:150),]
new_lobsters <- lobsters[c(151:176),]

Create PCA object
pca <- gt_pca_partialSVD(original_lobsters)

Predict
predict(pca, new_data = new_lobsters, project_method = "simple")

Predict with OADP
predict(pca, new_data = new_lobsters, project_method = "OADP")

Predict with least squares
predict(pca,
new_data = new_lobsters,
project_method = "least_squares”, 1lsq_pcs = c(1, 2, 3)

)

Return a tibble
predict(pca, new_data = new_lobsters, as_matrix = FALSE)

qc_report_indiv 111

Adjust block.size
predict(pca, new_data = new_lobsters, block_size = 10)

gc_report_indiv Create a Quality Control report for individuals

Description

Return QC information to assess loci (Observed heterozygosity and missingness).

Usage

gc_report_indiv(.x, ...)

S3 method for class 'tbl_df'

gc_report_indiv(.x, kings_threshold = NULL, ...)
S3 method for class 'grouped_df'
gc_report_indiv(.x, kings_threshold = NULL, ...)
Arguments
X either a gen_tibble object or a grouped gen_tibble (as obtained by using

dplyr::group_by())

e further arguments to pass

kings_threshold
an optional numeric giving a KING kinship coefficient, or one of:

* "first": removing first degree relatives, equivalent to a kinship coefficient of
0.177 or more

* "second": removing second degree relatives, equivalent to a kinship coeffi-
cient of 0.088 or more

Details

Providing the parameter kings_threshold will return two additional columns, ’id’ containing the ID
of individuals, and ’to_keep’ a logical vector describing whether the individual should be removed
to retain the largest possible set of individuals with no relationships above the threshold. The
calculated pairwise KING relationship matrix is also returned as an attribute of 'to_keep’. The
kings_threshold parameter can be either a numeric KING kinship coefficient or a string of either
"first" or "second", to remove any first degree or second degree relationships from the dataset.
This second option is similar to using —unrelated —degree 1 or —unrelated —degree 2 in KING. For
pseudohaploid data, only missingness and ploidy are reported.

112 gc_report_loci

Value

If no kings_threshold is provided, a tibble with 2 elements: het_obs and missingness. If kings_threshold
is provided, a tibble with 4 elements: het_obs, missingness, id and to_keep. For pseudohaploid data,
a tibble with ploidy and missingness.

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
example_gt <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)

Get QC report for individuals
example_gt %>% qc_report_indiv()

Get QC report with kinship filtering
example_gt %>% qc_report_indiv(kings_threshold = "first")

gc_report_loci Create a Quality Control report for loci

Description

Return QC information to assess loci (MAF, missingness and HWE test). For pseudohaploid data,
HWE test is not calculated.

Usage
gc_report_loci(.x, ...)

S3 method for class 'tbl_df'
gc_report_loci(.x, ...)

S3 method for class 'grouped_df'

gc_report_loci(.x, ...)
Arguments
. X a gen_tibble object.

currently unused

Value

either a tibble with 3 elements (maf, missingness and hwe_p). For pseudohaploid data, a tibble with
2 elements (maf and missingness).

q_matrix 113

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata"”, "lobster”, "lobster.bed”, package = "tidypopgen")
example_gt <- gen_tibble(bed_file,
backingfile = tempfile("lobsters”),
quiet = TRUE
)

Get a QC report for the loci
example_gt %>% qc_report_loci()

Group by population to calculate HWE within populations
example_gt <- example_gt %>% group_by(population)
example_gt %>% qc_report_loci()

g_matrix Convert a standard matrix to a q_matrix object

Description

Takes a single Q matrix that exists as either a matrix or a data frame and returns a g_matrix object.

Usage

g_matrix(x)

Arguments

X A matrix or a data frame

Value

A g_matrix object

Examples

Read in a single .Q file

g_mat <- read.table(system.file("extdata”, "anolis”, "anolis_ld_run1.3.Q",
package = "tidypopgen”

))

class(g_mat)

Convert to a Q matrix object
g_mat <- g_matrix(q_mat)
class(g_mat)

114 rbind.gen_tbl

rbind.gen_tbl Combine two gen_tibbles

Description

This function combined two gen_tibbles. By defaults, it subsets the loci and swaps ref and alt
alleles to make the two datasets compatible (this behaviour can be switched off with as_is). The
first object is used as a "reference" , and SNPs in the other dataset will be flipped and/or alleles
swapped as needed. SNPs that have different alleles in the two datasets (i.e. triallelic) will also
be dropped. There are also options (NOT default) to attempt strand flipping to match alleles (often
needed in human datasets from different SNP chips), and remove ambiguous alleles (C/G and A/T)
where the correct strand can not be guessed.

Usage

S3 method for class 'gen_tbl'
rbind(
as_is = FALSE,
flip_strand = FALSE,
use_position = FALSE,
quiet = FALSE,
backingfile = NULL

)
Arguments
two gen_tibble objects. Note that this function can not take more objects,
rbind has to be done sequentially for large sets of objects.
as_is boolean determining whether the loci should be left as they are before merging.

If FALSE (the defaults), rbind will attempt to subset and swap alleles as needed.

flip_strand boolean on whether strand flipping should be checked to match the two datasets.
If this is set to TRUE, ambiguous SNPs (i.e. A/T and C/G) will also be removed.
It defaults to FALSE

use_position boolean of whether a combination of chromosome and position should be used
for matching SNPs. By default, rbind uses the locus name, so this is set to
FALSE. When using "use_position=TRUE’, make sure chromosomes are coded
in the same way in both gen_tibbles (a mix of e.g. ’chrl’, ’1’ or ’chromo-
somel’ can be the reasons if an unexpectedly large number variants are dropped
when merging).

quiet boolean whether to omit reporting to screen

backingfile the path and prefix of the files used to store the merged data (it will be a .RDS
to store the bigSNP object and a .bk file as its backing file for the FBM)

rbind_dry_run 115

Details

rbind differs from merging data with plink, which swaps the order of allelel and allele2 according
to minor allele frequency when merging datasets. rbind flips and/or swaps alleles according to the
reference dataset, not according to allele frequency.

Value

a gen_tibble with the merged data.

Examples

example_gt <- load_example_gt("gen_tbl")

Create a second gen_tibble to merge
test_indiv_meta <- data.frame(
id = c("x", "y", "z"),
population = c("pop1”, "pop1"”, "pop2")
)
test_genotypes <- rbind(
c(l, 1, 0, 1, 1, @),
c(2, 1, 0, 0, 0, 0),
c(2, 2, 0,0, 1, 1)
)
test_loci <- data.frame(
name = paste@("rs”, 1:6),
chromosome = paste@(”chr”, c(1, 1, 1, 1, 2, 2)),
position = as.integer(c(3, 5, 65, 343, 23, 456)),
genetic_dist = as.double(rep(@, 6)),
allele_ref = c("A", "T", "C", "G", "C", "T"),
allele_alt = c("T", "C", NA, "C", "G", "A")

)

test_gt <- gen_tibble(
x = test_genotypes,
loci = test_loci,
indiv_meta = test_indiv_meta,
valid_alleles = c("A", "T", "C", "G"),
quiet = TRUE

)

Merge the datasets using rbind
merged_gt <- rbind(ref = example_gt, target = test_gt, flip_strand = TRUE)

merged_gt

rbind_dry_run Generate a report of what would happen to each SNP in a merge

116

Description

rbind_dry_run

This function provides an overview of the fate of each SNP in two gen_tibble objects in the case
of a merge. Only SNPs found in both objects will be kept. One object is used as a reference, and
SNPs in the other dataset will be flipped and/or alleles swapped as needed. SNPs that have different
alleles in the two datasets will also be dropped.

Usage

rbind_dry_run(

ref,
target,

use_position

= FALSE,

flip_strand = FALSE,

quiet = FALSE

Arguments

ref

target

use_position

flip_strand

quiet

Value

either a gen_tibble object, or the path to the PLINK bim file; the alleles in
this objects will be used as template to flip the ones in target and/or swap their
order as necessary.

either a gen_tibble object, or the path to the PLINK bim file

boolean of whether a combination of chromosome and position should be used
for matching SNPs. By default, rbind uses the locus name, so this is set to
FALSE. When using "use_position=TRUE’, make sure chromosomes are coded
in the same way in both gen_tibbles (a mix of e.g. ’chrl’, ’1’ or ’chromo-
somel’ can be the reasons if an unexpectedly large number variants are dropped
when merging).

boolean on whether strand flipping should be checked to match the two datasets.
Ambiguous SNPs (i.e. A/T and C/G) will also be removed. It defaults to FALSE

boolean whether to omit reporting to screen

a list with two data.frames, named target and ref. Each data.frame has nrow() equal to the
number of loci in the respective dataset, a column id with the locus name, and boolean columns
to_keep (the valid loci that will be kept in the merge), alleles_mismatched (loci found in both
datasets but with mismatched alleles, leading to those loci being dropped), to_flip (loci that need
to be flipped to align the two datasets, only found in target data.frame) and to_swap (loci for
which the order of alleles needs to be swapped to align the two datasets, target data.frame)

Examples

example_gt <- load_example_gt("gen_tbl")

Create a second gen_tibble to merge
test_indiv_meta <- data.frame(

nyn

id = c("x",

nn
) z),

read_q_files 117

population = c("pop1”, "pop1"”, "pop2")

)

test_genotypes <- rbind(
c(l, 1, 2,1, 1,
c(2, 1, 2, 0, 9,
c(2, 2, 2,0, 1)

)

test_loci <- data.frame(
name = paste@("rs”, 1:5),
chromosome = paste@(”chr”, c(1, 1, 1, 1, 2)),
position = as.integer(c(3, 5, 65, 343, 23)),
genetic_dist = as.double(rep(0, 5)),
allele_ref = c("A", "T", "C", "G", "C"),
allele_alt = c("T", "C", NA, "C", "G")

)

test_gt <- gen_tibble(
X = test_genotypes,
loci = test_loci,
indiv_meta = test_indiv_meta,
valid_alleles = c("A", "T", "C", "G"),
quiet = TRUE

)

Create an rbind report using rbind_dry_run
rbind_dry_run(example_gt, test_gt, flip_strand = TRUE)

read_g_files Read and structure .Q files or existing matrices as q_matrix or
gt_admix objects.

Description
This function reads .Q matrix files generated by external clustering algorithms (such as ADMIX-
TURE) and transforms them into gt_admix objects.

Usage
read_qg_files(x)

Arguments
X can be:
* apath to a directory containing .Q files
Value

* a gt_admix object containing a list of Q matrices and a list of indices for each Q matrix
separated by K

118 scale_fill_distruct

Examples

g_files_path <- system.file("extdata”, "anolis"”, package = "tidypopgen")

admix_obj <- read_g_files(q_files_path)
summary (admix_obj)

scale_fill_distruct Scale constructor using the distruct colours

Description

A wrapper around ggplot2: :scale_fill_manual(), using the distruct colours from distruct_colours.

Usage
scale_fill_distruct(guide = "none”, ...)
Arguments
guide guide function passed to ggplot2: :scale_fill_manual(). Defaults to "none",
set to "legend" if a legend is required.
further parameters to be passed to ggplot2::scale_fill_manual()
Value

a scale constructor to be used with ggplot

See Also

ggplot2::scale_fill_manual() which this function wraps.

Examples

library(ggplot2)
Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata”, "lobster”, "lobster.bed", package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("”lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > 0)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object
pca <- gt_pca_partialSVD(lobsters)

select_loci 119

Colour by population
autoplot(pca, type = "scores") +
aes(colour = lobsters$population) + scale_fill_distruct()

select_loci The select verb for loci

Description

An equivalent to dplyr::select() that works on the genotype column of a gen_tibble, using
the mini-grammar available for tidyselect. The select-like evaluation only has access to the
names of the loci (i.e. it can select only based on names, not summary statistics of those loci; look
at select_loci_if () for that feature.

Usage

select_loci(.data, .sel_arg)

Arguments
.data agen_tibble
.sel_arg one unquoted expression, using the mini-grammar of dplyr::select() to se-
lect loci. Variable names can be used as if they were positions in the data frame,
so expressions like x:y can be used to select a range of variables.
Details

Note that the select_loci verb does not modify the backing FBM files, but rather it subsets the
list of loci to be used stored in the gen_tibble.

Value

a gen_tibble with a subset of the loci.

See Also
dplyr::select()

Examples

example_gt <- load_example_gt("gen_tbl")

Select loci by name

example_gt_subset <- example_gt %>%
select_loci(all_of(c("rs1"”, "rs2", "rs3")))

show_loci(example_gt_subset)

Select loci by index
example_gt_subset <- example_gt %>% select_loci(all_of(c(4, 2, 1)))

120 select_loci_if

show_loci(example_gt_subset)

select_loci_if The select_if verb for loci

Description

An equivalent to dplyr: :select_if () that works on the genotype column of a gen_tibble. This
function has access to the genotypes (and thus can work on summary statistics to select), but not
the names of the loci (look at select_loci () for that feature.

Usage

select_loci_if(.data, .sel_logical)

Arguments

.data agen_tibble

.sel_logical a logical vector of length equal to the number of loci, or an expression that will
tidy evaluate to such a vector. Only loci for which .sel_logical is TRUE will be
selected; NA will be treated as FALSE.

Details
Note that the select_loci_if verb does not modify the backing FBM files, but rather it subsets
the list of loci to be used stored in the gen_tibble.

Value

a subset of the list of loci in the gen_tibble

See Also
dplyr::select_if ()

Examples

example_gt <- load_example_gt("gen_tbl")

Select loci by chromosome

example_gt_subset <- example_gt %>%
select_loci_if(loci_chromosomes(genotypes) == "chr2")

show_loci(example_gt_subset)

Select loci by a summary statistic

example_gt_subset <- example_gt %>%
select_loci_if(loci_maf(genotypes) > 0.2)

show_loci(example_gt_subset)

show_genotypes 121

show_genotypes Show the genotypes of a gen_tibble

Description

Extract the genotypes (as a matrix) from a gen_tibble.

Usage

show_genotypes(.x, indiv_indices = NULL, loci_indices = NULL, ...)

S3 method for class 'tbl_df'

show_genotypes(.x, indiv_indices = NULL, loci_indices = NULL, ...)
S3 method for class 'vctrs_bigSNP'
show_genotypes(.x, indiv_indices = NULL, loci_indices = NULL, ...)
Arguments
. X a vector of class vetrs_bigSNP (usually the genotype column of a gen_tibble

object), or a gen_tibble.
indiv_indices indices of individuals
loci_indices indices of loci

currently unused.

Value

a matrix of counts of the alternative alleles (see show_loci()) to extract information on the alleles
for those loci from a gen_tibble.

Examples

example_gt <- load_example_gt("gen_tbl")

example_gt %>% show_genotypes()

show_loci Show the loci information of a gen_tibble

Description

Extract and set the information on loci from a gen_tibble.

122 show_ploidy
Usage
show_loci(.x, ...)

S3 method for class 'tbl_df'
show_loci(.x, ...)

S3 method for class 'vctrs_bigSNP'
show_loci(.x, ...)

show_loci(.x) <- value

S3 replacement method for class 'tbl_df'
show_loci(.x) <- value

S3 replacement method for class 'vctrs_bigSNP'
show_loci(.x) <- value

Arguments
. X a vector of class vetrs_bigSNP (usually the genotype column of a gen_tibble
object), or a gen_tibble.
currently unused.
value a data.frame or tibble of loci information to replace the current one.
Value

a tibble::tibble of information (see gen_tibble for details on compulsory columns that will
always be present)

Examples

example_gt <- load_example_gt("gen_tbl")

example_gt %>% show_loci()

show_ploidy Show the ploidy information of a gen_tibble

Description

Extract the ploidy information from a gen_tibble. NOTE that this function does not return the
ploidy level for each individual (that is obtained with indiv_ploidy); instead, it returns an integer
which is either the ploidy level of all individuals (e.g. 2 indicates all individuals are diploid), or
a 0 to indicate mixed ploidy. The special case of -2 is used to indicate the presence of pseudo-
haploids (i.e. individuals with a ploidy of 2 but for which we only have information for one allele;
the dosages are O or 2 for these individuals).

snp_allele_sharing 123
Usage
show_ploidy(.x, ...)

S3 method for class 'tbl_df'
show_ploidy(.x, ...)

S3 method for class 'vctrs_bigSNP'

show_ploidy(.x, ...)
Arguments
. X a vector of class vetrs_bigSNP (usually the genotype column of a gen_tibble

object), or a gen_tibble.

currently unused.

Value

the ploidy (0 indicates mixed ploidy)

See Also

indiv_ploidy()

Examples

example_gt <- load_example_gt("gen_tbl")

example_gt %>% show_ploidy()

snp_allele_sharing Compute the Pairwise Allele Sharing Matrix for a bigSNP object

Description

This function computes the Allele Sharing matrix. Estimates Allele Sharing (matching in hierfstat))
between pairs of individuals (for each locus, gives 1 if the two individuals are homozygous for the
same allele, O if they are homozygous for a different allele, and 1/2 if at least one individual is
heterozygous. Matching is the average of these 0, 1/2 and 1s)

Usage

snp_allele_sharing(
X,
ind.row = bigstatsr::rows_along(X),
ind.col = bigstatsr::cols_along(X),
block.size = bigstatsr::block_size(nrow(X))

124 snp_ibs

Arguments
X abigstatsr::FBM.code256 matrix (as found in the genotypes slot of a bigsnpr::bigSNP
object).
ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.
block.size maximum number of columns read at once. Note that, to optimise the speed of
matrix operations, we have to store in memory 3 times the columns.
Value

a matrix of allele sharing between all pairs of individuals

See Also

pairwise_allele_sharing() hierfstat::matching()
Examples
example_gt <- load_example_gt("gen_tbl")

X <- attr(example_gt$genotypes, "fbm")
snp_allele_sharing(X)

Compute for individuals 1 to 5
snp_allele_sharing(X, ind.row = 1:5, ind.col = 1:5)

Adjust block size
snp_allele_sharing(X, block.size = 2)

snp_ibs Compute the Identity by State Matrix for a bigSNP object

Description

This function computes the IBS matrix.

Usage

snp_ibs(
X,
ind.row = bigstatsr::rows_along(X),
ind.col = bigstatsr::cols_along(X),
type = c("proportion”, "adjusted_counts”, "raw_counts"),
block.size = bigstatsr::block_size(nrow(X))

snp_ibs

Arguments

X

ind.row

ind.col

type

block.size

Details

125

abigstatsr::FBM.code256 matrix (as found in the genotypes slot of a bigsnpr::bigSNP
object).

An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.

An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.

one of "proportion" (equivalent to "ibs" in PLINK), "adjusted_counts" ("dis-
tance" in PLINK), and "raw_counts" (the counts of identical alleles and non-
missing alleles, from which the two other quantities are computed)

maximum number of columns read at once. Note that, to optimise the speed of
matrix operations, we have to store in memory 3 times the columns.

Note that monomorphic sites are currently counted. Should we filter them beforehand? What does

plink do?

Value

if as.counts = TRUE function returns a list of two bigstatsr::FBM matrices, one of counts of IBS
by alleles (i.e. 2*n loci), and one of valid alleles (i.e. 2 * n_loci - 2 * missing_loci). If as.counts =
FALSE returns a single matrix of IBS proportions.

Examples

example_gt <- load_example_gt("gen_tbl")

X <- attr(example_gt$genotypes, "fbm")

snp_ibs(X)

Compute for individuals 1 to 5
snp_ibs(X, ind.row = 1:5, ind.col = 1:5)

Adjust block.size
snp_ibs(X, block.size = 2)

Change type

snp_ibs(X, type =

snp_ibs(X, type
snp_ibs(X, type

"proportion™)
"adjusted_counts")
"raw_counts")

126 snp_king

snp_king Compute the KING-robust Matrix for a bigSNP object

Description

This function computes the KING-robust estimator of kinship, reimplementing the KING algorithm
of Manichaikul et al. (2010).

Usage

snp_king(
X,
ind.row = bigstatsr::rows_along(X),
ind.col = bigstatsr::cols_along(X),
block.size = bigstatsr::block_size(nrow(X)) * 4

)
Arguments
X a bigstatsr::FBM.code256 matrix (as found in the genotypes slot of a bigsnpr::bigSNP
object).
ind.row An optional vector of the row indices that are used. If not specified, all rows are
used. Don’t use negative indices.
ind.col An optional vector of the column indices that are used. If not specified, all
columns are used. Don’t use negative indices.
block.size maximum number of columns read at once.
Value

a square symmetrical matrix of relationship coefficients between individuals

References
Manichaikul, A. et al. (2010) Robust relationship inference in genome-wide association studies.

Bioinformatics, 26(22), 2867-2873. https://doi.org/10.1093/bioinformatics/btq559.

Examples

example_gt <- load_example_gt("gen_tbl")

X <- attr(example_gt$genotypes, "fbm")
snp_king(X)

Compute for individuals 1 to 5
snp_king(X, ind.row = 1:5, ind.col = 1:5)

Adjust block size

summary.gt_admix

snp_king(X, block.size = 2)

127

summary.gt_admix Summary method for gt_admix objects

Description

Summary method for gt_admix objects

Usage
S3 method for class 'gt_admix'
summary (object, ...)

Arguments
object a gt_admix object

unused (necessary for compatibility with generic function)

Value

A summary of the gt_admix object

Examples

run the example only if we have the package installed
if (requireNamespace("LEA", quietly = TRUE)) {
example_gt <- load_example_gt("gen_tbl")

Create a gt_admix object
admix_obj <- example_gt %>% gt_snmf(k = 1:3, project = "force")

Print a summary
summary (admix_obj)

}

128 summary.rbind_report

summary.rbind_report Print a summary of a merge report

Description

This function creates a summary of the merge report generated by rbind_dry_run()

Usage

S3 method for class 'rbind_report'
summary(object, ..., ref_label = "reference”, target_label = "target")

Arguments

object a list generated by rbind_dry_run()
. unused (necessary for compatibility with generic function)
ref_label the label for the reference dataset (defaults to "reference")

target_label the label for the target dataset (defaults to "target")

Value

NULL (prints a summary to the console)

Examples

example_gt <- load_example_gt("gen_tbl")

Create a second gen_tibble to merge
test_indiv_meta <- data.frame(
id = c("x", "y", "z"),
population = c("pop1”, "popl”, "pop2")
)
test_genotypes <- rbind(
c(l, 1, 0, 1, 1, @),
c(2, 1, o, 0, 0, 9),
c(2, 2, 0,0, 1, 1)
)
test_loci <- data.frame(
name = paste@("rs”, 1:6),
chromosome = paste@("chr”, c(1, 1, 1, 1, 2, 2)),
position = as.integer(c(3, 5, 65, 343, 23, 456)),
genetic_dist = as.double(rep(0, 6)),
allele_ref = c("A", "T", "C", "G", "C", "T"),
allele_alt = c("T", "C", NA, "C", "G", "A")
)

test_gt <- gen_tibble(
X = test_genotypes,

theme_distruct 129

loci = test_loci,
indiv_meta = test_indiv_meta,
valid_alleles = c("A", "T", "C", "G"),
quiet = TRUE

)

Merge the datasets using rbind
report <- rbind_dry_run(
ref = example_gt, target = test_gt,
flip_strand = TRUE, quiet = TRUE
)

Get the summary
summary (report)

theme_distruct A theme to match the output of distruct

Description

A theme to remove most plot decorations, matching the look of plots created with distruct.

Usage

theme_distruct()

Value

a ggplot2::theme

Examples

Read example gt_admix object
admix_obj <-
readRDS(system.file("extdata”, "anolis”, "anole_adm_k3.rds",
package = "tidypopgen”
D)

Basic barplot with disstruct theme
autoplot(admix_obj, k = 3, run = 1, type = "barplot”) +
theme_distruct()

130 tidy.gt_dapc

tidy.gt_dapc Tidy a gt_dapc object

Description

This summarizes information about the components of a gt_dapc from the tidypopgen package.
The parameter matrix determines which element is returned.

Usage
S3 method for class 'gt_dapc'
tidy(x, matrix = "eigenvalues”, ...)
Arguments
X A gt_dapc object (as returned by gt_dapc()).
matrix Character specifying which component of the DAPC should be tidied.

* "samples”, "scores”, or "x": returns information about the map from the
original space into the least discriminant axes.

e "v" "rotation”, "loadings” or "variables": returns information about
the map from discriminant axes space back into the original space (i.e. the
genotype frequencies). Note that this are different from the loadings linking
to the PCA scores (which are available in the element $loadings of the dapc
object).

o "d", "eigenvalues” or "1ds": returns information about the eigenvalues.

Not used. Needed to match generic signature only.

Value

A tibble::tibble with columns depending on the component of DAPC being tidied.

If "scores” each row in the tidied output corresponds to the original data in PCA space. The
columns are:

row ID of the original observation (i.e. rowname from original data).
LD Integer indicating a principal component.
value The score of the observation for that particular principal component. That is, the

location of the observation in PCA space.

If matrix is "loadings"”, each row in the tidied output corresponds to information about the prin-
ciple components in the original space. The columns are:

row The variable labels (colnames) of the data set on which PCA was performed.
LD An integer vector indicating the principal component.

value The value of the eigenvector (axis score) on the indicated principal component.

tidy.gt_pca 131

If "eigenvalues”, the columns are:

LD An integer vector indicating the discriminant axis.

std.dev Standard deviation (i.e. sqrt(eig/(n-1))) explained by this DA (for compatibility
with prcomp.

cumulative Cumulative variation explained by principal components up to this component
(note that this is NOT phrased as a percentage of total variance, since many
methods only estimate a truncated SVD.

See Also

gt_dapc() augment.gt_dapc()

Examples

#' # Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata”, "lobster"”, "lobster.bed", package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("lobsters"),
quiet = TRUE
)

Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > 0)
lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA and run DAPC

pca <- gt_pca_partialSVD(lobsters)

populations <- as.factor(lobsters$population)

dapc_res <- gt_dapc(pca, n_pca = 6, n_da = 2, pop = populations)

Tidy scores
tidy(dapc_res, matrix = "scores")

Tidy eigenvalues
tidy(dapc_res, matrix = "eigenvalues”)

Tidy loadings
tidy(dapc_res, matrix = "loadings")

tidy.gt_pca Tidy a gt_pca object

Description

This summarizes information about the components of a gt_pca from the tidypopgen package.
The parameter matrix determines which element is returned. Column names of the tidied output
match those returned by broom::tidy.prcomp, the tidier for the standard PCA objects returned by
stats::prcomp.

132

Usage

tidy.gt_pca

S3 method for class 'gt_pca'

tidy(x, matrix

Arguments

X

matrix

Value

= "eigenvalues”, ...)

A gt_pca object returned by one of the gt_pca_* functions.

Character specifying which component of the PCA should be tidied.

n o n

* "samples”, "scores”, or "x": returns information about the map from the
original space into principle components space (this is equivalent to product
of u and d).

nonon

e "v" "rotation”, "loadings” or "variables": returns information about
the map from principle components space back into the original space.

» "d", "eigenvalues” or "pcs”: returns information about the eigenvalues.

Not used. Needed to match generic signature only.

A tibble::tibble with columns depending on the component of PCA being tidied.

If "scores” each row in the tidied output corresponds to the original data in PCA space. The

columns are:

row
PC

value

ID of the original observation (i.e. rowname from original data).
Integer indicating a principal component.

The score of the observation for that particular principal component. That is, the
location of the observation in PCA space.

If matrix is "loadings”, each row in the tidied output corresponds to information about the prin-
ciple components in the original space. The columns are:

row
PC

value

The variable labels (colnames) of the data set on which PCA was performed.
An integer vector indicating the principal component.

The value of the eigenvector (axis score) on the indicated principal component.

If "eigenvalues”, the columns are:

PC
std.dev

cumulative

See Also

An integer vector indicating the principal component.
Standard deviation (i.e. sqrt(eig/(n-1))) explained by this PC (for compatibility
with prcomp.

Cumulative variation explained by principal components up to this component
(note that this is NOT phrased as a percentage of total variance, since many
methods only estimate a truncated SVD.

gt_pca_autoSVD() augment_gt_pca

tidy.q_matrix 133

Examples

Create a gen_tibble of lobster genotypes
bed_file <-
system.file("extdata”, "lobster”, "lobster.bed", package = "tidypopgen")
lobsters <- gen_tibble(bed_file,
backingfile = tempfile("”lobsters"”),
quiet = TRUE
)
Remove monomorphic loci and impute
lobsters <- lobsters %>% select_loci_if(loci_maf(genotypes) > 0)

lobsters <- gt_impute_simple(lobsters, method = "mode")

Create PCA object
pca <- gt_pca_partialSVD(lobsters)

Tidy the PCA object
tidy(pca)

Tidy the PCA object for eigenvalues
tidy(pca, matrix = "eigenvalues")

Tidy the PCA object for loadings
tidy(pca, matrix = "loadings")

Tidy the PCA object for scores

tidy(pca, matrix = "scores")
tidy.q_matrix Tidy a Q matrix
Description

Takes a g_matrix object, which is a matrix, and returns a tidied tibble.

Usage
S3 method for class 'gq_matrix'
tidy(x, data, ...)
Arguments
X A Q matrix object (as returned by g_matrix).
data An associated tibble (e.g. a gen_tibble), with the individuals in the same order

as the data used to generate the Q matrix

not currently used

134 windows_indiv_roh

Value

A tidied tibble containing columns:

row ID of the original observation (i.e. rowname from original data).
Q Integer indicating a Q component.
value The proportion for that particular Q value.

Examples

run the example only if we have the package installed
if (requireNamespace("LEA", quietly = TRUE)) {
example_gt <- load_example_gt("gen_tbl")

Create a gt_admix object
admix_obj <- example_gt %>% gt_snmf(k = 1:3, project = "force")

Extract a Q matrix
g_mat_k3 <- get_g_matrix(admix_obj, k = 3, run = 1)

tidy(g_mat_k3, data = example_gt)

windows_indiv_roh Detect runs of homozygosity using a sliding-window approach

Description

This function uses a sliding-window approach to look for runs of homozygosity (or heterozygos-
ity) in a diploid genome. It is based on the package detectRUNS, which implements an approach
equivalent to the one in PLINK.

Usage

windows_indiv_roh(
X,
window_size = 15,
threshold = 0.05,
min_snp = 3,
heterozygosity = FALSE,
max_opp_window = 1,
max_miss_window = 1,
max_gap = 1076,
min_length_bps = 1000,
min_density = 1/1000,
max_opp_run = NULL,
max_miss_run = NULL

windows_indiv_roh 135

gt_roh_window(
X,
window_size = 15,
threshold = 0.05,
min_snp = 3,
heterozygosity = FALSE,
max_opp_window = 1,
max_miss_window = 1,
max_gap = 1076,
min_length_bps = 1000,
min_density = 1/1000,
max_opp_run = NULL,
max_miss_run = NULL

)
Arguments
X a gen_tibble
window_size the size of sliding window (number of SNP loci) (default = 15)
threshold the threshold of overlapping windows of the same state (homozygous/heterozygous)
to call a SNP in a RUN (default = 0.05)
min_snp minimum n. of SNP in a RUN (default = 3)

heterozygosity should we look for runs of heterozygosity (instead of homozygosity? (default =
FALSE)

max_opp_window max n. of SNPs of the opposite type (e.g. heterozygous snps for runs of ho-
mozygosity) in the sliding window (default = 1)

max_miss_window
max. n. of missing SNP in the sliding window (default = 1)

max_gap max distance between consecutive SNP to be still considered a potential run
(default = 1076 bps)

min_length_bps minimum length of run in bps (defaults to 1000 bps = 1 kbps)

min_density minimum n. of SNP per kbps (defaults to 0.1 = 1 SNP every 10 kbps)

max_opp_run max n. of opposite genotype SNPs in the run (optional)

max_miss_run max n. of missing SNPs in the run (optional)

Details

This function returns a data frame with all runs detected in the dataset. The data frame is, in turn,
the input for other functions of the detectRUNS package that create plots and produce statistics
from the results (see plots and statistics functions in this manual, and/or refer to the detectRUNS
vignette).

If the gen_tibble is grouped, then the grouping variable is used to fill in the ’group’ column.
Otherwise, the *group’ column is filled with the same values as the ’id’ column. Note that this be-
haviour is different from other windowed operations in tidypopgen, which return a list for grouped
gen_tibbles; this different behaviour is designed to maintain compatibility with detectRUNS.

136 windows_nwise_pop_pbs

The old name for this function, gt_roh_window, is still available, but it is soft deprecated and will
be removed in future versions of tidypopgen.

Value

A dataframe with RUNs of Homozygosity or Heterozygosity in the analysed dataset. The returned
dataframe contains the following seven columns: "group", "id", "chrom", "nSNP", "from", "to",
"lengthBps" (group: population, breed, case/control etc.; id: individual identifier; chrom: chromo-
some on which the run is located; nSNP: number of SNPs in the run; from: starting position of the

run, in bps; to: end position of the run, in bps; lengthBps: size of the run)

See Also

detectRUNS: :s1idingRUNS.run() which this function wraps.

Examples

sheep_ped <- system.file("extdata”, "Kijas2016_Sheep_subset.ped”,
package = "detectRUNS”

)

sheep_gt <- tidypopgen::gen_tibble(sheep_ped,
backingfile = tempfile(),
quiet = TRUE

)

sheep_gt <- sheep_gt %>% group_by(population)

sheep_roh <- windows_indiv_roh(sheep_gt)

detectRUNS: :plot_Runs(runs = sheep_roh)

windows_nwise_pop_pbs Compute the Population Branch Statistics over a sliding window

Description

The function computes the population branch statistics (PBS) for a sliding window for each com-
bination of populations at each locus. The PBS is a measure of the genetic differentiation between
one focal population and two reference populations, and is used to identify outlier loci that may be
under selection.

Usage

windows_nwise_pop_pbs(
X,
type = c("matrix”, "tidy"),
fst_method = c("Hudson”, "Nei87", "WC84"),
return_fst = FALSE,
window_size,
step_size,

windows_nwise_pop_pbs 137

size_unit = c("snp”, "bp"),

min_loci =

complete

)

Arguments

. X

type

fst_method

return_fst
window_size
step_size

size_unit

min_loci

complete

Value

FALSE

a grouped gen_tibble object

n

type of object to return. One of "matrix" or "tidy". Default is "matrix". "ma-
trix" returns a dataframe where each row is a window, followed by columns of
pbs values for each population comparison. "tidy" returns a tidy tibble of the
same data in ’long’ format, where each row is one window for one population
comparison.

the method to use for calculating Fst, one of "Hudson’, Nei87°, and "WC84’.
See pairwise_pop_fst() for details.

a logical value indicating whether to return the Fst values
The size of the window to use for the estimates.
The step size to use for the windows.

Either "snp" or "bp". If "snp", the window size and step size are in number of
SNPs. If "bp", the window size and step size are in base pairs.

The minimum number of loci required to calculate a window statistic. If the
number of loci in a window is less than this, the window statistic will be NA.

Should the function be evaluated on complete windows only? If FALSE, the
default, then partial computations will be allowed at the end of the chromosome.

either a data frame with the following columns:

¢ chromosome: the chromosome for the window

* start: the starting locus of the window

* end: the ending locus of the window

* pbs_a.b.c: the PBS value for population a given b & c (there will be multiple such columns
covering all 3 way combinations of populations in the grouped gen_tibble object)

* fst_a.b: the Fst value for population a and b, if return_fst is TRUE or a tidy tibble with
the following columns:

e chromosome: the chromosome for the window

* start: the starting locus of the window

* end: the ending locus of the window

* stat_name: the name of populations used in the pbs calculation (e.g. "pbs_popl.pop2.pop3").
If return_fst is TRUE, stat_name will also include "fst" calculations in the same column (e.g.
"fst_popl.pop2").

* value: the pbs value for the populations

138

Examples

windows_pairwise_pop_fst

example_gt <- load_example_gt("grouped_gen_tbl")

Calculate nwise pbs across a window of 3 SNPs, with a step size of 2 SNPs

example_gt %>%

windows_nwise_pop_pbs(
window_size = 3, step_size = 2,
size_unit = "snp”, min_loci = 2

)

windows_pairwise_pop_fst

Compute pairwise Fst for a sliding window

Description

This function computes pairwise Fst for a sliding window across each chromosome.

Usage

windows_pairwise_pop_fst(

X,

type = c("matrix”, "tidy"),
method = c(”Hudson”, "Nei87", "WC84"),

window_size,

step_size,
size_unit = c("snp”, "bp"),
min_loci
complete = FALSE
)
Arguments
. X a grouped gen_tibble object
type type of object to return. One of "matrix" or "tidy". Default is "matrix". "matrix"
returns a dataframe where each row is a window, followed by columns of Fst
values for each pairwise population a and b comparison. "tidy" returns a tidy
tibble of the same data in ’long’ format, where each row is one window for one
pairwise population a and b comparison.
method the method to use for calculating Fst, one of "Hudson’, *Nei87’, and *"WC84’.

window_size
step_size

size_unit

See pairwise_pop_fst() for details.
The size of the window to use for the estimates.
The step size to use for the windows.

Either "snp" or "bp". If "snp", the window size and step size are in number of
SNPs. If "bp", the window size and step size are in base pairs.

windows_pop_tajimas_d 139

min_loci The minimum number of loci required to calculate a window statistic. If the
number of loci in a window is less than this, the window statistic will be NA.

complete Should the function be evaluated on complete windows only? If FALSE, the
default, then partial computations will be allowed at the end of the chromosome.

Value

either a data frame with the following columns:

e chromosome: the chromosome for the window
e start: the starting locus of the window
* end: the ending locus of the window

» fst_a.b: the pairwise Fst value for the population a and b (there will be multiple such
columns if there are more than two populations) or a tidy tibble with the following columns:

* chromosome: the chromosome for the window

* start: the starting locus of the window

* end: the ending locus of the window

* stat_name: the name of population a and b used in the pairwise Fst calculation (e.g. "fst_popl.pop2")

* value: the pairwise Fst value for the population a and b

Examples
example_gt <- load_example_gt("gen_tbl")

example_gt %>%
group_by(population) %>%
windows_pairwise_pop_fst(
window_size = 3, step_size = 2,
size_unit = "snp”, min_loci = 2

)

windows_pop_tajimas_d Compute Tajima’s D for a sliding window

Description

This function computes Tajima’s D for a sliding window across each chromosome.

140

Usage

windows_pop_tajimas_d

windows_pop_tajimas_d(
X,
type = c("matrix”, "tidy"”, "list"),
window_size,
step_size,
size_unit = c("snp”, "bp"),
min_loci = 1,
complete = FALSE

)
Arguments
X a (potentially grouped) gen_tibble object
type type of object to return, if using grouped method. One of "matrix", "tidy", or
"list". Default is "matrix".
window_size The size of the window to use for the estimates.
step_size The step size to use for the windows.
size_unit Either "snp" or "bp". If "snp", the window size and step size are in number of
SNPs. If "bp", the window size and step size are in base pairs.
min_loci The minimum number of loci required to calculate a window statistic. If the
number of loci in a window is less than this, the window statistic will be NA.
complete Should the function be evaluated on complete windows only? If FALSE, the
default, then partial computations will be allowed at the end of the chromosome.
Value

if data is not grouped, a data frame with the following columns:

chromosome: the chromosome for the window
start: the starting locus of the window
end: the ending locus of the window

tajimas_d: the Tajima’s D for the population if data are grouped, either: a data frame as
above with the following columns:

chromosome: the chromosome for the window
start: the starting locus of the window

end: the ending locus of the window

n_loci: the number of loci in the window

group: the Tajima’s D for the group for the given window (there will be as many of these
columns as groups in the gen_tibble, and they will be named by the grouping levels) a tidy
tibble with the following columns:

chromosome: the chromosome for the window

start: the starting locus of the window

windows_stats_generic 141

* end: the ending locus of the window
* n_loci: the number of loci in the window
* group: the name of the group

* stat: the Tajima’s D for the given group at the given window or a list of data frames, one per
group, with the following columns:

* chromosome: the chromosome for the window
* start: the starting locus of the window

* end: the ending locus of the window

* stat: the Tajima’s D for the given window

e n_loci: the number of loci in the window

Examples

example_gt <- load_example_gt("grouped_gen_tbl")

Calculate Tajima's D across a window of 3 SNPs, with a step size of 2 SNPs
example_gt %>%
windows_pop_tajimas_d(
window_size = 3, step_size = 2,
size_unit = "snp”, min_loci = 2

)

windows_stats_generic Estimate window statistics from per locus estimates

Description

This function is mostly designed for developers: it is a general function to estimate window statistics
from per locus estimates. This function takes a vector of per locus estimates, and aggregates them
by sum or mean per window. To compute specific quantities directly from a gen_tibble, use the
appropriate window_x functions, e.g windows_pairwise_pop_fst() to compute pairwise Fst.

Usage

windows_stats_generic(
X,
loci_table,
operator = c("mean”, "sum", "custom"),
window_size,
step_size,
size_unit = c("snp”, "bp"),
min_loci 1,
complete = FALSE,
f = NULL,

142 windows_stats_generic

Arguments
X A vector containing the per locus estimates.
loci_table a dataframe including at least a column ’chromosome’, and additionally a col-
umn ’position’ if size_unit is "bp".
operator The operator to use for the window statistics. Either "mean", "sum" or "custom"
to use a custom function . f.
window_size The size of the window to use for the estimates.
step_size The step size to use for the windows.
size_unit Either "snp" or "bp". If "snp", the window size and step size are in number of
SNPs. If "bp", the window size and step size are in base pairs.
min_loci The minimum number of loci required to calculate a window statistic. If the
number of loci in a window is less than this, the window statistic will be NA.
complete Should the function be evaluated on complete windows only? If FALSE, the
default, then partial computations will be allowed at the end of the chromosome.
f a custom function to use for the window statistics. This function should take a
vector of locus estimates and return a single value.
Additional arguments to be passed to the custom operator function.
Value

A tibble with columns: ’chromosome’, ’start’, end’, ’stats’, and ’n_loci’. The ’stats’ column con-
tains the mean of the per locus estimates in the window, and ’n_loci’ contains the number of loci in
the window.

Examples
example_gt <- load_example_gt("gen_tbl")
miss_by_locus <- loci_missingness(example_gt)

Calculate mean missingness across windows

windows_stats_generic(miss_by_locus,
loci_table = show_loci(example_gt),
operator = "mean”, window_size = 1000,
step_size = 1000, size_unit = "bp",
min_loci = 1, complete = FALSE

$<-.gen_tbl 143

$<-.gen_tbl A $ method for gen_tibble objects

Description

A'$ method for gen_tibble objects

Usage

S3 replacement method for class 'gen_tbl'
x$i <- value

Arguments
X a gen_tibble
i column name
value a value to assign
Value

agen_tibble
Examples
example_gt <- load_example_gt("gen_tbl")

Add a new column
example_gt$region <- "East”

example_gt

Index

x datasets
distruct_colours, 25
$<-.gen_tbl, 143

adegenet: :dapc, 47, 48
adegenet: :dapc(), 48
adegenet: :scatter.dapc, 47
arrange.gen_tbl, 4
arrange.grouped_gen_tbl, 5
augment.gt_dapc, 6
augment.gt_dapc(), 131
augment.gt_pca (augment_gt_pca), 7
augment.q_matrix (augment_q_matrix), 10
augment_gt_pca, 7, 132
augment_loci, 8
augment_loci.gt_pca
(augment_loci_gt_pca), 9
augment_loci_gt_pca, 9
augment_q_matrix, 10
autoplot.gt_admix (autoplot_gt_admix),
17
autoplot.gt_cluster_pca, 11
autoplot.gt_dapc, 12
autoplot.gt_dapc(), 47
autoplot.gt_pca (autoplot_gt_pca), 19
autoplot.gt_pcadapt
(autoplot_gt_pcadapt), 20
autoplot.qg_matrix (autoplot_qg_matrix),
21
autoplot.qc_report_indiv, 14
autoplot.qc_report_loci, 15
autoplot_gt_admix, 17
autoplot_gt_pca, 19
autoplot_gt_pcadapt, 20
autoplot_qg_matrix, 21
autoplot_qg_matrix(), I8

bigsnpr::bigSNP, 124-126
bigsnpr::snp_autoSVD(), 60, 62—-64
bigsnpr::snp_clumping(), 83, 85

144

:snp_fastImpute(), 55, 56
:snp_fastImputeSimple(), 54
:snp_manhattan(), 20
:snp_pcadapt (), 59
:snp_qq(), 20
:snp_readBed(), 30
:snp_scaleBinom(), 60, 63, 64
:big_randomSVD(), 64, 65
:big_SVD(), 62, 63
:FBM, 96, 125
bigstatsr::FBM.code256, 124-126
bigstatsr::nb_cores(), 61, 80, 82, 86, 89,
99, 103, 105, 107, 108
broom: : augment.prcomp, 6, 7, 10
broom: : tidy.prcomp, 131

bigsnpr:
bigsnpr:
bigsnpr:
bigsnpr:
bigsnpr:
bigsnpr:
bigsnpr:
bigstatsr:
bigstatsr:
bigstatsr:

c.gt_admix, 23
cbind, 24
cbind(), 24
cbind.gen_tbl, 24
count_loci, 24

detectRUNS: :s1idingRUNS.run(), 136
distruct_colours, 25, 118
dplyr::group_by(), 99, 100, 102, 103, 105,
107,111
dplyr::left_join(), 24
dplyr::select(), 119
dplyr::select_if (), 120

filter.gen_tbl, 26
filter.grouped_gen_tbl, 26
filter_high_relatedness, 27
find_duplicated_loci, 28

gen_tibble, 6, 7,9, 11,22, 25,27, 28, 29, 34,
37—42,49-51, 53-58, 67, 70-76, 79,
81, 82, 84, 86, 87, 89-91, 99, 100,
102, 103, 105, 107, 108, 111, 112,
114-116, 121-123, 133, 135

INDEX 145

get_p_matrix, 32 gt_update_backingfile, 70
get_qg_matrix, 33 gt_uses_imputed, 71
ggplot2::scale_fill_manual(), 118

ggplot2: :theme, 129 hierfstat::basic.stats(), 101, 104
gt_add_sf, 34 hierfstat::beta.dosage(), 95

hierfstat::fis.dosage(), 101
hierfstat::fst.dosage(), 101, 102
hierfstat::matching(), 94, 124
hierfstat::pairwise.neifst(), 99

gt_admix_reorder_qg, 36
gt_admixture, 35
gt_as_genind, 37
gt_as_genlight, 38
gt_as_geno_lea, 39

gt_as_higr:szgt,40 indiv_inbreeding, 73
gt_as_p ;n41 indiv_missingness, 74
gt_as_vct, indiv_ploidy, 75, 122

gt_cluster_pca, 42 indiv_ploidy(), 123
gt_cluster_pca(), 44, 47, 48 is_loci_table_ordered, 76
gt_cluster_pca_best_k, 44

indiv_het_obs, 72

gt_cluster_pca_best_k(), 11, 42,47, 48 LEA: :geno(), 39
gt_dapc, 46 LEA: :snmf (), 69, 70
gt_dapc(), 6, 130, 131 load_example_gt, 77
gt_dapc_tidiers, 6,47 loci_alt_freq, 78
gt_dapc_tidiers (tidy.gt_dapc), 130 loci_chromosomes, 81
gt_extract_f2,49 loci_hwe, 82
gt_from_genlight, 51 loci_ld_clump, 83
gt_get_file_names, 52 loci_ld_clump(), 57
gt_has_imputed, 53 loci_maf (loci_alt_freq), 78
gt_impute_simple, 54 loci_missingness, 85
gt_impute_simple(), 84 loci_names, 87
gt_impute_xgboost, 55 loci_pi, 88

gt_load, 56 loci_transitions, 90
gt_load(), 67 loci_transversions, 90
gt_order_loci, 57

gt_pca, 58, 59,]09, 110 mutate.gen_tbl, 91

gt_pca(), 8 mutate.grouped_gen_tbl, 92

gt_pca_autoSVD, 60

nwise_pop_pbs, 93
gt_pca_autoSVD(), 7, 10, 57, 132 wise_pop_p

gt_pca_partialSVD, 62 pairwise_allele_sharing, 94
gt_pca_randomSVD, 64 pairwise_allele_sharing(), 73, 95, 100,
gt_pca_randomSVD(), 62 102, 124
gt_pca_tidiers, 7, 10,61, 63, 65 pairwise_grm, 95
gt_pca_tidiers (tidy.gt_pca), 131 pairwise_ibs, 96

gt_pcadapt, 59 pairwise_king, 97
gt_pseudohaploid, 66 pairwise_pop_fst, 98
gt_pseudohaploid(), 50 pairwise_pop_fst(), 93, 137, 138
gt_roh_window (windows_indiv_roh), 134 pop_fis, 100

gt_save, 67 pop_fst, 101

gt_save(), 56 pop_gene_div (pop_het_exp), 105
gt_set_imputed, 68 pop_global_stats, 102

gt_snmf, 68 pop_het_exp, 105

146 INDEX

pop_het_obs, 106
pop_tajimas_d, 108
predict.gt_pca, 109

g_matrix, 113, 133
g_matrix(), 22
gc_report_indiv, 111
gc_report_loci, 112

rbind.gen_tbl, 114
rbind_dry_run, 115
rbind_dry_run(), 128
read_q_files, 117

scale_fill_distruct, 118
select_loci, 119
select_loci(), 120
select_loci_if, 120
select_loci_if (), 119
sf::sfc, 34
show_genotypes, 121
show_loci, 121
show_loci(), 9,78, 121
show_loci<- (show_loci), 121
show_ploidy, 122
snp_allele_sharing, 123
snp_ibs, 124
snp_king, 126
stats: :prcomp, /31
summary.gt_admix, 127
summary.rbind_report, 128
summary_rbind_report
(summary.rbind_report), 128
svds, 65

theme_distruct, 129
tibble::tibble, 122, 130, 132
tidy.gt_dapc, 130
tidy.gt_pca, 131
tidy.q_matrix, 133

vcfR::read.vcfR(), 30

windows_indiv_roh, 134
windows_nwise_pop_pbs, 136
windows_pairwise_pop_fst, 138
windows_pairwise_pop_fst(), 141
windows_pop_tajimas_d, 139
windows_stats_generic, 141

	arrange.gen_tbl
	arrange.grouped_gen_tbl
	augment.gt_dapc
	augment_gt_pca
	augment_loci
	augment_loci_gt_pca
	augment_q_matrix
	autoplot.gt_cluster_pca
	autoplot.gt_dapc
	autoplot.qc_report_indiv
	autoplot.qc_report_loci
	autoplot_gt_admix
	autoplot_gt_pca
	autoplot_gt_pcadapt
	autoplot_q_matrix
	c.gt_admix
	cbind.gen_tbl
	count_loci
	distruct_colours
	filter.gen_tbl
	filter.grouped_gen_tbl
	filter_high_relatedness
	find_duplicated_loci
	gen_tibble
	get_p_matrix
	get_q_matrix
	gt_add_sf
	gt_admixture
	gt_admix_reorder_q
	gt_as_genind
	gt_as_genlight
	gt_as_geno_lea
	gt_as_hierfstat
	gt_as_plink
	gt_as_vcf
	gt_cluster_pca
	gt_cluster_pca_best_k
	gt_dapc
	gt_extract_f2
	gt_from_genlight
	gt_get_file_names
	gt_has_imputed
	gt_impute_simple
	gt_impute_xgboost
	gt_load
	gt_order_loci
	gt_pca
	gt_pcadapt
	gt_pca_autoSVD
	gt_pca_partialSVD
	gt_pca_randomSVD
	gt_pseudohaploid
	gt_save
	gt_set_imputed
	gt_snmf
	gt_update_backingfile
	gt_uses_imputed
	indiv_het_obs
	indiv_inbreeding
	indiv_missingness
	indiv_ploidy
	is_loci_table_ordered
	load_example_gt
	loci_alt_freq
	loci_chromosomes
	loci_hwe
	loci_ld_clump
	loci_missingness
	loci_names
	loci_pi
	loci_transitions
	loci_transversions
	mutate.gen_tbl
	mutate.grouped_gen_tbl
	nwise_pop_pbs
	pairwise_allele_sharing
	pairwise_grm
	pairwise_ibs
	pairwise_king
	pairwise_pop_fst
	pop_fis
	pop_fst
	pop_global_stats
	pop_het_exp
	pop_het_obs
	pop_tajimas_d
	predict.gt_pca
	qc_report_indiv
	qc_report_loci
	q_matrix
	rbind.gen_tbl
	rbind_dry_run
	read_q_files
	scale_fill_distruct
	select_loci
	select_loci_if
	show_genotypes
	show_loci
	show_ploidy
	snp_allele_sharing
	snp_ibs
	snp_king
	summary.gt_admix
	summary.rbind_report
	theme_distruct
	tidy.gt_dapc
	tidy.gt_pca
	tidy.q_matrix
	windows_indiv_roh
	windows_nwise_pop_pbs
	windows_pairwise_pop_fst
	windows_pop_tajimas_d
	windows_stats_generic
	$<-.gen_tbl
	Index

