
Package ‘targeted’
January 12, 2026

Type Package

Title Targeted Inference

Version 0.7.1

Author Klaus K. Holst [aut, cre],
Benedikt Sommer [aut],
Andreas Nordland [aut],
Christian B. Pipper [ctb]

Maintainer Klaus K. Holst <klaus@holst.it>

Description Various methods for targeted and semiparametric inference including
augmented inverse probability weighted (AIPW) estimators for missing data and
causal inference (Bang and Robins (2005) <doi:10.1111/j.1541-0420.2005.00377.x>),

variable importance and conditional average treatment effects (CATE)
(van der Laan (2006) <doi:10.2202/1557-4679.1008>),

estimators for risk differences and relative risks (Richardson et al. (2017)
<doi:10.1080/01621459.2016.1192546>), assumption lean inference for generalized

linear model parameters (Vansteelandt et al. (2022) <doi:10.1111/rssb.12504>).

Depends R (>= 4.1)

Imports R6, Rcpp (>= 1.0.0), abind, cli, future.apply, lava (>=
1.8.2), methods, mets (>= 1.3.9), quadprog, progressr, rlang,
survival

Suggests SuperLearner (>= 2.0-28), MASS, cmprsk, data.table, e1071,
earth, glmnet, grf, hal9001, mgcv, nnls, optimx, polle (>=
1.5), pracma, quarto, randomForestSRC, ranger, riskRegression,
scatterplot3d, tinytest, viridisLite, xgboost (>= 3.1.2.1),

BugReports https://github.com/kkholst/targeted/issues

URL https://kkholst.github.io/targeted/

License Apache License (== 2.0)

LinkingTo Rcpp, RcppArmadillo

LazyLoad yes

NeedsCompilation yes

ByteCompile yes

1

https://doi.org/10.1111/j.1541-0420.2005.00377.x
https://doi.org/10.2202/1557-4679.1008
https://doi.org/10.1080/01621459.2016.1192546
https://doi.org/10.1111/rssb.12504
https://github.com/kkholst/targeted/issues
https://kkholst.github.io/targeted/

2 Contents

RcppModules riskregmodel

Encoding UTF-8

RoxygenNote 7.3.3

VignetteBuilder quarto

SystemRequirements Quarto command line tools
(https://github.com/quarto-dev/quarto-cli).

Repository CRAN

Date/Publication 2026-01-12 06:30:02 UTC

Contents
aipw . 3
alean . 4
ate . 6
calibration . 8
calibration-class . 9
cate . 10
cate_link . 13
constructor_shared . 14
cross_validated-class . 15
crr . 16
cumhaz . 17
cv.default . 18
cv.learner_sl . 20
deprecated_argument_names . 21
deprecate_arg_warn . 21
design . 22
estimate_truncatedscore . 23
expand.list . 24
int_surv . 25
learner . 26
learner_expand_grid . 30
learner_gam . 31
learner_glm . 33
learner_glmnet_cv . 34
learner_grf . 35
learner_hal . 37
learner_isoreg . 38
learner_mars . 39
learner_naivebayes . 40
learner_sl . 42
learner_stratify . 43
learner_svm . 44
learner_xgboost . 46
ML . 47
ml_model . 48

aipw 3

naivebayes . 49
naivebayes-class . 50
nondom . 51
pava . 52
predict.density . 52
predict.naivebayes . 53
predict.superlearner . 54
RATE . 54
RATE.surv . 55
riskreg . 57
riskreg_cens . 59
score.superlearner . 61
scoring . 61
SL . 63
softmax . 63
solve_ode . 64
specify_ode . 65
stratify . 66
superlearner . 67
targeted-class . 68
terms.design . 69
test_intersection_sw . 70
test_zmax_onesided . 71
truncatedscore . 72
weights.superlearner . 73

Index 74

aipw AIPW estimator

Description

AIPW for the mean (and linear projections of the EIF) with missing observations

Usage

aipw(response_model, propensity_model, formula = ~1, data, ...)

Arguments

response_model Model for the response given covariates (learner or formula)
propensity_model

Optional missing data mechanism model (propensity model) (learner or for-
mula)

formula design specifying the OLS estimator with outcome given by the EIF

data data.frame

... additional arguments (see cate())

4 alean

Examples

m <- lava::lvm(y ~ x+z, r ~ x) |>
lava::distribution(~ r, value = lava::binomial.lvm()) |>
transform(y0~r+y, value = \(x) { x[x[,1]==0,2] <- NA; x[,2] })

d <- lava::sim(m,1e3,seed=1)

aipw(y0 ~ x, data=d)

alean Assumption Lean inference for generalized linear model parameters

Description

Assumption lean inference via cross-fitting (Double ML). See <doi:10.1111/rssb.12504

Usage

alean(
response_model,
exposure_model,
data,
link = "identity",
g_model,
nfolds = 1,
silent = FALSE,
mc.cores,
...

)

Arguments

response_model formula or learner object (formula => glm)

exposure_model model for the exposure

data data.frame

link Link function (g)

g_model Model for E[g(Y |A,W)|W]

nfolds Number of folds

silent supress all messages and progressbars

mc.cores mc.cores Optional number of cores. parallel::mcmapply used instead of future

... additional arguments to future.apply::future_mapply

alean 5

Details

Let Y be the response variable, A the exposure and W covariates. The target parameter is:

Ψ(P) =
E(Cov[A, g{E(Y |A,W)} |W])

E{V ar(A |W)}

The response_model is the model forE(Y |A,W), and exposure_model is the model forE(A|W).
link specifies g.

Value

alean.targeted object

Author(s)

Klaus Kähler Holst

Examples

sim1 <- function(n, family=gaussian(), ...) {
m <- lava::lvm() |>

lava::distribution(~y, value=lava::binomial.lvm()) |>
lava::regression('a', value=function(l) l) |>
lava::regression('y', value=function(a,l) a + l)
if (family$family=="binomial")

lava::distribution(m, ~a) <- lava::binomial.lvm()
lava::sim(m, n)

}

library(splines)
f <- binomial()
d <- sim1(1e4, family=f)
e <- alean(
response_model=learner_glm(y ~ a + bs(l, df=3), family=binomial),
exposure_model=learner_glm(a ~ bs(l, df=3), family=f),
data=d,
link = "logit", mc.cores=1, nfolds=1
)
e

e <- alean(response_model=learner_glm(y ~ a + l, family=binomial),
exposure_model=learner_glm(a ~ l),
data=d,
link = "logit", mc.cores=1, nfolds=1)

e

6 ate

ate AIPW (doubly-robust) estimator for Average Treatment Effect

Description

Augmented Inverse Probability Weighting estimator for the Average (Causal) Treatment Effect. All
nuisance models are here parametric (glm). For a more general approach see the cate implemen-
tation. In this implementation the standard errors are correct even when the nuisance models are
mis-specified (the influence curve is calculated including the term coming from the parametric nui-
sance models). The estimate is consistent if either the propensity model or the outcome model /
Q-model is correctly specified.

Usage

ate(
formula,
data = parent.frame(),
weights,
offset,
family = stats::gaussian(identity),
nuisance = NULL,
propensity = nuisance,
all,
labels = NULL,
adjust.nuisance = TRUE,
adjust.propensity = TRUE,
...

)

Arguments

formula formula (see details below)

data data.frame

weights optional frequency weights

offset optional offset (character or vector). can also be specified in the formula.

family Exponential family argument for outcome model

nuisance outcome regression formula (Q-model)

propensity propensity model formula

all when TRUE all standard errors are calculated (default TRUE when exposure
only has two levels)

labels optional treatment labels
adjust.nuisance

adjust for uncertainty due to estimation of outcome regression model parameters

ate 7

adjust.propensity

adjust for uncertainty due to estimation of propensity regression model parame-
ters

... additional arguments to lower level functions

Details

The formula may either be specified as: response ~ treatment | nuisance-formula | propensity-
formula

For example: ate(y~a | x+z+a | x*z, data=...)

Alternatively, as a list: ate(list(y~a, ~x+z, ~x*z), data=...)

Or using the nuisance (and propensity argument): ate(y~a, nuisance=~x+z, ...)

Value

An object of class ’ate.targeted’ is returned. See targeted-class for more details about this
class and its generic functions.

Author(s)

Klaus K. Holst

See Also

cate

Examples

m <- lava::lvm(y ~ a+x, a~x) |>
lava::distribution(~y, value = lava::binomial.lvm()) |>
lava::ordinal(K=4, ~a) |>
transform(~a, value = factor)

d <- lava::sim(m, 1e3, seed=1)
(a <- ate(y~a|a*x|x, data=d))
(a <- ate(y~a, nuisance=~a*x, propensity=~x, data = d))

Comparison with randomized experiment
m0 <- lava::cancel(m, a~x)
lm(y~a-1, lava::sim(m0,2e4))

Choosing a different contrast for the association measures
summary(a, contrast=c(2,4))

8 calibration

calibration Calibration (training)

Description

Calibration for multiclassication methods

Usage

calibration(
pr,
cl,
weights = NULL,
threshold = 10,
method = "bin",
breaks = nclass.Sturges,
df = 3,
...

)

Arguments

pr matrix with probabilities for each class

cl class variable

weights counts

threshold do not calibrate if less then ’threshold’ events

method either ’isotonic’ (pava), ’logistic’, ’mspline’ (monotone spline), ’bin’ (local con-
stant)

breaks optional number of bins (only for method ’bin’)

df degrees of freedom (only for spline methods)

... additional arguments to lower level functions

Details

...

Value

An object of class ’calibration’ is returned. See calibration-class for more details about this
class and its generic functions.

Author(s)

Klaus K. Holst

calibration-class 9

Examples

sim1 <- function(n, beta=c(-3, rep(.5,10)), rho=.5) {
p <- length(beta)-1
xx <- lava::rmvn0(n,sigma=diag(nrow=p)*(1-rho)+rho)
y <- rbinom(n, 1, lava::expit(cbind(1,xx)%*%beta))
d <- data.frame(y=y, xx)
names(d) <- c("y",paste0("x",1:p))
return(d)

}

set.seed(1)
beta <- c(-2,rep(1,10))
d <- sim1(1e4, beta=beta)
a1 <- naivebayes(y ~ ., data=d)
a2 <- glm(y ~ ., data=d, family=binomial)
a3 <- randomForest(factor(y) ~ ., data=d, family=binomial)

d0 <- sim1(1e4, beta=beta)
p1 <- predict(a1, newdata=d0)
p2 <- predict(a2, newdata=d0, type="response")
p3 <- predict(a3, newdata=d0, type="prob")

c2 <- calibration(p2, d0$y, method="isotonic")
c1 <- calibration(p1, d0$y, breaks=100)
if (interactive()) {

plot(c1)
plot(c2,col="red",add=TRUE)
abline(a=0,b=1)
with(c1$xy[[1]], points(pred,freq,type="b", col="red"))

}

set.seed(1)
beta <- c(-2,rep(1,10))
dd <- lava::csplit(sim1(1e4, beta=beta), k=3)
mod <- naivebayes(y ~ ., data=dd[[1]])
p1 <- predict(mod, newdata=dd[[2]])
cal <- calibration(p1, dd[[2]]$y)
p2 <- predict(mod, newdata=dd[[3]])
pp <- predict(c1, p2)
cc <- calibration(pp, dd[[3]]$y)
if (interactive()) {#'

plot(cal)
plot(cc, add=TRUE, col="blue")

}

calibration-class calibration class object

10 cate

Description

The functions calibration returns an object of the class calibration.

An object of class ’calibration’ is a list with at least the following components:

stepfun estimated step-functions (see stepfun) for each class

classes the unique classes

model model/method type (string)

xy list of data.frame’s with predictions (pr) and estimated probabilities of success (only for ’bin’
method)

Value

objects of the S3 class ’calibration’

S3 generics

The following S3 generic functions are available for an object of class targeted:

predict Apply calibration to new data.

plot Plot the calibration curves (reliability plot).

print Basic print method.

See Also

calibration, calibrate

Examples

See example(calibration) for examples

cate Conditional Average Treatment Effect estimation

Description

Conditional Average Treatment Effect estimation with cross-fitting.

Usage

cate(
response.model,
propensity.model,
cate.model = ~1,
calibration.model = NULL,
data,
contrast,

cate 11

nfolds = 1,
rep = 1,
silent = FALSE,
stratify = FALSE,
mc.cores = NULL,
rep.type = c("nuisance", "average"),
var.type = "IC",
second.order = TRUE,
response_model = deprecated,
cate_model = deprecated,
propensity_model = deprecated,
treatment = deprecated,
...

)

Arguments

response.model formula or learner object (formula => learner_glm)
propensity.model

formula or learner object (formula => learner_glm)

cate.model formula specifying regression design for conditional average treatment effects
calibration.model

linear calibration model. Specify covariates in addition to predicted potential
outcomes to include in the calibration.

data data.frame

contrast treatment contrast (default 1 vs 0)

nfolds number of folds

rep number of replications of cross-fitting procedure

silent suppress all messages and progressbars

stratify if TRUE the response.model will be stratified by treatment

mc.cores (optional) number of cores. parallel::mcmapply used instead of future

rep.type repeated cross-fitting applied by averaging nuisance models (rep.type="nuisance")
or by average estimates from each replication (rep.type="average").

var.type when equal to "IC" the asymptotic variance is derived from the influence func-
tion. Otherwise, based on expressions in Bannick et al. (2025) valid under
different covariate-adaptive randomization schemes (only available for ATE and
when calibration.model is also specified)

second.order add seconder order term to IF to handle misspecification of outcome models

response_model Deprecated. Use response.model instead.

cate_model Deprecated. Use cate.model instead.
propensity_model

Deprecated. Use propensity.model instead.

treatment Deprecated. Use cate.model instead.

... additional arguments to future.apply::future_mapply

12 cate

Details

We have observed data (Y,A,W) where Y is the response variable, A the binary treatment, and W
covariates. We further let V be a subset of the covariates. Define the conditional potential mean
outcome

ψa(P)(V) = EP [EP (Y | A = a,W)|V]

and let m(V ;β) denote a parametric working model, then the target parameter is the mean-squared
error

β(P) = argminβ EP [{Ψ1(P)(V)−Ψ0(P)(V)} −m(V ;β)]2

Value

cate.targeted object

Author(s)

Klaus Kähler Holst, Andreas Nordland

References

Mark J. van der Laan (2006) Statistical Inference for Variable Importance, The International Journal
of Biostatistics.

Examples

sim1 <- function(n=1000, ...) {
w1 <- rnorm(n)
w2 <- rnorm(n)
a <- rbinom(n, 1, plogis(-1 + w1))
y <- cos(w1) + w2*a + 0.2*w2^2 + a + rnorm(n)
data.frame(y, a, w1, w2)

}

d <- sim1(5000)
ATE
cate(cate.model=~1,

response.model=y~a*(w1+w2),
propensity.model=a~w1+w2,
data=d)

CATE
cate(cate.model=~1+w2,

response.model=y~a*(w1+w2),
propensity.model=a~w1+w2,
data=d)

Not run: ## superlearner example
mod1 <- list(

glm = learner_glm(y~w1+w2),
gam = learner_gam(y~s(w1) + s(w2))

)
s1 <- learner_sl(mod1, nfolds=5)
cate(cate.model=~1,

cate_link 13

response.model=s1,
propensity.model=learner_glm(a~w1+w2, family=binomial),
data=d,
stratify=TRUE)

End(Not run)

cate_link Conditional Relative Risk estimation

Description

Conditional average treatment effect estimation via Double Machine Learning

Usage

cate_link(
treatment,
link = "identity",
response_model,
propensity_model,
importance_model,
contrast = c(1, 0),
data,
nfolds = 5,
type = "dml1",
...

)

Arguments

treatment formula specifying treatment and variables to condition on

link Link function

response_model SL object
propensity_model

SL object
importance_model

SL object

contrast treatment contrast (default 1 vs 0)

data data.frame

nfolds Number of folds

type ’dml1’ or ’dml2’

... additional arguments to SuperLearner

14 constructor_shared

Value

cate.targeted object

Author(s)

Klaus Kähler Holst & Andreas Nordland

Examples

Example 1:
sim1 <- function(n=1e4,

seed=NULL,
return_model=FALSE, ...){

suppressPackageStartupMessages(require("lava"))
if (!is.null(seed)) set.seed(seed)
m <- lava::lvm()
distribution(m, ~x) <- gaussian.lvm()
distribution(m, ~v) <- gaussian.lvm(mean = 10)
distribution(m, ~a) <- binomial.lvm("logit")
regression(m, "a") <- function(v, x){.1*v + x}
distribution(m, "y") <- gaussian.lvm()
regression(m, "y") <- function(a, v, x){v+x+a*x+a*v*v}
if (return_model) return(m)
lava::sim(m, n = n)
}

if (require("SuperLearner",quietly=TRUE)) {
d <- sim1(n = 1e3, seed = 1)
e <- cate_link(data=d,

type = "dml2",
treatment = a ~ v,
response_model = y~ a*(x + v + I(v^2)),
importance_model = SL(D_ ~ v + I(v^2)),
nfolds = 10)

summary(e) # the true parameters are c(1,1)
}

constructor_shared Construct a learner

Description

Construct a learner

Arguments

info (character) Optional information to describe the instantiated learner object.

formula (formula) Formula specifying response and design matrix.

learner.args (list) Additional arguments to learner$new().

cross_validated-class 15

Value

learner object.

cross_validated-class cross_validated class object

Description

The functions cv returns an object of the type cross_validated.

An object of class ’cross_validated’ is a list with at least the following components:

cv An array with the model score(s) evaluated for each fold, repetition, and model estimates (see
estimate.default)

names Names (character vector) of the models

rep number of repetitions of the CV

folds Number of folds of the CV

Value

objects of the S3 class ’cross_validated’

S3 generics

The following S3 generic functions are available for an object of class cross_validated:

coef Extract average model scores from the cross-validation procedure.

print Basic print method.

summary Summary of the cross-validation procedure.’

See Also

cv

Examples

See example(cv) for examples

16 crr

crr Conditional Relative Risk estimation

Description

Conditional Relative Risk estimation via Double Machine Learning

Usage

crr(
treatment,
response_model,
propensity_model,
importance_model,
contrast = c(1, 0),
data,
nfolds = 5,
type = "dml1",
...

)

Arguments

treatment formula specifying treatment and variables to condition on

response_model SL object

propensity_model

SL object

importance_model

SL object

contrast treatment contrast (default 1 vs 0)

data data.frame

nfolds Number of folds

type ’dml1’ or ’dml2’

... additional arguments to SuperLearner

Value

cate.targeted object

Author(s)

Klaus Kähler Holst & Andreas Nordland

cumhaz 17

Examples

sim1 <- function(n=1e4,
seed=NULL,
return_model=FALSE, ...){

suppressPackageStartupMessages(require("lava"))
if (!is.null(seed)) set.seed(seed)
m <- lava::lvm()
distribution(m, ~x) <- gaussian.lvm()
distribution(m, ~v) <- gaussian.lvm(mean = 10)
distribution(m, ~a) <- binomial.lvm("logit")
regression(m, "a") <- function(v, x){.1*v + x}
distribution(m, "y") <- gaussian.lvm()
regression(m, "y") <- function(a, v, x){v+x+a*x+a*v*v}
if (return_model) return(m)
lava::sim(m, n = n)
}

d <- sim1(n = 2e3, seed = 1)
if (require("SuperLearner",quietly=TRUE)) {

e <- crr(data=d,
type = "dml2",
treatment = a ~ v,
response_model = learner_glm(y~ a*(x + v + I(v^2))),
importance_model = learner_glm(D_ ~ v + I(v^2)),
propensity_model = learner_glm(a ~ x + v + I(v^2), family=binomial),

nfolds = 2)
summary(e) # the true parameters are c(1,1)

}

cumhaz Predict the cumulative hazard/survival function for a survival model

Description

Predict the cumulative hazard/survival function for a survival model

Usage

cumhaz(
object,
newdata,
times = NULL,
individual.time = FALSE,
extend = FALSE,
...

)

18 cv.default

Arguments

object Survival model object: phreg, coxph, rfsrc, ranger

newdata data.frame

times numeric vector: Time points at which the survival model is evaluated. If NULL,
the time points associated with the survival model is used.

individual.time

logical: If TRUE the survival object is evaluated at different time points for each
row in newdata. The number of rows in newdata and the length of times must
be the same.

extend if TRUE, prints information for all specified ’times’, even if there are no subjects
left at the end of the specified ‘times’ (see survival::summary.survfit).

... Additional arguments.

Value

List with elements:

• time: numeric vector

• chf: cumulative hazard function. If individual.time = FALSE, matrix with dimension (nrow(newdata),
length(times)). If individual.time = TRUE, vector of length length(times).

• surv: survival function, exp(-chf).

• dchf: t(diff(rbind(0, t(chf))))

Author(s)

Klaus K. Holst, Andreas Nordland

cv.default Cross-validation

Description

Generic cross-validation function

Usage

Default S3 method:
cv(

object,
data,
response = NULL,
nfolds = 5,
rep = 1,
weights = NULL,
model.score = scoring,

cv.default 19

seed = NULL,
shared = NULL,
args.pred = NULL,
args.future = list(),
mc.cores,
silent = FALSE,
...

)

Arguments

object List of learner objects

data data.frame or matrix

response Response variable (vector or name of column in data).

nfolds Number of folds (nfolds=0 simple test/train split into two folds 1:([n]/2), ([n]+1/2):n
with last part used for testing)

rep Number of repetitions (default 1)

weights Optional frequency weights

model.score Model scoring metric (default: MSE / Brier score). Must be a function with
arguments response and prediction, and may optionally include weights, object
and newdata arguments

seed Random seed (argument parsed to future_Apply::future_lapply)

shared Function applied to each fold with results send to each model

args.pred Optional arguments to prediction function (see details below)

args.future Arguments to future.apply::future_mapply

mc.cores Optional number of cores. parallel::mcmapply used instead of future

silent suppress all messages and progressbars

... Additional arguments parsed to elements in object

Details

object should be list of objects of class learner. Alternatively, each element of models should be a
list with a fitting function and a prediction function.

The response argument can optionally be a named list where the name is then used as the name of
the response argument in models. Similarly, if data is a named list with a single data.frame/matrix
then this name will be used as the name of the data/design matrix argument in models.

Value

An object of class ’cross_validated’ is returned. See cross_validated-class for more details
about this class and its generic functions.

Author(s)

Klaus K. Holst

20 cv.learner_sl

See Also

cv.learner_sl

Examples

m <- list(learner_glm(Sepal.Length~1),
learner_glm(Sepal.Length~Species),
learner_glm(Sepal.Length~Species + Petal.Length))

x <- cv(m, rep=10, data=iris)
x

cv.learner_sl Cross-validation for learner_sl

Description

Cross-validation estimation of the generalization error of the super learner and each of the separate
models in the ensemble. Both the chosen model scoring metrics as well as the model weights of the
stacked ensemble.

Usage

S3 method for class 'learner_sl'
cv(object, data, nfolds = 5, rep = 1, model.score = scoring, ...)

Arguments

object (learner_sl) Instantiated learner_sl object.

data data.frame or matrix

nfolds Number of folds (nfolds=0 simple test/train split into two folds 1:([n]/2), ([n]+1/2):n
with last part used for testing)

rep Number of repetitions (default 1)

model.score Model scoring metric (default: MSE / Brier score). Must be a function with
arguments response and prediction, and may optionally include weights, object
and newdata arguments

... Additional arguments parsed to elements in object

Examples

sim1 <- function(n = 5e2) {
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
y <- x1 + cos(x1) + rnorm(n, sd = 0.5**.5)
data.frame(y, x1, x2)

}
sl <- learner_sl(list(

"mean" = learner_glm(y ~ 1),

deprecated_argument_names 21

"glm" = learner_glm(y ~ x1),
"glm2" = learner_glm(y ~ x1 + x2)
))

cv(sl, data = sim1(), rep = 2)

deprecated_argument_names

Deprecated argument names

Description

Deprecated argument names

Arguments

response_model Deprecated. Use response.model instead.
propensity_model

Deprecated. Use propensity.model instead.

cate_model Deprecated. Use cate.model instead.

treatment Deprecated. Use cate.model instead.

deprecate_arg_warn Cast warning for deprecated function argument names

Description

Cast warning for deprecated function argument names

Usage

deprecate_arg_warn(old, new, fun, vers)

Arguments

old deprecated argument name

new argument that should be used instead

fun function name where arguments are deprecated

vers version when argument is deprecated

22 design

design Extract design matrix

Description

Extract design matrix from data.frame and formula

Usage

design(
formula,
data,
...,
intercept = FALSE,
response = TRUE,
rm_envir = FALSE,
specials = NULL,
specials.call = NULL,
levels = NULL,
design.matrix = TRUE

)

Arguments

formula formula

data data.frame

... additional arguments (e.g, specials such weights, offsets, ...)

intercept (logical) If FALSE an intercept is not included in the design matrix

response (logical) if FALSE the response variable is dropped

rm_envir Remove environment

specials character vector specifying functions in the formula that should be marked as
special in the terms object

specials.call (call) specials optionally defined as a call-type

levels a named list of character vectors giving the full set of levels to be assumed for
each factor

design.matrix (logical) if FALSE then only response and specials are returned. Otherwise, the
design.matrix x is als part of the returned object.

Value

An object of class ’design’

Author(s)

Klaus Kähler Holst

estimate_truncatedscore 23

estimate_truncatedscore

Estimation of mean clinical outcome truncated by event process

Description

Let Y denote the clinical outcome, A the binary treatment variable, X baseline covariates, T the
failure time, and epsilon = 1, 2 the cause of failure. The following are our two target parameters

E(Y |T > t,A = 1)− E(Y |T > t,A = 0)

P (T < t, ϵ = 1|A = 1)− P (T < t, ϵ = 1|A = 0)

Usage

estimate_truncatedscore(
data,
mod.y,
mod.r,
mod.a,
mod.event,
time,
cause = NULL,
cens.code = 0,
naive = FALSE,
control = list(),
...

)

Arguments

data (data.frame)
mod.y (formula or learner) Model for clinical outcome given T>time. Using a formula

specifies a glm with an identity link (see example).
mod.r (formula or learner) Model for missing data mechanism for clinical outcome at

T=time. Using a formula specifies a glm with a log link.
mod.a (formula or learner) Treatment model (in RCT should just be ’a ~ 1’). Using a

formula specifies a glm with a log link.
mod.event (formula) Model for time-to-event process (’Event(time,status) ~ x’).
time (numeric) Landmark time.
cause (integer) Primary event (in the ’status’ variable of the ’Event’ statement).
cens.code (integer) Censoring code.
naive (logical) If TRUE, the unadjusted estimates ignoring baseline covariates is re-

turned as the attribute ’naive’.
control (list) optimization routine parameters.
... Additional arguments passed to mets::binregATE.

24 expand.list

Value

lava::estimate.default object

Author(s)

Klaus Kähler Holst

Examples

data(truncatedscore)
mod1 <- learner_glm(y ~ a * (x1 + x2))
mod2 <- learner_glm(r ~ a * (x1 + x2), family = binomial)
a <- estimate_truncatedscore(

data = truncatedscore,
mod.y = mod1,
mod.r = mod2,
mod.a = a ~ 1,
mod.event = mets::Event(time, status) ~ x1+x2,
time = 2

)
s <- summary(a, noninf.t = -0.1)
print(s)
parameter(s)

the above is equivalent to
a <- estimate_truncatedscore(
data = truncatedscore,
mod.y = y ~ a * (x1 + x2),
mod.r = r ~ a * (x1 + x2),
mod.a = a ~ 1,
mod.event = mets::Event(time, status) ~ x1+x2,
time = 2
)

expand.list Create a list from all combination of input variables

Description

Similar to expand.grid function, this function creates all combinations of the input arguments but
returns the result as a list.

Usage

expand.list(..., INPUT = NULL, envir = NULL)

int_surv 25

Arguments

... input variables
INPUT optional list of variables
envir environment environment to evalute formulas in

Value

list

Author(s)

Klaus Kähler Holst

Examples

expand.list(x = 2:4, z = c("a", "b"))

int_surv Integral approximation of a time dependent function. Computes an
approximation of

∫
_startˆstopS(t)dt, where S(t) is a survival func-

tion, for a selection of start and stop time points.

Description

Integral approximation of a time dependent function. Computes an approximation of
∫
s
tartstopS(t)dt,

where S(t) is a survival function, for a selection of start and stop time points.

Usage

int_surv(times, surv, start = 0, stop = max(times), extend = FALSE)

Arguments

times Numeric vector, sorted time points.
surv Numeric vector, values of a survival function evaluated at time points given by

times.
start Numeric vector, start of the integral.
stop Numeric vector, end of the integral.
extend (logical) If TRUE, integral is extended beyond the last observed time point

Value

Numeric vector, value of the integral.

Author(s)

Andreas Nordland

26 learner

learner R6 class for prediction models

Description

Interface for statistical and machine learning models to be used for nuisance model estimation in
targeted learning.

The following list provides an overview of constructors for many commonly used models.

Regression and classification: learner_glm, learner_gam, learner_grf, learner_hal, learner_glmnet_cv,
learner_svm, learner_xgboost, learner_mars
Regression: learner_isoreg
Classification: learner_naivebayes
Ensemble (super learner): learner_sl

Public fields

info Optional information/name of the model

Active bindings

clear Remove fitted model from the learner object

fit Return estimated model object.

formula Return model formula. Use learner$update() to update the formula.

Methods

Public methods:

• learner$new()

• learner$estimate()

• learner$predict()

• learner$update()

• learner$print()

• learner$summary()

• learner$response()

• learner$design()

• learner$opt()

• learner$clone()

Method new(): Create a new prediction model object

Usage:

learner 27

learner$new(
formula = NULL,
estimate,
predict = stats::predict,
predict.args = NULL,
estimate.args = NULL,
info = NULL,
specials = c(),
formula.keep.specials = FALSE,
intercept = FALSE

)

Arguments:

formula formula specifying outcome and design matrix
estimate function for fitting the model. This must be a function with response, ’y’, and design

matrix, ’x’. Alternatively, a function with a formula and data argument. See the examples
section.

predict prediction function (must be a function of model object, ’object’, and new design
matrix, ’newdata’)

predict.args optional arguments to prediction function
estimate.args optional arguments to estimate function
info optional description of the model
specials optional specials terms (weights, offset, id, subset, ...) passed on to design
formula.keep.specials if TRUE then special terms defined by specials will be removed

from the formula before it is being passed to the estimate print.function()
intercept (logical) include intercept in design matrix

Method estimate(): Estimation method

Usage:
learner$estimate(data, ..., store = TRUE)

Arguments:

data data.frame
... Additional arguments to estimation method
store Logical determining if estimated model should be stored inside the class.

Method predict(): Prediction method

Usage:
learner$predict(newdata, ..., object = NULL)

Arguments:

newdata data.frame
... Additional arguments to prediction method
object Optional model fit object

Method update(): Update formula

Usage:

28 learner

learner$update(formula)

Arguments:
formula formula or character which defines the new response

Method print(): Print method

Usage:
learner$print()

Method summary(): Summary method to provide more extensive information than learner$print().

Usage:
learner$summary()

Returns: summarized_learner object, which is a list with the following elements:
info description of the learner
formula formula specifying outcome and design matrix
estimate function for fitting the model
estimate.args arguments to estimate function
predict function for making predictions from fitted model
predict.args arguments to predict function
specials provided special terms
intercept include intercept in design matrix

Examples:
lr <- learner_glm(y ~ x, family = "nb")
lr$summary()

lr_sum <- lr$summary() # store returned summary in new object
names(lr_sum)
print(lr_sum)

Method response(): Extract response from data

Usage:
learner$response(data, eval = TRUE, ...)

Arguments:
data data.frame
eval when FALSE return the untransformed outcome (i.e., return ’a’ if formula defined as

I(a==1) ~ ...)
... additional arguments to design

Method design(): Generate design object (design matrix and response) from data

Usage:
learner$design(data, ...)

Arguments:
data data.frame
... additional arguments to design

learner 29

Method opt(): Get options

Usage:
learner$opt(arg)

Arguments:
arg name of option to get value of

Method clone(): The objects of this class are cloneable with this method.

Usage:
learner$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Klaus Kähler Holst, Benedikt Sommer

Examples

data(iris)
rf <- function(formula, ...) {

learner$new(formula,
info = "grf::probability_forest",
estimate = function(x, y, ...) {

grf::probability_forest(X = x, Y = y, ...)
},
predict = function(object, newdata) {

predict(object, newdata)$predictions
},
estimate.args = list(...)

)
}

args <- expand.list(
num.trees = c(100, 200), mtry = 1:3,
formula = c(Species ~ ., Species ~ Sepal.Length + Sepal.Width)

)
models <- lapply(args, function(par) do.call(rf, par))

x <- models[[1]]$clone()
x$estimate(iris)
predict(x, newdata = head(iris))

Reduce Ex. timing
a <- targeted::cv(models, data = iris)
cbind(coef(a), attr(args, "table"))

defining learner via function with arguments y (response)
and x (design matrix)

30 learner_expand_grid

f1 <- learner$new(
estimate = function(y, x) lm.fit(x = x, y = y),
predict = function(object, newdata) newdata %*% object$coefficients

)
defining the learner via arguments formula and data
f2 <- learner$new(

estimate = function(formula, data, ...) glm(formula, data, ...)
)
generic learner defined from function (predict method derived per default
from stats::predict
f3 <- learner$new(

estimate = function(dt, ...) {
lm(y ~ x, data = dt)

}
)

--
Method `learner$summary`
--

lr <- learner_glm(y ~ x, family = "nb")
lr$summary()

lr_sum <- lr$summary() # store returned summary in new object
names(lr_sum)
print(lr_sum)

learner_expand_grid Construct learners from a grid of parameters

Description

Construct learners from a grid of parameters

Usage

learner_expand_grid(fun, args, names = TRUE, params = FALSE)

Arguments

fun (function) A function that returns a learner.

args (list) Parameters that generate a grid of parameters with expand.list, where the
set of parameters are then passed on to fun.

names (logical or character) If FALSE, then return a list without names. If TRUE, a
named list is returned (see details).

params (logical) If FALSE, then no information about the parameters defined by args
are added to the names of the returned list.

learner_gam 31

Value

list

Examples

lrs <- learner_expand_grid(
learner_xgboost,
list(formula = Sepal.Length ~ ., eta = c(0.2, 0.5, 0.3))

)
lrs # use info of constructed learner as names

lrs <- learner_expand_grid(
learner_xgboost,
list(formula = Sepal.Length ~ ., eta = c(0.2, 0.5, 0.3)),
names = "xgboost"

)
names(lrs) # use xgboost instead of info field for names

lrs <- learner_expand_grid(
learner_xgboost,
list(formula = Sepal.Length ~ ., eta = c(0.2, 0.5, 0.3)),
names = "xgboost",
params = TRUE

)
names(lrs) # also add parameters to names

lrs <- learner_expand_grid(
learner_xgboost,
list(formula = Sepal.Length ~ ., eta = c(0.2, 0.5, 0.3)),
names = FALSE

)
names(lrs) # unnamed list since names = FALSE

learner_gam Construct a learner

Description

Constructs learner class object for fitting generalized additive models with mgcv::gam.

Usage

learner_gam(
formula,
info = "mgcv::gam",
family = gaussian(),
select = FALSE,
gamma = 1,
learner.args = NULL,

32 learner_gam

...
)

Arguments

formula (formula) Formula specifying response and design matrix.

info (character) Optional information to describe the instantiated learner object.

family This is a family object specifying the distribution and link to use in fitting etc
(see glm and family). See family.mgcv for a full list of what is available, which
goes well beyond exponential family. Note that quasi families actually result
in the use of extended quasi-likelihood if method is set to a RE/ML method
(McCullagh and Nelder, 1989, 9.6).

select If this is TRUE then gam can add an extra penalty to each term so that it can be
penalized to zero. This means that the smoothing parameter estimation that is
part of fitting can completely remove terms from the model. If the corresponding
smoothing parameter is estimated as zero then the extra penalty has no effect.
Use gamma to increase level of penalization.

gamma Increase this beyond 1 to produce smoother models. gamma multiplies the effec-
tive degrees of freedom in the GCV or UBRE/AIC. n/gamma can be viewed as
an effective sample size in the GCV score, and this also enables it to be used
with REML/ML. Ignored with P-RE/ML or the efs optimizer.

learner.args (list) Additional arguments to learner$new().

... Additional arguments to mgcv::gam.

Value

learner object.

Examples

n <- 5e2
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
y <- x1 + cos(x1) + rnorm(n, sd = 0.5**.5)
d0 <- data.frame(y, x1, x2)

lr <- learner_gam(y ~ s(x1) + x2)
lr$estimate(d0)
if (interactive()) {

plot(lr$fit)
}

learner_glm 33

learner_glm Construct a learner

Description

Constructs a learner class object for fitting generalized linear models with stats::glm and MASS::glm.nb.
Negative binomial regression is supported with family = "nb" (or alternatively family = "negbin").

Usage

learner_glm(
formula,
info = "glm",
family = gaussian(),
learner.args = NULL,
...

)

Arguments

formula (formula) Formula specifying response and design matrix.

info (character) Optional information to describe the instantiated learner object.

family a description of the error distribution and link function to be used in the model.
For glm this can be a character string naming a family function, a family function
or the result of a call to a family function. For glm.fit only the third option is
supported. (See family for details of family functions.)

learner.args (list) Additional arguments to learner$new().

... Additional arguments to stats::glm or MASS::glm.nb.

Value

learner object.

Examples

n <- 5e2
x <- rnorm(n)
w <- 50 + rexp(n, rate = 1 / 5)
y <- rpois(n, exp(2 + 0.5 * x + log(w)) * rgamma(n, 1 / 2, 1 / 2))
d0 <- data.frame(y, x, w)

lr <- learner_glm(y ~ x) # linear Gaussian model
lr$estimate(d0)
coef(lr$fit)

negative binomial regression model with offset (using MASS::glm.nb)
lr <- learner_glm(y ~ x + offset(log(w)), family = "nb")

34 learner_glmnet_cv

lr$estimate(d0)
coef(lr$fit)
lr$predict(data.frame(x = 1, w = c(1, 5))) # response scale
lr$predict(data.frame(x = 1, w = c(1, 5)), type = "link") # link scale

learner_glmnet_cv Construct a learner

Description

Constructs a learner class object for fitting entire lasso or elastic-net regularization paths for various
linear and non-linear regression models with glmnet::cv.glmnet. Predictions are returned for the
value of lambda that gives minimum cvm. That is, glmnet::predict.cv.glmnet is called with s =
"lambda.min".

Usage

learner_glmnet_cv(
formula,
info = "glmnet::cv.glmnet",
family = gaussian(),
lambda = NULL,
alpha = 1,
nfolds = 10,
learner.args = NULL,
...

)

Arguments

formula (formula) Formula specifying response and design matrix.

info (character) Optional information to describe the instantiated learner object.

family Either a character string representing one of the built-in families, or else a glm()
family object. For more information, see Details section below or the documen-
tation for response type (above).

lambda Optional user-supplied lambda sequence; default is NULL, and glmnet chooses
its own sequence. Note that this is done for the full model (master sequence),
and separately for each fold. The fits are then alligned using the master sequence
(see the allignment argument for additional details). Adapting lambda for each
fold leads to better convergence. When lambda is supplied, the same sequence
is used everywhere, but in some GLMs can lead to convergence issues.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1. The penalty is defined as

(1− α)/2||β||22 + α||β||1.

alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.

learner_grf 35

nfolds number of folds - default is 10. Although nfolds can be as large as the sample
size (leave-one-out CV), it is not recommended for large datasets. Smallest
value allowable is nfolds=3

learner.args (list) Additional arguments to learner$new().

... Other arguments that can be passed to glmnet, for example alpha, nlambda, etc.
See glmnet for details.

Value

learner object.

Examples

continuous outcome
n <- 5e2
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
lp <- x1 + x2*x1 + cos(x1)
y <- rnorm(n, lp, sd = 2)
d0 <- data.frame(y, x1, x2)

lr <- learner_glmnet_cv(y ~ x1 + x2)
lr$estimate(d0, nfolds = 3)
lr$predict(data.frame(x1 = c(0, 1), x2 = 1))

count outcome with different exposure time
w <- 50 + rexp(n, rate = 1 / 5)
y <- rpois(n, exp(0.5 * x1 - 1 * x2 + log(w)) * rgamma(n, 1 / 2, 1 / 2))
d0 <- data.frame(y, x1, x2, w)

lr <- learner_glmnet_cv(y ~ x1 + x2 + offset(log(w)), family = "poisson")
lr$estimate(d0, nfolds = 3)
lr$predict(data.frame(x1 = 1, x2 = 1, w = c(1, 5)))

learner_grf Construct a learner

Description

Constructs a learner class object for fitting generalized random forest models with grf::regression_forest
or grf::probability_forest. As shown in the examples, the constructed learner returns predicted class
probabilities of class 2 in case of binary classification. A n times p matrix, with n being the
number of observations and p the number of classes, is returned for multi-class classification.

36 learner_grf

Usage

learner_grf(
formula,
num.trees = 2000,
min.node.size = 5,
alpha = 0.05,
sample.fraction = 0.5,
num.threads = 1,
model = "grf::regression_forest",
info = model,
learner.args = NULL,
...

)

Arguments

formula (formula) Formula specifying response and design matrix.

num.trees Number of trees grown in the forest. Note: Getting accurate confidence intervals
generally requires more trees than getting accurate predictions. Default is 2000.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

model (character) grf model to estimate. Usually regression_forest (grf::regression_forest)
or probability_forest (grf::probability_forest).

info (character) Optional information to describe the instantiated learner object.

learner.args (list) Additional arguments to learner$new().

... Additional arguments to model

Value

learner object.

Examples

n <- 5e2
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
lp <- x2*x1 + cos(x1)
yb <- rbinom(n, 1, lava::expit(lp))
y <- lp + rnorm(n, sd = 0.5**.5)

learner_hal 37

d <- data.frame(y, yb, x1, x2)

regression
lr <- learner_grf(y ~ x1 + x2)
lr$estimate(d)
lr$predict(head(d))

binary classification
lr <- learner_grf(as.factor(yb) ~ x1 + x2, model = "probability_forest")
lr$estimate(d)
lr$predict(head(d)) # predict class probabilities of class 2

multi-class classification
lr <- learner_grf(Species ~ ., model = "probability_forest")
lr$estimate(iris)
lr$predict(head(iris))

learner_hal Construct a learner

Description

Constructs a learner class object for fitting a highly adaptive lasso model with hal9001::fit_hal.

Usage

learner_hal(
formula,
info = "hal9001::fit_hal",
smoothness_orders = 0,
reduce_basis = NULL,
family = "gaussian",
learner.args = NULL,
...

)

Arguments

formula (formula) Formula specifying response and design matrix.
info (character) Optional information to describe the instantiated learner object.
smoothness_orders

An integer, specifying the smoothness of the basis functions. See details for
smoothness_orders for more information.

reduce_basis Am optional numeric value bounded in the open unit interval indicating the
minimum proportion of 1’s in a basis function column needed for the basis func-
tion to be included in the procedure to fit the lasso. Any basis functions with a
lower proportion of 1’s than the cutoff will be removed. Defaults to 1 over the
square root of the number of observations. Only applicable for models fit with
zero-order splines, i.e. smoothness_orders = 0.

38 learner_isoreg

family A character or a family object (supported by glmnet) specifying the er-
ror/link family for a generalized linear model. character options are limited
to "gaussian" for fitting a standard penalized linear model, "binomial" for pe-
nalized logistic regression, "poisson" for penalized Poisson regression, "cox"
for a penalized proportional hazards model, and "mgaussian" for multivariate
penalized linear model. Note that passing in family objects leads to slower per-
formance relative to passing in a character family (if supported). For example,
one should set family = "binomial" instead of family = binomial() when
calling fit_hal.

learner.args (list) Additional arguments to learner$new().

... Additional arguments to hal9001::fit_hal.

Value

learner object.

Examples

Not run:
n <- 5e2
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
y <- x1 + cos(x1) + rnorm(n, sd = 0.5**.5)
d <- data.frame(y, x1, x2)
lr <- learner_hal(y ~ x1 + x2, smoothness_orders = 0.5, reduce_basis = 1)
lr$estimate(d)
lr$predict(data.frame(x1 = 0, x2 = c(-1, 1)))

End(Not run)

learner_isoreg Construct a learner

Description

Constructs a learner class object for isotonic regression with isoregw.

Usage

learner_isoreg(formula, info = "targeted::isoregw", learner.args = NULL, ...)

Arguments

formula (formula) Formula specifying response and design matrix.

info (character) Optional information to describe the instantiated learner object.

learner.args (list) Additional arguments to learner$new().

... Additional arguments to isoregw.

learner_mars 39

Value

learner object.

Examples

x <- runif(5e3, -5, 5)
pr <- lava::expit(-1 + x)
y <- rbinom(length(pr), 1, pr)
d <- data.frame(y, x)

lr <- learner_isoreg(y ~ x)
lr$estimate(d)
pr_iso <- lr$predict(d)

if (interactive()) {
plot(pr ~ x, cex=0.3)
lines(sort(x), pr_iso[order(x)], col="red", type="s")

}

learner_mars Construct a learner

Description

Constructs a learner class object for fitting multivariate adaptive regression splines with earth::earth.

Usage

learner_mars(
formula,
info = "earth::earth",
degree = 1,
nprune = NULL,
glm = NULL,
learner.args = NULL,
...

)

Arguments

formula (formula) Formula specifying response and design matrix.

info (character) Optional information to describe the instantiated learner object.

degree Maximum degree of interaction (Friedman’s mi). Default is 1, meaning build
an additive model (i.e., no interaction terms).

40 learner_naivebayes

nprune Maximum number of terms (including intercept) in the pruned model. De-
fault is NULL, meaning all terms created by the forward pass (but typically
not all terms will remain after pruning). Use this to enforce an upper bound on
the model size (that is less than nk), or to reduce exhaustive search time with
pmethod="exhaustive".

The following arguments are for cross validation.

glm NULL (default) or a list of arguments to pass on to glm. See the documentation
of glm for a description of these arguments See “Generalized linear models” in
the vignette. Example:
earth(survived~., data=etitanic, degree=2, glm=list(family=binomial))

The following arguments are for the forward pass.

learner.args (list) Additional arguments to learner$new().

... Additional arguments to earth::earth.

Value

learner object.

Examples

poisson regression
n <- 5e2
x <- rnorm(n)
w <- 50 + rexp(n, rate = 1 / 5)
y <- rpois(n, exp(2 + 0.5 * x + log(w)) * rgamma(n, 1 / 2, 1 / 2))
d0 <- data.frame(y, x, w)

lr <- learner_mars(y ~ x + offset(log(w)), degree = 2,
glm = list(family = poisson())

)
lr$estimate(d0)
lr$predict(data.frame(x = 0, w = c(1, 2)))

learner_naivebayes Construct a learner

Description

Constructs a learner class object for fitting a naive bayes classifier with naivebayes. As shown in the
examples, the constructed learner returns predicted class probabilities of class 2 in case of binary
classification. A n times p matrix, with n being the number of observations and p the number of
classes, is returned for multi-class classification.

learner_naivebayes 41

Usage

learner_naivebayes(
formula,
info = "Naive Bayes",
laplace.smooth = 0,
kernel = FALSE,
learner.args = NULL,
...

)

Arguments

formula (formula) Formula specifying response and design matrix.

info (character) Optional information to describe the instantiated learner object.

laplace.smooth Laplace smoothing

kernel If TRUE a kernel estimator is used for numeric predictors (otherwise a gaussian
model is used)

learner.args (list) Additional arguments to learner$new().

... Additional arguments to naivebayes.

Value

learner object.

Examples

n <- 5e2
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
y <- rbinom(n, 1, lava::expit(x2*x1 + cos(x1)))
d <- data.frame(y, x1, x2)

binary classification
lr <- learner_naivebayes(y ~ x1 + x2)
lr$estimate(d)
lr$predict(head(d))

multi-class classification
lr <- learner_naivebayes(Species ~ .)
lr$estimate(iris)
lr$predict(head(iris))

42 learner_sl

learner_sl Construct a learner

Description

Constructs a learner class object for fitting a superlearner.

Usage

learner_sl(
learners,
info = NULL,
nfolds = 5L,
meta.learner = metalearner_nnls,
model.score = mse,
learner.args = NULL,
...

)

Arguments

learners (list) List of learner objects (i.e. learner_glm)

info (character) Optional information to describe the instantiated learner object.

nfolds (integer) Number of folds to use in cross-validation to estimate the ensemble
weights.

meta.learner (function) Algorithm to learn the ensemble weights (default non-negative least
squares). Must be a function of the response (nx1 vector), y, and the predictions
(nxp matrix), pred, with p being the number of learners. Alternatively, this can
be set to the character value "discrete", in which case the Discrete Super-Learner
is applied where the model with the lowest risk (model-score) is given weight 1
and all other learners weight 0.

model.score (function) Model scoring method (see learner)

learner.args (list) Additional arguments to learner$new().

... Additional arguments to superlearner

Value

learner object.

See Also

cv.learner_sl

learner_stratify 43

Examples

sim1 <- function(n = 5e2) {
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
y <- x1 + cos(x1) + rnorm(n, sd = 0.5**.5)
data.frame(y, x1, x2)

}
d <- sim1()

m <- list(
"mean" = learner_glm(y ~ 1),
"glm" = learner_glm(y ~ x1 + x2),
"iso" = learner_isoreg(y ~ x1)

)

s <- learner_sl(m, nfolds = 10)
s$estimate(d)
pr <- s$predict(d)
if (interactive()) {

plot(y ~ x1, data = d)
points(d$x1, pr, col = 2, cex = 0.5)
lines(cos(x1) + x1 ~ x1, data = d[order(d$x1),],

lwd = 4, col = lava::Col("darkblue", 0.3))
}
print(s)
weights(s$fit)
score(s$fit)

cvres <- cv(s, data = d, nfolds = 3, rep = 2)
cvres
coef(cvres)
score(cvres)

learner_stratify Construct stratified learner

Description

This function creates a stratified learner from an existing learner wrapper function such as learner_glm
or learner_xgboost. The stratification variable can be specified either using the stratify argument
(which can be given as a string "a" or a formula , for example ~ I(a==0)), or it can be defined as a
special term directly in the formula, y ~ ... + stratify(a). The formula will subsequently be passed
to the learner_ wrapper without the stratify special term.

Usage

learner_stratify(
formula,
learner,

44 learner_svm

stratify = NULL,
info = NULL,
learner.args = list(),
...

)

Arguments

formula formula specifying outcome and design matrix

learner (learner) learner object

stratify (character,formula) variables to stratify by

info optional description of the model

learner.args (list) optional arguments to the learner constructor

... additional arguments passed to the learner constructor

Value

learner object

Examples

simdata <- function(n=1000) {
a <- rbinom(n, 1, 0.5)
x <- rnorm(n)
y <- rbinom(n, 1, plogis(-1 + a + a * x))
data.frame(y, a, x)

}
d <- simdata()

lr <- learner_stratify(
y ~ x + stratify(a),
learner_glm,
family=binomial()

)
lr$estimate(d)
lr$predict(head(d))

learner_svm Construct a learner

Description

Constructs a learner class object for fitting support vector machines with e1071::svm. As shown
in the examples, the constructed learner returns predicted class probabilities of class 2 in case of
binary classification. A n times p matrix, with n being the number of observations and p the
number of classes, is returned for multi-class classification.

learner_svm 45

Usage

learner_svm(
formula,
info = "e1071::svm",
cost = 1,
epsilon = 0.1,
kernel = "radial",
learner.args = NULL,
...

)

Arguments

formula (formula) Formula specifying response and design matrix.

info (character) Optional information to describe the instantiated learner object.

cost cost of constraints violation (default: 1)—it is the ‘C’-constant of the regular-
ization term in the Lagrange formulation.

epsilon epsilon in the insensitive-loss function (default: 0.1)

kernel the kernel used in training and predicting. You might consider changing some
of the following parameters, depending on the kernel type.

linear: u′v
polynomial: (γu′v + coef0)degree

radial basis: e(− γ|u− v|2)
sigmoid: tanh(γu′v + coef0)

learner.args (list) Additional arguments to learner$new().

... Additional arguments to e1071::svm.

Value

learner object.

Examples

n <- 5e2
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
lp <- x2*x1 + cos(x1)
yb <- rbinom(n, 1, lava::expit(lp))
y <- lp + rnorm(n, sd = 0.5**.5)
d <- data.frame(y, yb, x1, x2)

regression
lr <- learner_svm(y ~ x1 + x2)
lr$estimate(d)
lr$predict(head(d))

46 learner_xgboost

binary classification
lr <- learner_svm(as.factor(yb) ~ x1 + x2)
alternative to transforming response variable to factor
lr <- learner_svm(yb ~ x1 + x2, type = "C-classification")
lr$estimate(d)
lr$predict(head(d)) # predict class probabilities of class 2
lr$predict(head(d), probability = FALSE) # predict labels

multi-class classification
lr <- learner_svm(Species ~ .)
lr$estimate(iris)
lr$predict(head(iris))

learner_xgboost Construct a learner

Description

Constructs a learner class object for xgboost::xgboost.

Usage

learner_xgboost(
formula,
max_depth = 2L,
learning_rate = 1,
nrounds = 2L,
subsample = 1,
reg_lambda = 1,
objective = "reg:squarederror",
info = paste("xgboost", objective),
learner.args = NULL,
...

)

Arguments

formula (formula) Formula specifying response and design matrix.

max_depth (integer) Maximum depth of a tree.

learning_rate (numeric) Learning rate.

nrounds Number of boosting iterations / rounds.
Note that the number of default boosting rounds here is not automatically tuned,
and different problems will have vastly different optimal numbers of boosting
rounds.

subsample (numeric) Subsample ratio of the training instance.

reg_lambda (numeric) L2 regularization term on weights.

ML 47

objective (character) Specify the learning task and the corresponding learning objective.
See xgboost::xgboost for all available options.

info (character) Optional information to describe the instantiated learner object.
learner.args (list) Additional arguments to learner$new().
... Additional arguments to xgboost::xgboost.

Value

learner object.

Examples

n <- 1e3
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
lp <- x2*x1 + cos(x1)
yb <- rbinom(n, 1, lava::expit(lp))
y <- lp + rnorm(n, sd = 0.5**.5)
d0 <- data.frame(y, yb, x1, x2)

regression
lr <- learner_xgboost(y ~ x1 + x2, nrounds = 5)
lr$estimate(d0)
lr$predict(head(d0))

binary classification
lr <- learner_xgboost(yb ~ x1 + x2, nrounds = 5,
objective = "binary:logistic"

)
lr$estimate(d0)
lr$predict(head(d0))

multi-class classification
d0 <- iris
d0$y <- as.numeric(d0$Species)- 1

lr <- learner_xgboost(y ~ ., objective = "multi:softprob", num_class = 3)
lr$estimate(d0)
lr$predict(head(d0))

ML ML model

Description

Wrapper for ml_model

Usage

ML(formula, model = "glm", ...)

48 ml_model

Arguments

formula formula

model model (sl, rf, pf, glm, ...)

... additional arguments to model object

ml_model R6 class for prediction models

Description

Replaced by learner

Super class

targeted::learner -> ml_model

Methods

Public methods:

• ml_model$new()

• ml_model$clone()

Method new(): Create a new prediction model object

Usage:

ml_model$new(...)

Arguments:

... deprecated

Method clone(): The objects of this class are cloneable with this method.

Usage:

ml_model$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

naivebayes 49

naivebayes Naive Bayes classifier

Description

Naive Bayes Classifier

Usage

naivebayes(
formula,
data,
weights = NULL,
kernel = FALSE,
laplace.smooth = 0,
prior = NULL,
...

)

Arguments

formula Formula with syntax: response ~ predictors | weights

data data.frame

weights optional frequency weights

kernel If TRUE a kernel estimator is used for numeric predictors (otherwise a gaussian
model is used)

laplace.smooth Laplace smoothing

prior optional prior probabilities (default estimated from data)

... additional arguments to lower level functions

Value

An object of class ’naivebayes’ is returned. See naivebayes-class for more details about this
class and its generic functions.

Author(s)

Klaus K. Holst

Examples

library(data.table)
data(iris)
m <- naivebayes(Species ~ Sepal.Width + Petal.Length, data = iris)
pr <- predict(m, newdata = iris)

50 naivebayes-class

using weights to reduce the size of the dataset
n <- 5e2
x <- rnorm(n, sd = 2) > 0
y <- rbinom(n, 1, lava::expit(x))
full data set
d1 <- data.frame(y, x = as.factor(x > 0))
m1 <- naivebayes(y ~ x, data = d1)
reduced data set
d2 <- data.table(d1)[, .(.N), by = .(y, x)]
m2 <- naivebayes(y ~ x, data = d2, weights = d2$N)
all(predict(m1, d1) == predict(m2, d1))

naivebayes-class naivebayes class object

Description

The functions naivebayes returns an object of the type naivebayes.

An object of class ’naivebayes’ is a list with at least the following components:

prior Matrix with prior probabilities, i.e. marginal class probabilities Pr(class)

pcond list of matrices with conditional probabilities of the features given the classes (one list ele-
ment per class), Pr(x|class)

classes Names (character vector) of the classes

xvar Names of predictors

xmodel Conditional model for each predictor

design Model design object

call The function call which instantiated the object

Value

objects of the S3 class ’naivebayes’

S3 generics

The following S3 generic functions are available for an object of class naivebayes:

predict Predict class probabilities for new features data.

print Basic print method.

See Also

naivebayes()

Examples

See example(naivebayes) for examples

nondom 51

nondom Find non-dominated points of a set

Description

Find the non-dominated point of a set (minima of a point set).

Usage

nondom(x, ...)

Arguments

x matrix

... additional arguments to lower level functions

Details

A point x dominates y if it is never worse and at least in one case strictly better. Formally, let f_i
denote the ith coordinate of the condition (objective) function, then for all i: f_i(x)<=f_i(y) and
there exists j: f_j(x)<f_j(y).

Based on the algorithm of Kung et al. 1975.

Value

matrix

Author(s)

Klaus Kähler Holst

Examples

rbind(
c(1.0, 0.5),
c(0.0, 1.0),
c(1.0, 0.0),
c(0.5, 1.0),
c(1.0, 1.0),
c(0.8, 0.8)) |> nondom()

52 predict.density

pava Pooled Adjacent Violators Algorithm

Description

Pooled Adjacent Violators Algorithm

Usage

pava(y, x = numeric(0), weights = numeric(0))

Arguments

y response variable

x (optional) predictor vector (otherwise y is assumed to be a priori sorted accord-
ing to relevant predictor)

weights weights (optional) weights

Value

List with index (idx) of jump points and values (value) at each jump point.

Author(s)

Klaus K. Holst

Examples

x <- runif(5e3, -5, 5)
pr <- lava::expit(-1 + x)
y <- rbinom(length(pr), 1, pr)
pv <- pava(y, x)
plot(pr ~ x, cex=0.3)
with(pv, lines(sort(x)[index], value, col="red", type="s"))

predict.density Prediction for kernel density estimates

Description

Kernel density estimator predictions

Usage

S3 method for class 'density'
predict(object, xnew, ...)

predict.naivebayes 53

Arguments

object density object

xnew New data on which to make predictions for

... additional arguments to lower level functions

Author(s)

Klaus K. Holst

predict.naivebayes Predictions for Naive Bayes Classifier

Description

Naive Bayes Classifier predictions

Usage

S3 method for class 'naivebayes'
predict(object, newdata, expectation = NULL, threshold = c(0.001, 0.001), ...)

Arguments

object density object

newdata new data on which to make predictions

expectation Variable to calculate conditional expectation wrt probabilities from naivebayes
classifier

threshold Threshold parameters. First element defines the threshold on the probabilities
and the second element the value to set those truncated probabilities to.

... Additional arguments to lower level functions

Author(s)

Klaus K. Holst

54 RATE

predict.superlearner Predict Method for superlearner Fits

Description

Obtains predictions for ensemble model or individual learners.

Usage

S3 method for class 'superlearner'
predict(object, newdata, all.learners = FALSE, ...)

Arguments

object (superlearner) Fitted superlearner object.

newdata (data.frame) Data in which to look for variables with which to predict.

all.learners (logical) If FALSE (default), then return the predictions from the ensemble
model. Otherwise, return predictions of from all individual learners.

... Not used.

Value

numeric (all.learners = FALSE) or matrix (all.learners = TRUE)

RATE Responder Average Treatment Effect

Description

Estimation of the Average Treatment Effect among Responders

Usage

RATE(
response,
post.treatment,
treatment,
data,
family = gaussian(),
M = 5,
pr.treatment,
treatment.level,
SL.args.response = list(family = gaussian(), SL.library = c("SL.mean", "SL.glm")),
SL.args.post.treatment = list(family = binomial(), SL.library = c("SL.mean", "SL.glm")),
preprocess = NULL,

RATE.surv 55

efficient = TRUE,
...

)

Arguments

response Response formula (e.g, Y ~ D*A)

post.treatment Post treatment marker formula (e.g., D ~ W)

treatment Treatment formula (e.g, A ~ 1)

data data.frame

family Exponential family for response (default gaussian)

M Number of folds in cross-fitting (M=1 is no cross-fitting)

pr.treatment (optional) Randomization probability of treatment.

treatment.level

Treatment level in binary treatment (default 1)

SL.args.response

Arguments to SuperLearner for the response model

SL.args.post.treatment

Arguments to SuperLearner for the post treatment indicator

preprocess (optional) Data preprocessing function

efficient If TRUE, the estimate will be efficient. If FALSE, the estimate will be a simple
plug-in estimate.

... Additional arguments to lower level functions

Value

estimate object

Author(s)

Andreas Nordland, Klaus K. Holst

RATE.surv Responder Average Treatment Effect

Description

Estimation of the Average Treatment Effect among Responders for Survival Outcomes

56 RATE.surv

Usage

RATE.surv(
response,
post.treatment,
treatment,
censoring,
tau,
data,
M = 5,
pr.treatment,
call.response,
args.response = list(),
SL.args.post.treatment = list(family = binomial(), SL.library = c("SL.mean", "SL.glm")),
call.censoring,
args.censoring = list(),
preprocess = NULL,
...

)

Arguments

response Response formula (e.g., Surv(time, event) ~ D + W).

post.treatment Post treatment marker formula (e.g., D ~ W)

treatment Treatment formula (e.g, A ~ 1)

censoring Censoring formula (e.g., Surv(time, event == 0) ~ D + A + W)).

tau Time-point of interest, see Details.

data data.frame

M Number of folds in cross-fitting (M=1 is no cross-fitting)

pr.treatment (optional) Randomization probability of treatment.

call.response Model call for the response model (e.g. "mets::phreg").

args.response Additional arguments to the response model.
SL.args.post.treatment

Arguments to SuperLearner for the post treatment indicator

call.censoring Similar to call.response.

args.censoring Similar to args.response.

preprocess (optional) Data preprocessing function

... Additional arguments to lower level functions

Details

Estimation of
P (T ≤ τ |A = 1)− P (T ≤ τ |A = 1)

E[D|A = 1]

under right censoring based on plug-in estimates of P (T ≤ τ |A = a) and E[D|A = 1].

riskreg 57

An efficient one-step estimator of P (T ≤ τ |A = a) is constructed using the efficient influence
function

I{A = a}
P (A = a)

(∆

Sc
0(T̃ |X)

I{T̃ ≤ τ}+
∫ τ

0

S0(u|X)− S0(τ |X)

S0(u|X)Sc
0(u|X)

dM c
0 (u|X)

)
+
(
1− I{A = a}

P (A = a)

)
F0(τ |A = a,W)− P (T ≤ τ |A = a).

An efficient one-step estimator of E[D|A = 1] is constructed using the efficient influence function

A

P (A = 1)
(D − E[D|A = 1,W]) + E[D|A = 1,W]− E[D|A = 1].

Value

estimate object

Author(s)

Andreas Nordland, Klaus K. Holst

riskreg Risk regression

Description

Risk regression with binary exposure and nuisance model for the odds-product.

LetA be the binary exposure, V the set of covariates, and Y the binary response variable, and define
pa(v) = P (Y = 1 | A = a, V = v), a ∈ {0, 1}.

The target parameter is either the relative risk

RR(v) =
p1(v)

p0(v)

or the risk difference
RD(v) = p1(v)− p0(v)

We assume a target parameter model given by either

log{RR(v)} = αtv

or
arctanh{RD(v)} = αtv

and similarly a working linear nuisance model for the odds-product

ϕ(v) = log

(
p0(v)p1(v)

(1− p0(v))(1− p1(v))

)
= βtv

.

58 riskreg

A propensity model for E(A = 1|V) is also fitted using a logistic regression working model

logit{E(A = 1 | V = v)} = γtv.

If both the odds-product model and the propensity model are correct the estimator is efficient.
Further, the estimator is consistent in the union model, i.e., the estimator is double-robust in the
sense that only one of the two models needs to be correctly specified to get a consistent estimate.

Usage

riskreg(
formula,
nuisance = ~1,
propensity = ~1,
target = ~1,
data,
weights,
type = "rr",
optimal = TRUE,
std.err = TRUE,
start = NULL,
mle = FALSE,
...

)

Arguments

formula formula (see details below)
nuisance nuisance model (formula)
propensity propensity model (formula)
target (optional) target model (formula)
data data.frame
weights optional weights
type type of association measure (rd og rr)
optimal If TRUE optimal weights are calculated
std.err If TRUE standard errors are calculated
start optional starting values
mle Semi-parametric (double-robust) estimate or MLE (TRUE gives MLE)
... additional arguments to unconstrained optimization routine (nlminb)

Details

The ’formula’ argument should be given as response ~ exposure | target-formula | nuisance-formula
or response ~ exposure | target | nuisance | propensity

E.g., riskreg(y ~ a | 1 | x+z | x+z, data=...)

Alternatively, the model can specifed using the target, nuisance and propensity arguments: riskreg(y
~ a, target=~1, nuisance=~x+z, ...)

The riskreg_fit function can be used with matrix inputs rather than formulas.

riskreg_cens 59

Value

An object of class ’riskreg.targeted’ is returned. See targeted-class for more details about
this class and its generic functions.

Author(s)

Klaus K. Holst

References

Richardson, T. S., Robins, J. M., & Wang, L. (2017). On modeling and estimation for the relative
risk and risk difference. Journal of the American Statistical Association, 112(519), 1121–1130.
http://dx.doi.org/10.1080/01621459.2016.1192546

Examples

m <- lava::lvm(a[-2] ~ x,
z ~ 1,
lp.target[1] ~ 1,
lp.nuisance[-1] ~ 2*x) |>

lava::distribution(~a, value=lava::binomial.lvm("logit")) |>
lava::binomial.rr("y","a","lp.target","lp.nuisance")

d <- sim(m,5e2,seed=1)

I <- model.matrix(~1, d)
X <- model.matrix(~1+x, d)
with(d, riskreg_mle(y, a, I, X, type="rr"))

with(d, riskreg_fit(y, a, nuisance=X, propensity=I, type="rr"))
riskreg(y ~ a | 1, nuisance=~x , data=d, type="rr")

Model with same design matrix for nuisance and propensity model:
with(d, riskreg_fit(y, a, nuisance=X, type="rr"))

a <- riskreg(y ~ a, target=~z, nuisance=~x,
propensity=~x, data=d, type="rr")
a <- riskreg(y ~ a | z, nuisance=~x, propensity=~x, data=d, type="rr")
a
predict(a, d[1:5,])

riskreg(y ~ a, nuisance=~x, data=d, type="rr", mle=TRUE)

riskreg_cens Binary regression models with right censored outcomes

Description

Binary regression models with right censored outcomes

60 riskreg_cens

Usage

riskreg_cens(
response,
censoring,
treatment = NULL,
prediction = NULL,
data,
newdata,
tau,
type = "risk",
M = 1,
call.response = "phreg",
args.response = list(),
call.censoring = "phreg",
args.censoring = list(),
preprocess = NULL,
efficient = TRUE,
control = list(),
...

)

Arguments

response Response formula (e.g., Surv(time, event) ~ D + W).

censoring Censoring formula (e.g., Surv(time, event == 0) ~ D + A + W)).

treatment Optional treatment model (learner)

prediction Optional prediction model (learner)

data data.frame.

newdata Optional data.frame. In this case the uncentered influence function evaluated in
’newdata’ is returned with nuisance parameters obtained from ’data’.

tau Time-point of interest, see Details.

type "risk", "treatment", "brier"

M Number of folds in cross-fitting (M=1 is no cross-fitting).

call.response Model call for the response model (e.g. "mets::phreg").

args.response Additional arguments to the response model.

call.censoring Similar to call.response.

args.censoring Similar to args.response.

preprocess (optional) Data pre-processing function.

efficient If FALSE an IPCW estimator is returned

control See details

... Additional arguments to lower level data pre-processing functions.

score.superlearner 61

Details

The one-step estimator depends on the calculation of an integral wrt. the martingale process corre-
sponding to the counting process N(t) = I(C>min(T,tau)). This can be decomposed into an integral
wrt the counting process, dNc(t) and the compensator dΛc(t) where the latter term can be compu-
tational intensive to calculate. Rather than calculating this integral in all observed time points, we
can make a coarser evaluation which can be controlled by setting control=(sample=N). With N=0
the (computational intensive) standard evaluation is used.

Value

estimate object

Author(s)

Klaus K. Holst, Andreas Nordland

score.superlearner Extract average cross-validated score of individual learners

Description

Extract average cross-validated score of individual learners

Usage

S3 method for class 'superlearner'
score(x, ...)

Arguments

x (superlearner) Fitted model.

... Not used.

scoring Predictive model scoring

Description

Predictive model scoring

62 scoring

Usage

scoring(
response,
...,
type = "quantitative",
levels = NULL,
metrics = NULL,
weights = NULL,
names = NULL,
object = NULL,
newdata = NULL,
messages = 1

)

Arguments

response Observed response
... model predictions (continuous predictions or class probabilities (matrices))
type continuous or categorical response (the latter is automatically chosen if response

is a factor, otherwise a continuous response is assumed)
levels (optional) unique levels in response variable
metrics which metrics to report
weights optional frequency weights
names (optional) character vector of the model names in the output. If omitted these

will be taken from the names of the ellipsis argument (...)
object optional model object
newdata (optional) data.frame on which to evaluate the model performance
messages controls amount of messages/warnings (0: none)

Value

Numeric matrix of dimension m x p, where m is the number of different models and p is the number
of model metrics

Examples

data(iris)
set.seed(1)
dat <- lava::csplit(iris,2)
g1 <- naivebayes(Species ~ Sepal.Width + Petal.Length, data=dat[[1]])
g2 <- naivebayes(Species ~ Sepal.Width, data=dat[[1]])
pr1 <- predict(g1, newdata=dat[[2]], wide=TRUE)
pr2 <- predict(g2, newdata=dat[[2]], wide=TRUE)
table(colnames(pr1)[apply(pr1,1,which.max)], dat[[2]]$Species)
table(colnames(pr2)[apply(pr2,1,which.max)], dat[[2]]$Species)
scoring(dat[[2]]$Species, pr1=pr1, pr2=pr2)
quantitative response:
scoring(response=1:10, prediction=rnorm(1:10))

SL 63

SL SuperLearner wrapper for learner

Description

SuperLearner wrapper for learner

Usage

SL(
formula = ~.,
...,
SL.library = c("SL.mean", "SL.glm"),
binomial = FALSE,
data = NULL,
info = "SuperLearner"

)

Arguments

formula Model design

... Additional arguments for SuperLearner::SuperLearner

SL.library character vector of prediction algorithms

binomial boolean specifying binomial or gaussian family (default FALSE)

data Optional data.frame

info model information (optional)

Value

learner object

Author(s)

Klaus Kähler Holst

softmax Softmax transformation

Description

Softmax transformation

Usage

softmax(x, log = FALSE, ref = TRUE, ...)

64 solve_ode

Arguments

x Input matrix (e.g., linear predictors of multinomial logistic model)
log Return on log-scale (default FALSE)
ref Add reference level (add 0 column to x)
... Additional arguments to lower level functions

Value

Numeric matrix of dimension n x p, where n= nrow(x) and p = ncol(x) + (ref==TRUE)

solve_ode Solve ODE

Description

Solve ODE with Runge-Kutta method (RK4)

Usage

solve_ode(ode_ptr, input, init, par = 0)

Arguments

ode_ptr pointer (externalptr) to C++ function or an R function
input Input matrix. 1st column specifies the time points
init Initial conditions
par Parameters defining the ODE (parsed to ode_ptr)

Details

The external point should be created with the function targeted::specify_ode.

Value

Matrix with solution

Author(s)

Klaus Kähler Holst

See Also

specify_ode

Examples

example(specify_ode)

specify_ode 65

specify_ode Specify Ordinary Differential Equation (ODE)

Description

Define compiled code for ordinary differential equation.

Usage

specify_ode(code, fname = NULL, pname = c("dy", "x", "y", "p"))

Arguments

code string with the body of the function definition (see details)

fname Optional name of the exported C++ function

pname Vector of variable names (results, inputs, states, parameters)

Details

The model (code) should be specified as the body of of C++ function. The following variables are
defined bye default (see the argument pname)

dy Vector with derivatives, i.e. the rhs of the ODE (the result).

x Vector with the first element being the time, and the following elements additional exogenous
input variables,

y Vector with the dependent variable

p Parameter vector

y′(t) = fp(x(t), y(t)) All variables are treated as Armadillo (http://arma.sourceforge.net/) vec-
tors/matrices.

As an example consider the Lorenz Equations dxt

dt = σ(yt − xt)
dyt

dt = xt(ρ − zt) − yt
dzt
dt =

xtyt − βzt

We can specify this model as ode <- 'dy(0) = p(0)*(y(1)-y(0)); dy(1) = y(0)*(p(1)-y(2));
dy(2) = y(0)*y(1)-p(2)*y(2);' dy <- specify_ode(ode)

As an example of model with exogenous inputs consider the following ODE: y′(t) = β0+β1y(t)+
β2y(t)x(t) + β3x(t) · t This could be specified as mod <- 'double t = x(0); dy = p(0) + p(1)*y
+ p(2)*x(1)*y + p(3)*x(1)*t;' dy <- specify_ode(mod)

Value

pointer (externalptr) to C++ function

Author(s)

Klaus Kähler Holst

66 stratify

See Also

solve_ode

Examples

ode <- paste0(
"dy(0) = p(0)*(y(1)-y(0));",
"dy(1) = y(0)*(p(1)-y(2));",
"dy(2) = y(0)*y(1)-p(2)*y(2);", collapse="\n"

)
Reduce test time

dy <- specify_ode(ode)
tt <- seq(0, 100, length.out=2e4)
yy <- solve_ode(dy, input=tt, init=c(1, 1, 1), par=c(10, 28, 8/3))

stratify Identify Stratification Variables

Description

This is a special function that identifies stratification variables when they appear on the right hand
side of a formula.

Usage

stratify(..., na.group = FALSE, shortlabel, sep = ", ")

Arguments

... any number of variables. All must be the same length.

na.group a logical variable, if TRUE, then missing values are treated as a distinct level of
each variable.

shortlabel if TRUE omit variable names from resulting factor labels. The default action is to
omit the names if all of the arguments are factors, and none of them was named.

sep the character used to separate groups, in the created label

Details

When used outside of a coxph formula the result of the function is essentially identical to the
interaction function, though the labels from strata are often more verbose.

Value

a new factor, whose levels are all possible combinations of the factors supplied as arguments.

superlearner 67

See Also

survival::strata, learner_stratify, interaction

Examples

a <- factor(rep(1:3, 4), labels=c("low", "medium", "high"))
b <- factor(rep(1:4, 3))
levels(stratify(b))
levels(stratify(a, b, shortlabel=TRUE))

superlearner Superlearner (stacked/ensemble learner)

Description

This function creates a predictor object (class learner) from a list of existing learner objects. When
estimating this model a stacked prediction will be created by weighting together the predictions of
each of the initial learners The weights are learned using cross-validation.

Usage

superlearner(
learners,
data,
nfolds = 10,
meta.learner = metalearner_nnls,
model.score = mse,
mc.cores = NULL,
future.seed = TRUE,
silent = TRUE,
name.prefix = NULL,
...

)

Arguments

learners (list) List of learner objects (i.e. learner_glm)

data (data.frame) Data containing the response variable and covariates.

nfolds (integer) Number of folds to use in cross-validation to estimate the ensemble
weights.

meta.learner (function) Algorithm to learn the ensemble weights (default non-negative least
squares). Must be a function of the response (nx1 vector), y, and the predictions
(nxp matrix), pred, with p being the number of learners. Alternatively, this can
be set to the character value "discrete", in which case the Discrete Super-Learner
is applied where the model with the lowest risk (model-score) is given weight 1
and all other learners weight 0.

68 targeted-class

model.score (function) Model scoring method (see learner)
mc.cores (integer) If not NULL, then parallel::mcmapply is used with mc.cores number

of cores for parallelization instead of the future.apply::future_lapply package.
Parallelization is disabled with mc.cores = 1.

future.seed (logical or integer) Argument passed on to future.apply::future_lapply. If TRUE,
then .Random.seed is used if it holds a L’Ecuyer-CMRG RNG seed, otherwise
one is created randomly.

silent (logical) Suppress all messages and progressbars
name.prefix (character) Prefix used to name learner objects in learners without names. If

NULL, then obtain the name from the info field of a learner.
... Additional arguments to parallel::mclapply or future.apply::future_lapply.

References

Luedtke & van der Laan (2016) Super-Learning of an Optimal Dynamic Treatment Rule, The In-
ternational Journal of Biostatistics.

See Also

predict.superlearner weights.superlearner score.superlearner

Examples

sim1 <- function(n = 5e2) {
x1 <- rnorm(n, sd = 2)
x2 <- rnorm(n)
y <- x1 + cos(x1) + rnorm(n, sd = 0.5**.5)
data.frame(y, x1, x2)

}
m <- list(

"mean" = learner_glm(y ~ 1),
"glm" = learner_glm(y ~ x1 + x2)

)
sl <- superlearner(m, data = sim1(), nfolds = 2)
predict(sl, newdata = sim1(n = 5))
predict(sl, newdata = sim1(n = 5), all.learners = TRUE)

targeted-class targeted class object

Description

The functions riskreg and ate returns an object of the type targeted.

An object of class ’targeted’ is a list with at least the following components:

estimate An estimate object with the target parameter estimates (see estimate.default)
opt Object returned from the applied optimization routine
npar number of parameters of the model (target and nuisance)
type String describing the model

terms.design 69

Value

objects of the S3 class ’targeted’

S3 generics

The following S3 generic functions are available for an object of class targeted:

coef Extract target coefficients of the estimated model.

vcov Extract the variance-covariance matrix of the target parameters.

IC Extract the estimated influence function.

print Print estimates of the target parameters.

summary Extract information on both target parameeters and estimated nuisance model.’

See Also

riskreg, ate

Examples

See example(riskreg) for examples

terms.design Extract model component from design object

Description

Extract model component from design object

Usage

S3 method for class 'design'
terms(x, specials, ...)

Arguments

x design object

specials extract variables marked as special (e.g., "offset", "weights", ...)

... Additional arguments to lower level functions

70 test_intersection_sw

test_intersection_sw Signed Wald intersection test

Description

Calculating test statistics and p-values for the signed Wald intersection test given by

SW = inf
θ∈∩n

i=1Hi

{(θ̂ − θ)⊤W Σ̂W (θ̂ − θ)}

with individual hypotheses for each coordinate of θ given by Hi : θj < δj for some non-inferiority
margin δj , j = 1, . . . , n. #

Usage

test_intersection_sw(
par,
vcov,
noninf = 0,
weights = 1,
nsim.null = 10000,
index = NULL,
control = list(),
par.name = "theta"

)

Arguments

par (numeric) parameter estimates or estimate object

vcov (matrix) asymptotic variance estimate

noninf (numeric) non-inferiority margins

weights (numeric) optional weights

nsim.null (integer) number of sample used in Monte-Carlo simulation

index (integer) subset of parameters to test

control (list) arguments to alternating projection algorithm. See details section.

par.name (character) parameter names in output

Details

The constrained least squares problem is solved using Dykstra’s algorithm. The following param-
eters for the optimization can be controlled via the control list argument: dykstra_niter sets
the maximum number of iterations (default 500), dykstra_tol convergence tolerance of the alter-
nating projection algorithm (default 1e-7), pinv_tol tolerance for calculating the pseudo-inverse
matrix (default length(par).Machine$double.epsmax(eigenvalue)).

test_zmax_onesided 71

Value

htest object

Author(s)

Klaus Kähler Holst, Christian Bressen Pipper

References

Christian Bressen Pipper, Andreas Nordland & Klaus Kähler Holst (2025) A general approach to
construct powerful tests for intersections of one-sided null-hypotheses based on influence functions.
arXiv: https://arxiv.org/abs/2511.07096.

See Also

test_zmax_onesided lava::test_wald lava::closed_testing

Examples

S <- matrix(c(1, 0.5, 0.5, 2), 2, 2)
thetahat <- c(0.5, -0.2)
test_intersection_sw(thetahat, S, nsim.null = 1e5)
test_intersection_sw(thetahat, S, weights = NULL)

Not run:
only on 'lava' >= 1.8.2
e <- estimate(coef = thetahat, vcov = S, labels = c("p1", "p2"))
lava::closed_testing(e, test_intersection_sw, noninf = c(-0.1, -0.1)) |>

summary()

End(Not run)

test_zmax_onesided One-sided Zmax test

Description

Calculating test statistics and p-values for the onesided Zmax / minP test.z

Given parameter estimates (θ̂1, . . . , θ̂p)
⊤ with approximate assymptotic covariance matrix Ŝ, let

Zi = θ̂i−δi
SE(θ̂i)

, where SE(θ̂i) = Ŝii. The Zmax test statistic is then Zmax = max{Z1, . . . , Zp},
and the null-hypothesis is H0 : θi ≤ δi, i = 1, . . . , p with non-inferiority margin δi, i = 1, . . . , p,
for which the p-value is calculated as 1−ΦR(Zmax) where ϕR is the CDF of the multivariate normal
distribution with mean zero and correlation matrixR = diag(S−0.5

11 , . . . , S−0.5
pp)S diag(S−0.5

11 , . . . , S−0.5
pp).

Usage

test_zmax_onesided(par, vcov, noninf = 0, index = NULL, par.name = "theta")

72 truncatedscore

Arguments

par (numeric) parameter estimates or estimate object

vcov (matrix) asymptotic variance estimate

noninf (numeric) non-inferiority margins

index (integer) subset of parameters to test

par.name (character) parameter names in output

Value

htest object

Author(s)

Christian Bressen Pipper, Klaus Kähler Holst

See Also

test_intersection_sw() lava::test_wald() lava::closed_testing()

truncatedscore Scores truncated by death

Description

Simulated data inspired by the FLOW study (Perkovic 2024)...elt() The following variables are
considered in this simulated data set

• time: time of first event in years (first major irreversible kidney event or non-related death)

• status: event type at first major irreversible kidney event (=1), non-related death (=2), or
right censoring (=0)

• y: clinical outcome measurement (eGFR) at landmark time (:=2)

• r: missing indicator for y (1 if observed, 0 if either t<2 or if the outcome was not measured
for other reasons)

• a: binary treatment (1 := active, 0 := placebo)

• x1: covariate, clinical outcome at baseline (eGFR)

• x2: covariate, binary treatment usage indicator (1: SGLT2 treatment, 0: none).

The actual failure times and censoring times are also included (failure.time, cens.time), and
the full-data outcome (y0) given t>2.

Source

Simulated data

weights.superlearner 73

References

Perkovic, V., Tuttle, K. R., Rossing, P., Mahaffey, K. W., Mann, J. F., Bakris, G., Baeres, F.
M., Idorn, T., Bosch-Traberg, H., Lausvig, N. L., and Pratley, R. (2024). Effects of semaglutide
on chronic kidney disease in patients with type 2 diabetes. New England Journal of Medicine,
391(2):109–121.

Examples

data(truncatedscore)

weights.superlearner Extract ensemble weights

Description

Extract ensemble weights

Usage

S3 method for class 'superlearner'
weights(object, ...)

Arguments

object (superlearner) Fitted model.

... Not used.

Index

∗ data
truncatedscore, 72

.Random.seed, 68

aipw, 3
alean, 4
ate, 6, 68, 69
ate.targeted (targeted-class), 68

calibrate, 10
calibrate (calibration), 8
calibration, 8, 10
calibration-class, 9
cate, 10
cate(), 3
cate_link, 13
constructor_shared, 14
cross_validated

(cross_validated-class), 15
cross_validated-class, 15
crr, 16
cumhaz, 17
cv, 15
cv (cv.default), 18
cv.default, 18
cv.learner_sl, 20, 20, 42

deprecate_arg_warn, 21
deprecated_argument_names, 21
design, 22, 27, 28, 69

e1071::svm, 44, 45
earth::earth, 39, 40
estimate.default, 15, 68
estimate_truncatedscore, 23
expand.list, 24, 30

family, 32, 33, 38
family.mgcv, 32
future.apply::future_lapply, 68

glm, 32, 40
glmnet, 38
glmnet::cv.glmnet, 34
glmnet::predict.cv.glmnet, 34
grf::probability_forest, 35, 36
grf::regression_forest, 35, 36

hal9001::fit_hal, 37, 38

int_surv, 25
interaction, 67
isoreg (pava), 52
isoregw, 38
isoregw (pava), 52

lava::closed_testing, 71
lava::closed_testing(), 72
lava::estimate.default, 24
lava::test_wald, 71
lava::test_wald(), 72
learner, 4, 14, 15, 19, 26, 30–48, 60, 67, 68
learner$new(), 14, 32, 33, 35, 36, 38, 40–42,

45, 47
learner$print(), 28
learner$update(), 26
learner_expand_grid, 30
learner_gam, 26, 31
learner_glm, 26, 33, 42, 43, 67
learner_glmnet_cv, 26, 34
learner_grf, 26, 35
learner_hal, 26, 37
learner_isoreg, 26, 38
learner_mars, 26, 39
learner_naivebayes, 26, 40
learner_sl, 20, 26, 42
learner_stratify, 43, 67
learner_svm, 26, 44
learner_xgboost, 26, 43, 46

MASS::glm.nb, 33

74

INDEX 75

metalearner_nnls (superlearner), 67
mets::binregATE, 23
mgcv::gam, 31, 32
ML, 47
ml_model, 48

naivebayes, 40, 41, 49, 50
naivebayes(), 50
naivebayes-class, 50
nondom, 51

parallel::mclapply, 68
parallel::mcmapply, 19, 68
pava, 52
predict.density, 52
predict.naivebayes, 53
predict.superlearner, 54, 68

RATE, 54
RATE.surv, 55
riskreg, 57, 68, 69
riskreg.targeted (targeted-class), 68
riskreg_cens, 59
riskreg_fit (riskreg), 57
riskreg_mle (riskreg), 57

score.superlearner, 61, 68
scoring, 61
SL, 63
softmax, 63
solve_ode, 64
specify_ode, 65
stats::glm, 33
stratify, 66
superlearner, 42, 54, 67
survival::strata, 67
survival::summary.survfit, 18

targeted-class, 68
targeted::learner, 48
terms, 22
terms.design, 69
test_intersection_sw, 70
test_intersection_sw(), 72
test_zmax_onesided, 71, 71
truncatedscore, 72

weights.superlearner, 68, 73

xgboost::xgboost, 46, 47

	aipw
	alean
	ate
	calibration
	calibration-class
	cate
	cate_link
	constructor_shared
	cross_validated-class
	crr
	cumhaz
	cv.default
	cv.learner_sl
	deprecated_argument_names
	deprecate_arg_warn
	design
	estimate_truncatedscore
	expand.list
	int_surv
	learner
	learner_expand_grid
	learner_gam
	learner_glm
	learner_glmnet_cv
	learner_grf
	learner_hal
	learner_isoreg
	learner_mars
	learner_naivebayes
	learner_sl
	learner_stratify
	learner_svm
	learner_xgboost
	ML
	ml_model
	naivebayes
	naivebayes-class
	nondom
	pava
	predict.density
	predict.naivebayes
	predict.superlearner
	RATE
	RATE.surv
	riskreg
	riskreg_cens
	score.superlearner
	scoring
	SL
	softmax
	solve_ode
	specify_ode
	stratify
	superlearner
	targeted-class
	terms.design
	test_intersection_sw
	test_zmax_onesided
	truncatedscore
	weights.superlearner
	Index

