
Sparse arrays and multivariate polynomials in R

Robin K. S. Hankin

University of Stirling

Abstract

In this short article I introduce the spray package, which provides some functionality
for handling sparse arrays. The package uses the C++ Standard Template Library’s
map class (Musser, Derge, and Saini 2009) to store and retrieve elements. One natural
application for sparse arrays is multivariate polynomials and I give two examples of the
package in use, one drawn from the fields of random walks on lattices and one from the
field of recreational combinatorics.

To cite the spray package, use Hankin (2022c).

Keywords: Multivariate polynomials, R, sparse arrays.

1. Introduction

The multipol package (Hankin 2008) furnishes the R programming lan-
guage with functionality for multivariate polynomials. However, the mul-

tipol package was noted as being inefficient in many common cases: the
package stores multivariate polynomials as arrays and this often involves
storing many zero elements which consume computational and memory
resources unnecessarily.

One suggestion was to use sparse arrays—in which nonzero elements are
stored along with an index vector describing their coordinates—instead
of arrays. In this short document I introduce the spray package which
provides functionality for sparse arrays and interprets them as multivariate polynomials. Some
of the underlying design philosophy is discussed in the appendix. Here, ‘sparse multinomial’
is defined as one whose array representation is sufficiently sparse to make taking advantage of
is sparseness worthwhile. However, other definitions of sparseness may be useful and I outline
some below.

1.1. Existing work

The slam package (Hornik, Meyer, and Buchta 2014) provides some sparse array function-
ality but is not intended to interpret arbitrary dimensional sparse arrays as multivariate
polynomials; the rSympy package does not, as of 2017, implement sparse multivariate poly-
nomials. The mpoly (Kahle 2013) package handles multivariate polynomials but does not
accept negative powers, nor is it designed for efficiently processing large multivariate poly-
nomials; I present some timings below. The mpoly package is different in philosophy from
both the spray package and multipol in that mpoly is more “symbolic” in the sense that it



2 Sparse arrays and multivariate polynomials in R

admits—and handles appropriately—named variables, whereas my packages do not make any
reference to the names of the variables. As Kahle points out, naming the variables allows
a richer and more natural suite of functionality; straightforward mpoly idiom is somewhat
strained in spray.

(The mvp package (Hankin 2022b) is now available; this uses a more powerful concept of
sparsity).

2. Sparse arrays

Base R has extensive support for multidimensional arrays. Consider

R> a <- array(1, dim=2:5)

The resulting object requires storage of 2 × 3 × 4 × 5 = 120 floating point numbers, which are
represented in an elegant format amenable to Cartesian extraction and replacement. However,
arrays in which many of the elements are zero are common and in this case storing only the
nonzero elements and their positions would be a more compact and efficient representation.
To create a sparse array object in the spray package, one specifies a matrix of indices M with
each row corresponding to the position of a nonzero element, and a numeric vector of values:

R> library("spray")

R> M <- matrix(c(0, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 3), ncol=3)

R> M

[,1] [,2] [,3]

[1,] 0 0 1

[2,] 0 0 2

[3,] 0 1 0

[4,] 1 1 3

R> S1 <- spray(M, 1:4)

R> S1

val

1 1 3 = 4

0 0 2 = 2

0 1 0 = 3

0 0 1 = 1

Thus S1[0,0,2] = 2. The representation of the spray object does not preserve the order of
the index rows in the argument, although a particular index row is associated unambiguously
with a unique numeric value. This is because the STL map class does not preserve the
orders of its elements. This does not matter, as the order in which the elements are stored is
immaterial in the use-cases presented here.

Extract and replace methods require the index to be a matrix1:

1Indexing with a vector (interpreted as a row of the index matrix) is problematic. The package requires
idiom such as S[1,2,3] and S[1,1:3,3] to work as expected; and because [.spray() and [<-.spray()

dispatch on the first argument, the package does not attempt to guess what the user intended.



Robin K. S. Hankin 3

R> S1[diag(3)] <- -3

R> S1

val

1 1 3 = 4

0 0 2 = 2

0 1 0 = -3

0 0 1 = -3

1 0 0 = -3

We can see that a value with an existing index is overwritten, while new elements are created
as necessary. Addition is implemented:

R> M2 <- matrix(c(

+ 6, -7, 8,

+ 0, 0, 2,

+ 1, 1, 3), byrow=TRUE, ncol=3)

R> S2 <- spray(M2, c(17, 11 ,-4))

R> S2

val

1 1 3 = -4

0 0 2 = 11

6 -7 8 = 17

R> S1 <- S1 + S2

R> S1

val

0 0 2 = 13

0 1 0 = -3

0 0 1 = -3

6 -7 8 = 17

1 0 0 = -3

Thus element [0,0,2] becomes 2+11 = 13, while element [1,1,3] cancels and thus vanishes.
There is no requirement for indices to be positive: Element [6,-7,8] is new (with value 17).
Even though the representation of the spray object does not preserve the order of the index
rows in the argument, a particular index row is associated unambiguously with a unique
numeric value. The package uses disordR discipline, discussed below in section 4.

3. The spray package and multivariate polynomials

One natural application for spray objects is multivariate polynomials (Hankin 2008). I will
first discuss the univariate case and then progress to multivariate polynomials.



4 Sparse arrays and multivariate polynomials in R

3.1. Univariate polynomials

Univariate polynomials are a good place to start. Suppose the polynomial

A = 1 + 2x3 + 6x8

were to be represented using R objects. One natural approach, taken in the polynomial

package (Venables, Hornik, and Maechler 2016), is to store the coefficients in a vector:

R> library("polynom")

R> A <- polynomial(c(1, 0, 0, 2, 0, 0, 0, 0, 6))

R> dput(A)

structure(c(1, 0, 0, 2, 0, 0, 0, 0, 6), class = "polynomial")

R> A

1 + 2*x^3 + 6*x^8

But again see how the R object thus created stores zero elements, which can be problematic
if the polynomial in question is large degree and sparse. Similar issues arise in the case of
multivariate polynomials. The multipol package (Hankin 2008) uses a similar methodology,
storing coefficients as an arbitrary-dimensional array. However, as noted above, this often
leads to inefficient computation.

3.2. Multivariate polynomials

One natural and useful interpretation of a sparse array is as a multivariate polynomial. Con-
sider the following sparse array:

R> S3 <- spray(matrix(c(0,0,0, 0,0,1, 1,1,1, 3,0,0), byrow=TRUE, ncol=3), 1:4)

R> S3

val

3 0 0 = 4

1 1 1 = 3

0 0 1 = 2

0 0 0 = 1

It is natural to interpret the rows of the index matrix as powers of different variables of
a multivariate polynomial, and the values as being the coefficients. This is realized in the
package using the polyform option, which if set to TRUE, modifies the print method:

R> options(polyform = TRUE)

R> S1

+13*z^2 -3*y -3*z +17*x^6*y^-7*z^8 -3*x



Robin K. S. Hankin 5

(only the print method has changed; S1 is as before). The print method interprets, by default,
the three columns as variables x, y, z although this behaviour is user-definable. With this
interpretation, multiplication and addition have natural definitions as multivariate polynomial
multiplication and addition:

R> S1 + S2

+24*z^2 -3*y -3*z +34*x^6*y^-7*z^8 -3*x -4*x*y*z^3

R> S1 * S2

-52*x*y*z^5 -51*x^7*y^-7*z^8 -33*y*z^2 +289*x^12*y^-14*z^16

+143*z^4 +408*x^6*y^-7*z^10 -33*z^3 -51*x^6*y^-6*z^8 -33*x*z^2

-68*x^7*y^-6*z^11 -51*x^6*y^-7*z^9 +12*x*y*z^4 +12*x*y^2*z^3

+12*x^2*y*z^3

R> S1^2

+9*z^2 +18*y*z +9*y^2 +18*x*y +289*x^12*y^-14*z^16 +169*z^4

+18*x*z -102*x^6*y^-7*z^9 +9*x^2 -102*x^7*y^-7*z^8 -78*y*z^2

+442*x^6*y^-7*z^10 -102*x^6*y^-6*z^8 -78*z^3 -78*x*z^2

It is possible to introduce an element of symbolic calculation, exhibiting familiar algebraic
identities. Consider the lone() function, which creates a sparse array whose multivariate
polynomial interpretation is a single variable:

R> x <- lone(1, 3)

R> y <- lone(2, 3)

R> z <- lone(3, 3)

R> options(polyform = FALSE)

R> list(x, y, z)

[[1]]

val

1 0 0 = 1

[[2]]

val

0 1 0 = 1

[[3]]

val

0 0 1 = 1

R> options(polyform = TRUE)

R> (1 + x + y)^3



6 Sparse arrays and multivariate polynomials in R

1 +3*y +3*y^2 +3*x^2*y +6*x*y +y^3 +3*x*y^2 +3*x^2 +3*x +x^3

R> (x + y) * (y + z) * (x + z) - (x + y + z) * (x*y + x*z + y*z)

-x*y*z

R> (x + y) * (x - y) - (x^2 - y^2)

the NULL multinomial of arity 3

3.3. The null polynomial and arity issues

The package is intended to provide functionality for sparse arrays, one interpretation of which
is multivariate polynomials. The package, implementing sparse arrays, forbids the addition
of two sparse arrays with different dimensionalities:

R> lone(1, 2) + lone(1, 1)

Error: arity(S1) == arity(S2) is not TRUE

One problematic object is the empty array. Zero multinomials are represented with a zero-row
index matrix and zero-length numeric vector of values. Because a spray object is a sparse
array, a zero multinomial must have a specific arity2.

3.4. Algebraic identities

Similar but more involved techniques can be used to prove Euler’s four-square identity and
Degen’s eight-square identity, given in the package’s test suite. However, it should be noted
that the mpoly package has a more natural idiom and does not suffer from the visual defect
of arbitrary term ordering.

3.5. Further functionality

Multivariate polynomials have a natural interpretation as functions:

R> (S4 <- spray(cbind(1:3, 3:1), 1:3))

+3*x^3*y +2*x^2*y^2 +x*y^3

R> f <- as.function(S4)

R> f(c(1, 2))

X

22

2This philosophy is different from earlier versions of the software which treated the empty array as the
zero multinomial, with which addition and multiplication were defined algebraically. I would like to thank an
anonymous R Journal referee for this insight.



Robin K. S. Hankin 7

The last line showing the result of substituting x = 1, y = 2 into S4. Other algebraic opera-
tions include substitution and partial differentiation. Consider the homogeneous polynomial
in three variables:

R> (S5 <- homog(3, 3))

+z^3 +y*z^2 +x*y*z +x^2*z +x*z^2 +y^3 +y^2*z +x*y^2 +x^2*y

+x^3

Interpreting S5 as a multivariate polynomial with variables x, y, z we may substitute y = 5
using the subs() function:

R> subs(S5, 2, 5)

125 +x^3 +5*x^2 +25*y +x*y^2 +x^2*y +5*x*y +5*y^2 +25*x +y^3

Differentiation is also straightforward. Suppose we wish to calculate the multivariate polyno-
mial corresponding to

∂6

∂x ∂2y ∂3z
(xyz + x + 2y + 3z)3

This would be

R> aderiv((xyz(3) + linear(1:3))^3, 1:3)

+108*x^2*y +216*x

4. Manipulation of coefficients

The spray package uses disordR discipline (Hankin 2022a) for manipulation of the coefficients.
Thus:

R> set.seed(0)

R> (A <- rspray())

6 +15*x^2*y +4*z^2 +3*x^2*y^2 +5*x +2*y^2*z^2 +10*x*y*z

R> coeffs(A)

A disord object with hash a1702c51777870f11e5a0300e4a50196735b48d1 and elements

[1] 6 15 4 3 5 2 10

(in some order)



8 Sparse arrays and multivariate polynomials in R

We see above that the coefficients of object A are not an ordinary R vector but a disord

object. Because the coefficients are stored in an implementation-specific order, we cannot
access or manipulate coeffs(a)[2], for example. But some operations are allowed; we may
consider the coefficients modulo 3:

R> coeffs(A) <- coeffs(A) %% 3

R> A

+x*y*z +2*y^2*z^2 +2*x +z^2

A detailed motivation and use-case for spray is provided by Hankin (2022a).

5. The package in use: some examples

Multivariate polynomials are useful and efficient structures in a variety of applications. Here
I give two examples of the package in use: One drawn from the field of random walks on
lattices, and one from recreational combinatorics.

5.1. Random walks on lattices

Random walks on periodic lattices find application in a wide range of applied mathematics
including the study of molecular and ionic crystals (den Hollander and Kasteleyn 1982),
polymers (Scheunders and Naudts 1989) and photosynthetic units (Montroll 1969). The
basic idea is that some entity (exciton, ion, etc) has a well-defined position on a periodic
lattice (Z/nZ)d; it then moves on the lattice, performing a random walk. The examples here
have d = 2 but extension to arbitrary dimensions is immediate.

The periodic lattice itself may be identified with a multivariate polynomial in d variables,
here x and y; the probability of the entity being at point (n, m) is the coefficient of xnym.

The entity typically moves between adjacent nodes according to a kernel polynomial whose
coefficients are the probabilities of the moves. Periodicity may be enforced simply by wrapping
the polynomial using modular arithmetic.

In many cases, entities are not necessarily conserved: the entity may decay (usually with a
fixed probability per timestep), or be annihilated when it encounters a particular node in the
lattice (a ‘trap’ (Scheunders and Naudts 1989), corresponding to the formation of sugar in
the cell). Here, we work on a 17 × 17 lattice as a large but computationally tractable domain.

All these processes have natural and efficient R idiom in the spray package. We may specify
a kernel allowing movement to adjacent nodes, or to stay in the same place with equal
probability:

R> d <- 2

R> kernel <- spray(rbind(0, diag(d), -diag(d)))/(1 + 2*d)

At the first timestep, the the entity is at, say, point (10, 10) with probability 1:

R> initial <- spray(rep(10, d))



Robin K. S. Hankin 9

Finding the probability mass function of the entity after, say 14 timesteps, is straightforward:

R> t14 <- initial * kernel^14

Traps may be assigned using standard indexing and we will work with a 17 × 17 array:

R> traps <- matrix(c(2, 3, 3, 5), 2, 2)

R> n <- 17

Then we may calculate the evolution of the probability mass function as follows:

R> timestep <- function(state, kernel, traps){

+ state <- state * kernel

+ state <- spray(index(state)%%n, coeffs(state), addrepeats = TRUE)

+ state[traps] <- 0

+ return(state)

+ }

In function timestep(), the first line uses standard multivariate polynomial multiplication
to advance the state of the entity; the second enforces periodic boundary conditions, and
the third implements the traps’ annihilation of the entity. The probability of the entity still
existing after 100 timesteps is then:

R> state <- initial

R> for(i in 1:100){state <- timestep(state, kernel, traps)}

R> sum(coeffs(state))

[1] 0.9006642

Note the streamlined R idiom: It is not clear how such manipulations could be performed
using the mpoly or the multipol packages.

5.2. Recreational combinatorics

Suppose we consider a chess knight and ask how many ways are there for the knight to
return to its starting square in 6 moves. Such questions are most naturally answered by using
generating functions.

On an infinite chessboard, we might define the multivariate generating polynomial3 k for a
knight as

k = x2y + x2y−1 + x−2y + x−2y−1 + xy2 + xy−2 + x−1y2 + x−1y−2

where we have identified powers of x with squares moved horizontally (counted algebraically,
negative powers mean move to the left), and powers of y with squares moved vertically. Then

3Standard terminology, although it might be more accurately referred to as a multivariate Laurent polyno-
mial.



10 Sparse arrays and multivariate polynomials in R

the coefficient of xayb in k is the number of ways of moving from the origin [that is, x0y0] to
square (a, b). Similarly, kn is the generating function for a knight which makes n moves: The
coefficient of xayb in kn is the number of ways of moving from the origin to square (a, b).

The R idiom for this is straightforward; we define chess_knight, a spray object with rows
corresponding to the possible moves the chess piece may make:

R> chess_knight <-

+ spray(matrix(

+ c(1, 2, 1, -2, -1, 2, -1, -2, 2, 1, 2, -1, -2, 1, -2, -1),

+ byrow = TRUE,ncol = 2))

R> options(polyform = FALSE)

R> chess_knight

val

-2 -1 = 1

-2 1 = 1

-1 -2 = 1

2 -1 = 1

-1 2 = 1

2 1 = 1

1 -2 = 1

1 2 = 1

R> options(polyform = TRUE)

R> chess_knight

+x^-2*y^-1 +x^-2*y +x^-1*y^-2 +x^2*y^-1 +x^-1*y^2 +x^2*y

+x*y^-2 +x*y^2

Then chess_knight[i,j] gives the number of ways the piece can move from square [0,0]

to [i,j]; and (chess_knightˆn)[i,j] gives the number of ways the piece can reach [i,j]

in n moves. To calculate the number of ways that the piece can return to its starting square
we simply raise chess_knight to the sixth power and extract the [0,0] coefficient:

R> constant(chess_knight^6, drop = TRUE)

[1] 5840

(function constant() extracts the coefficient corresponding to zero power). One natural
generalization would be to arbitrary dimensions. A d-dimensional knight moves two squares
in one direction, followed by one square in another direction:

R> knight <- function(d){

+ n <- d * (d - 1)

+ out <- matrix(0, n, d)

+ jj <- cbind(rep(seq_len(n), each=2), c(t(which(diag(d)==0, arr.ind=TRUE))))

+ out[jj] <- seq_len(2)

+ spray(rbind(out, -out, `[<-`(out, out==1, -1),`[<-`(out, out==2, -2)))

+ }



Robin K. S. Hankin 11

Then, considering a four-dimensional chessboard (Figure 1):

Figure 1: Four-dimensional knight on a 4 × 4 × 4 × 4 board. Cells attacked by the knight
shown by dots

R> constant(knight(4)^6, drop = TRUE)

[1] 10117920

It is in such cases that the efficiency of the map class becomes evident: On my system (3.4 GHz
Intel Core i5 iMac), the above call took just under 0.4 seconds of elapsed time whereas the
same4 calculation took over 173 seconds using mpoly.

If we want the number of ways to return to the starting point in 6 or fewer moves, we can
simply add the unit multinomial and take the sixth power of the sum:

R> constant((1 + knight(4))^6, drop=TRUE)

[1] 10306561

(0.6 seconds for spray vs 275 seconds for mpoly). For 8 moves, the differences are more
pronounced, with spray taking 4.0 seconds and mpoly requiring more than 1500 seconds).

4Because mpoly does not accept negative powers, the calculation was equivalent to (knight(4) +

xyz(4)ˆ2)ˆ6. Also note that the multipol package is not able to execute these commands in a reasonable
time.



12 Sparse arrays and multivariate polynomials in R

6. Conclusions and further work

The spray package provides functionality for sparse, arbitrarily-dimensioned arrays. One
natural interpretation of a sparse array is as a multivariate polynomial and the package
leverages the map class of C++ to give fast polynomial multiplication.

The functionality provided overlaps with that of multipol and mpoly. The multipol package
is too slow to be of practical value for any but the smallest illustrative objects.

The different name-based philosophy employed by the mpoly package is certainly an advantage
in terms of natural R idiom, although there is a performance penalty. There are also occasional
applications of multivariate polynomials (such as random walks on lattices) in which the
structure of spray is a conceptual advantage.

British mathematician J. H. Wilkinson famously defined a matrix to be “sparse” if it has
enough zeros that it pays to take advantage of them; this definition applies to the arrays
considered here. However, other definitions of sparsity are possible. Consider the following
example, taken from Kahle (2013):

ab2 + bc2 + cd2 + · · · + yz2 + za2.

The spray idiom for such an expression is

R> a <- diag(26)

R> options(sprayvars = letters)

R> a[1 + cbind(0:25, 1:26) %% 26] <- 2

R> spray(a)

+y*z^2 +w*x^2 +a^2*z +u*v^2 +t*u^2 +x*y^2 +s*t^2 +p*q^2 +n*o^2

+a*b^2 +r*s^2 +g*h^2 +b*c^2 +q*r^2 +c*d^2 +d*e^2 +f*g^2 +e*f^2

+h*i^2 +m*n^2 +i*j^2 +j*k^2 +o*p^2 +k*l^2 +v*w^2 +l*m^2

—but it is clear that the index matrix has a large degree of sparseness which mpoly takes
advantage of and spray does not. Further work might include the development of name-based
multivariate polynomials using concepts from STL to provide the best of both worlds (and
indeed the mvp package (Hankin 2022b) does just this, and more).

References

den Hollander WTF, Kasteleyn PW (1982). “Random walks with ‘spontaneous emission’ on
lattices with periodically distributed imperfect traps.” Physica A, 112A, 523–543.

Hankin RKS (2008). “Programmers’ Niche: Multivariate polynomials in R.” R News, 8(1),
41–45. URL https://CRAN.R-project.org/doc/Rnews/.

Hankin RKS (2022a). “Disordered vectors in R: introducing the disordR package.” doi:

10.48550/ARXIV.2210.03856.

https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.48550/ARXIV.2210.03856
https://doi.org/10.48550/ARXIV.2210.03856


Robin K. S. Hankin 13

Hankin RKS (2022b). “Fast multivariate polynomials in R: the mvp package.” doi:10.48550/

ARXIV.2210.15991.

Hankin RKS (2022c). “Sparse arrays in R: the spray package.” doi:10.48550/ARXIV.2210.

10848.

Hornik K, Meyer D, Buchta C (2014). slam: Sparse Lightweight Arrays and Matrices. R

package version 0.1-32, URL https://CRAN.R-project.org/package=slam.

Kahle D (2013). “mpoly: Multivariate Polynomials in R.” The R Journal, 5(1), 162–170.
URL https://journal.r-project.org/archive/2013-1/kahle.pdf.

Montroll EW (1969). “Random walks on lattices II. Calculation of first-passage times with
applications to exciton trapping on photosynthetic units.” Journal of Mathematical Physics,
10(4), 753–765.

Musser DR, Derge GJ, Saini A (2009). STL Tutorial and Reference Guide: C++ Program-

ming with the Standard Template Library. 3rd edition. Addison-Wesley Professional. ISBN
0321702123, 9780321702128.

Scheunders P, Naudts J (1989). “Random walks on lattices with a random distribution of
perfect traps.” Condensed Matter, 73, 551–553.

Venables B, Hornik K, Maechler M (2016). polynom: A Collection of Functions to Implement

a Class for Univariate Polynomial Manipulations. R package version 1.3-9. S original
by Bill Venables, packages for R by Kurt Hornik and Martin Maechler., URL https:

//CRAN.R-project.org/package=polynom.

https://doi.org/10.48550/ARXIV.2210.15991
https://doi.org/10.48550/ARXIV.2210.15991
https://doi.org/10.48550/ARXIV.2210.10848
https://doi.org/10.48550/ARXIV.2210.10848
https://CRAN.R-project.org/package=slam
https://journal.r-project.org/archive/2013-1/kahle.pdf
https://CRAN.R-project.org/package=polynom
https://CRAN.R-project.org/package=polynom


14 Sparse arrays and multivariate polynomials in R

A. Package philosophy

The spray package does not interact or depend on multipol in any way, owing to the very
different design philosophies used. The package uses the C++ Standard Template Library’s
map class (Musser et al. 2009) to store and retrieve elements.

A map is an associative container that stores values indexed by a key, which is used to sort
and uniquely identify the values. In the package, the key is a vector object or a deque object
with (signed) integer elements.

In the STL, a map object stores keys and associated values in whatever order the software
considers to be most propitious. This allows faster access and modification times but the order
in which the maps are stored is implementation specific. In the case of sparse arrays, this is
not an issue because the nonzero entries do not possess a natural order, unlike dense arrays in
which lexicographic ordering is used. For multivariate polynomials, the order of storage is not
important algebraically because addition is commutative and associative. These issues are
accommodated using disordR discipline which forbids implementation-specific idiom (Hankin
2022a).

Compile-time options

At compile time, the package offers two options. Firstly one may use the unordered_map class
in place of the map class. This option is provided in the interests of efficiency. An unordered
map has lookup time O(1) (compare O(log n) for the map class), but overhead is higher.

The other option offered is the nature of the key, which may be either vector class or deque

class. Elements of a vector are guaranteed to be contiguous in memory, unlike a deque. This
does not appear to make a huge difference to timings, but the default (unordered_map indexed
by a vector) appears to be marginally the fastest option.

Affiliation:

Robin K. S. Hankin
University of Stirling
Scotland


	Introduction
	Existing work

	Sparse arrays
	The spray package and multivariate polynomials
	Univariate polynomials
	Multivariate polynomials
	The null polynomial and arity issues
	Algebraic identities
	Further functionality

	Manipulation of coefficients
	The package in use: some examples
	Random walks on lattices
	Recreational combinatorics

	Conclusions and further work
	Package philosophy

