Package 'sparsepca'

October 14, 2022

Type Package

Title Sparse Principal Component Analysis (SPCA)
Version 0.1.2
Author N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin
Maintainer N. Benjamin Erichson <erichson@uw. edu>
Description Sparse principal component analysis (SPCA) attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few 'active' (nonzero) values. This approach provides better interpretability for the principal components in high-dimensional data settings. This is, because the principal components are formed as a linear combination of only a few of the original variables. This package provides efficient routines to compute SPCA. Specifically, a variable projection solver is used to compute the sparse solution. In addition, a fast randomized accelerated SPCA routine and a robust SPCA routine is provided. Robust SPCA allows to capture grossly corrupted entries in the data. The methods are discussed in detail by N. Benjamin Erichson et al. (2018) arXiv:1804.00341.
License GPL (>= 3)

Encoding UTF-8

LazyData true
URL https://github.com/erichson/spca
BugReports https://github.com/erichson/spca/issues
Imports rsvd
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-04-11 08:17:42 UTC

R topics documented:

robspca . 2
rspca . 4
spca . 7
Index 10

```
robspca
```

Robust Sparse Principal Component Analysis (robspca).

Description

Implementation of robust SPCA, using variable projection as an optimization strategy.

Usage

$\operatorname{robspca}(X, k=N U L L, ~ a l p h a=1 e-04, ~ b e t a=1 e-04, ~ g a m m a=100$, center $=$ TRUE, scale $=$ FALSE, max_iter $=1000$, tol $=1 \mathrm{e}-05$, verbose = TRUE)

Arguments

$X \quad$ array_like;
a real (n, p) input matrix (or data frame) to be decomposed.
$\mathrm{k} \quad$ integer;
specifies the target rank, i.e., the number of components to be computed.
alpha float;
Sparsity controlling parameter. Higher values lead to sparser components.
beta float;
Amount of ridge shrinkage to apply in order to improve conditioning.
gamma float;
Sparsity controlling parameter for the error matrix S. Smaller values lead to a larger amount of noise removeal.
center bool;
logical value which indicates whether the variables should be shifted to be zero centered (TRUE by default).
scale bool;
logical value which indicates whether the variables should be scaled to have unit variance (FALSE by default).
max_iter integer; maximum number of iterations to perform before exiting.
tol float;
stopping tolerance for the convergence criterion.
verbose bool;
logical value which indicates whether progress is printed.

Details

Sparse principal component analysis is a modern variant of PCA. Specifically, SPCA attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few 'active' (nonzero) values. This approach leads to an improved interpretability of the model, because the principal components
are formed as a linear combination of only a few of the original variables. Further, SPCA avoids overfitting in a high-dimensional data setting where the number of variables p is greater than the number of observations n.
Such a parsimonious model is obtained by introducing prior information like sparsity promoting regularizers. More concreatly, given an (n, p) data matrix X, robust SPCA attemps to minimize the following objective function:

$$
f(A, B)=\frac{1}{2}\left\|X-X B A^{\top}-S\right\|_{F}^{2}+\psi(B)+\gamma\|S\|_{1}
$$

where B is the sparse weight matrix (loadings) and A is an orthonormal matrix. ψ denotes a sparsity inducing regularizer such as the LASSO (ℓ_{1} norm) or the elastic net (a combination of the ℓ_{1} and ℓ_{2} norm). The matrix S captures grossly corrupted outliers in the data.
The principal components Z are formed as

$$
Z=X B
$$

and the data can be approximately rotated back as

$$
\tilde{X}=Z A^{\top}
$$

The print and summary method can be used to present the results in a nice format.

Value

spca returns a list containing the following three components:

loadings	array_like; sparse loadings (weight) vector; (p, k) dimensional array.
transform	array_like; the approximated inverse transform; (p, k) dimensional array.
scores	array_like; the principal component scores; (n, k) dimensional array.
sparse	array_like; sparse matrix capturing outliers in the data; (n, p) dimensional array.
eigenvalues	array_like; the approximated eigenvalues; (k) dimensional array.
center, scale	array_like; the centering and scaling used.

Author(s)
N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin

References

- [1] N. B. Erichson, P. Zheng, K. Manohar, S. Brunton, J. N. Kutz, A. Y. Aravkin. "Sparse Principal Component Analysis via Variable Projection." Submitted to IEEE Journal of Selected Topics on Signal Processing (2018). (available at ‘arXiv https://arxiv.org/abs/ 1804.00341).

See Also

rspca, spca

Examples

\# Create artifical data
m <- 10000
V1 <- rnorm(m, 0, 290)
V2 <- rnorm(m, 0, 300)
V3 $<--0.1 * V 1+0.1 * V 2+\operatorname{rnorm}(m, 0,100)$
$\mathrm{X}<-\operatorname{cbind}(\mathrm{V} 1, \mathrm{~V} 1, \mathrm{~V} 1, \mathrm{~V} 1, \mathrm{~V} 2, \mathrm{~V} 2, \mathrm{~V} 2, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 3)$
$X<-X+\operatorname{matrix}(\operatorname{rnorm}(\operatorname{length}(X), 0,1), \operatorname{ncol}=\operatorname{ncol}(X), \operatorname{nrow}=\operatorname{nrow}(X))$
\# Compute SPCA
out <- robspca(X, k=3, alpha=1e-3, beta=1e-5, gamma=5, center $=$ TRUE, scale $=$ FALSE, verbose=0)
print(out)
summary (out)
rspca Randomized Sparse Principal Component Analysis (rspca).

Description

Randomized accelerated implementation of SPCA, using variable projection as an optimization strategy.

Usage

$\operatorname{rspca}(X, k=N U L L, ~ a l p h a=1 e-04$, beta $=1 \mathrm{e}-04$, center $=$ TRUE, scale $=$ FALSE, max_iter $=1000$, tol $=1 \mathrm{e}-05$, o = 20, q = 2, verbose = TRUE)

Arguments

X
k
array_like;
a real (n, p) input matrix (or data frame) to be decomposed.
integer;
specifies the target rank, i.e., the number of components to be computed.

alpha	float; Sparsity controlling parameter. Higher values lead to sparser components.
beta	float; Amount of ridge shrinkage to apply in order to improve conditioning.
center	bool; logical value which indicates whether the variables should be shifted to be zero centered (TRUE by default).
scale	bool; logical value which indicates whether the variables should be scaled to have unit variance (FALSE by default).
max_iter	integer; maximum number of iterations to perform before exiting.
tol	float; stopping tolerance for the convergence criterion.
-	integer; oversampling parameter (default $o=20$).
q	integer; number of additional power iterations (default $q=2$).
verbose	bool; logical value which indicates whether progress is printed.

Details

Sparse principal component analysis is a modern variant of PCA. Specifically, SPCA attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few 'active' (nonzero) values. This approach leads to an improved interpretability of the model, because the principal components are formed as a linear combination of only a few of the original variables. Further, SPCA avoids overfitting in a high-dimensional data setting where the number of variables p is greater than the number of observations n.
Such a parsimonious model is obtained by introducing prior information like sparsity promoting regularizers. More concreatly, given an (n, p) data matrix X, SPCA attemps to minimize the following objective function:

$$
f(A, B)=\frac{1}{2}\left\|X-X B A^{\top}\right\|_{F}^{2}+\psi(B)
$$

where B is the sparse weight (loadings) matrix and A is an orthonormal matrix. ψ denotes a sparsity inducing regularizer such as the LASSO (ℓ_{1} norm) or the elastic net (a combination of the ℓ_{1} and ℓ_{2} norm). The principal components Z are formed as

$$
Z=X B
$$

and the data can be approximately rotated back as

$$
\tilde{X}=Z A^{\top}
$$

The print and summary method can be used to present the results in a nice format.

Value

spca returns a list containing the following three components:
loadings array_like;
sparse loadings (weight) vector; (p, k) dimensional array.
transform array_like; the approximated inverse transform; (p, k) dimensional array.
scores array_like; the principal component scores; (n, k) dimensional array.
eigenvalues array_like; the approximated eigenvalues; (k) dimensional array.
center, scale array_like;
the centering and scaling used.

Note

This implementation uses randomized methods for linear algebra to speedup the computations. o is an oversampling parameter to improve the approximation. A value of at least 10 is recommended, and $o=20$ is set by default.

The parameter q specifies the number of power (subspace) iterations to reduce the approximation error. The power scheme is recommended, if the singular values decay slowly. In practice, 2 or 3 iterations achieve good results, however, computing power iterations increases the computational costs. The power scheme is set to $q=2$ by default.

If $k>(\min (n, p) / 4)$, a the deterministic spca algorithm might be faster.

Author(s)

N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin

References

- [1] N. B. Erichson, P. Zheng, K. Manohar, S. Brunton, J. N. Kutz, A. Y. Aravkin. "Sparse Principal Component Analysis via Variable Projection." Submitted to IEEE Journal of Selected Topics on Signal Processing (2018). (available at ‘arXiv https://arxiv.org/abs/ 1804.00341).
- [1] N. B. Erichson, S. Voronin, S. Brunton, J. N. Kutz. "Randomized matrix decompositions using R." Submitted to Journal of Statistical Software (2016). (available at 'arXiv http: //arxiv.org/abs/1608.02148).

See Also

```
spca, robspca
```


Examples

```
# Create artifical data
m <- 10000
V1 <- rnorm(m, 0, 290)
V2 <- rnorm(m, 0, 300)
V3 <- -0.1*V1 + 0.1*V2 + rnorm(m,0,100)
X<- cbind(V1,V1,V1,V1, V2,V2,V2,V2, V3,V3)
X <- X + matrix(rnorm(length(X),0,1), ncol = ncol(X), nrow = nrow(X))
# Compute SPCA
out <- rspca(X, k=3, alpha=1e-3, beta=1e-3, center = TRUE, scale = FALSE, verbose=0)
print(out)
summary(out)
```

spca
Sparse Principal Component Analysis (spca).

Description

Implementation of SPCA, using variable projection as an optimization strategy.

Usage

$\operatorname{spca}(X, k=N U L L, ~ a l p h a=1 e-04$, beta $=1 \mathrm{e}-04$, center $=$ TRUE, scale $=$ FALSE, max_iter $=1000$, tol $=1 \mathrm{e}-05$, verbose $=$ TRUE)

Arguments

alpha float;
center bool;

X
k
beta
scale
array_like; a real (n, p) input matrix (or data frame) to be decomposed.
integer; specifies the target rank, i.e., the number of components to be computed. Sparsity controlling parameter. Higher values lead to sparser components.
float;
Amount of ridge shrinkage to apply in order to improve conditioning.
logical value which indicates whether the variables should be shifted to be zero centered (TRUE by default).
bool;
logical value which indicates whether the variables should be scaled to have unit variance (FALSE by default).

max_iter	integer;
maximum number of iterations to perform before exiting.	
tol	float;
stopping tolerance for the convergence criterion.	
verbose	bool; \quadlogical value which indicates whether progress is printed.

Details

Sparse principal component analysis is a modern variant of PCA. Specifically, SPCA attempts to find sparse weight vectors (loadings), i.e., a weight vector with only a few 'active' (nonzero) values. This approach leads to an improved interpretability of the model, because the principal components are formed as a linear combination of only a few of the original variables. Further, SPCA avoids overfitting in a high-dimensional data setting where the number of variables p is greater than the number of observations n.
Such a parsimonious model is obtained by introducing prior information like sparsity promoting regularizers. More concreatly, given an (n, p) data matrix X, SPCA attemps to minimize the following objective function:

$$
f(A, B)=\frac{1}{2}\left\|X-X B A^{\top}\right\|_{F}^{2}+\psi(B)
$$

where B is the sparse weight (loadings) matrix and A is an orthonormal matrix. ψ denotes a sparsity inducing regularizer such as the LASSO (ℓ_{1} norm) or the elastic net (a combination of the ℓ_{1} and ℓ_{2} norm). The principal components Z are formed as

$$
Z=X B
$$

and the data can be approximately rotated back as

$$
\tilde{X}=Z A^{\top}
$$

The print and summary method can be used to present the results in a nice format.

Value

spca returns a list containing the following three components:
loadings array_like;
sparse loadings (weight) vector; (p, k) dimensional array.
transform array_like; the approximated inverse transform; (p, k) dimensional array.
scores array_like; the principal component scores; (n, k) dimensional array.
eigenvalues array_like;
the approximated eigenvalues; (k) dimensional array.
center, scale array_like;
the centering and scaling used.

Author(s)

N. Benjamin Erichson, Peng Zheng, and Sasha Aravkin

References

- [1] N. B. Erichson, P. Zheng, K. Manohar, S. Brunton, J. N. Kutz, A. Y. Aravkin. "Sparse Principal Component Analysis via Variable Projection." Submitted to IEEE Journal of Selected Topics on Signal Processing (2018). (available at 'arXiv https://arxiv.org/abs/ 1804.00341).

See Also

```
rspca, robspca
```


Examples

```
# Create artifical data
m <- 10000
V1 <- rnorm(m, 0, 290)
V2 <- rnorm(m, 0, 300)
V3 <- -0.1*V1 + 0.1*V2 + rnorm(m,0,100)
X <- cbind(V1,V1,V1,V1, V2,V2,V2,V2, V3,V3)
X <- X + matrix(rnorm(length(X),0,1), ncol = ncol(X), nrow = nrow(X))
# Compute SPCA
out <- spca(X, k=3, alpha=1e-3, beta=1e-3, center = TRUE, scale = FALSE, verbose=0)
print(out)
summary(out)
```


Index

robspca, 2, 6, 9
rspca, 4, 4, 9
spca, 4, 6, 7

