
Illustrations and Examples

Reinhard Furrer, Roman Flury

2026-01-05

Contents

1 Rational for spam 1

2 A Simple Example 1

3 Creating Sparse Matrices 3

4 Displaying 3

5 Solving Linear Systems 4

6 More about Methods 7
6.1 Methods with Particular Behavior . 7
6.2 Particular Methods with Ordinary Behavior . 8
6.3 Importing Foreign Formats . 8

1 Rational for spam

At the core of drawing multivariate normal random variables, calculating or maximizing multivariate normal
log-likelihoods, calculating determinants, etc., we need to solve a large (huge) linear system involving a
variance matrix, i.e., a symmetric, positive definite matrix.

Assume that we have such a symmetric, positive definite matrix Q of size n × n that contains many zeros
(through tapering, Furrer et al. [2006], Furrer and Bengtsson [2007], or through a Markovian conditional
construction). Typically, Q contains only O(n) non-zero elements compared to O(n2) for a regular, full
matrix. To take advantage of the few non-zero elements, special structures to represent the matrix are
required, i.e., only the positions of the non-zeros and their values are kept in memory. Further, new algorithms
work with these structures are required. The package spam provides this functionality, see Furrer and Sain
[2010] for a detailed exposition.

2 A Simple Example

This first section illustrates with a simple example how to work with spam. Within a running R we install
and load the current spam version from CRAN.

1

install.packages("spam")

library("spam")

We create a trivial matrix and “coerce” it to a sparse matrix.

Fmat <- matrix(c(3, 0, 1, 0, 2, 0, 1, 0, 3), nrow = 3, ncol = 3)
Smat <- as.spam(Fmat)

spam is conceptualized such that for many operations, the user proceeds as with ordinary full matrices. For
example:

Fmat
#> [,1] [,2] [,3]
#> [1,] 3 0 1
#> [2,] 0 2 0
#> [3,] 1 0 3
Smat
#> [,1] [,2] [,3]
#> [1,] 3 0 1
#> [2,] 0 2 0
#> [3,] 1 0 3
#> Class 'spam' (32-bit)
Smat %*% t(Smat)
#> [,1] [,2] [,3]
#> [1,] 10 0 6
#> [2,] 0 4 0
#> [3,] 6 0 10
#> Class 'spam' (32-bit)
Fmat %*% t(Smat)
#> [,1] [,2] [,3]
#> [1,] 10 0 6
#> [2,] 0 4 0
#> [3,] 6 0 10
#> Class 'spam' (32-bit)

Hence, the user should not be worried which objects are sparse matrices and which are not. Of course not all
operations result in sparse objects again,

rep(1, 3) %*% Smat
#> [,1] [,2] [,3]
#> [1,] 4 2 4

However, other operations yield to different results when applied to full or sparse matrices

range(Fmat)
#> [1] 0 3

2

range(Smat)
#> [1] 1 3

3 Creating Sparse Matrices

The implementation of spam is designed as a trade-off between the following competing philosophical maxims.
It should be competitively fast compared to existing tools or approaches in R and it should be easy to use,
modify and extend. The former is imposed to assure that the package will be useful and used in practice.
The latter is necessary since statistical methods and approaches are often very specific and no single package
could cover all potential tools. Hence, the user needs to understand quickly the underlying structure of
the implementation of spam and to be able to extend it without getting desperate. (When faced with huge
amounts of data, sub-sampling is one possibility; using spam is another.) This philosophical approach also
suggests trying to assure S3 and S4 compatibility, Chambers [1998], see also Lumley [2004]. S4 has higher
priority but there are only a handful cases of S3 discrepancies, which do however not affect normal usage.

To store the non-zero elements, spam uses the “old Yale sparse format”. In this format, a (sparse) matrix is
stored with four elements (vectors), which are (1) the nonzero values row by row, (2) the ordered column
indices of nonzero values, (3) the position in the previous two vectors corresponding to new rows, given as
pointers, and (4) the column dimension of the matrix. We refer to this format as compressed sparse row
(CSR) format. Hence, to store a matrix with z nonzero elements we thus need z reals and z + n + 2 integers
compared to n × n reals. Section Representation describes the format in more details.

The package spam provides two classes, first, spam representing sparse matrices and, second,
spam.chol.NgPeyton representing Cholesky factors. A class definition specifies the objects belong-
ing to the class, these objects are called slots in R and accessed with the @ operator, see Chambers [1998] for
a more thorough discussion. The four vectors of the CSR representation are implemented as slots. In spam,
all operations can be performed without a detailed knowledge about the slots. However, advanced users may
want to work on the slots of the class spam directly because of computational savings, for example, changing
only the contents of a matrix while maintaining its sparsity structure, see Section Tips. The Cholesky factor
requires additional information (e.g., the used permutation) hence the class spam.chol.NgPeyton contains
more slots, which are less intuitive. There are only very few, specific cases, where the user has to access
these slots directly. Therefore, user-visibility has been disregarded for the sake of speed. The two classes are
discussed in the more technical Section Representation.

4 Displaying

As seen in Section A Simple Example, printing small matrices result in an expected output, i.e., the content
of the matrix plus a line indicating the class of the object:

Smat
#> [,1] [,2] [,3]
#> [1,] 3 0 1
#> [2,] 0 2 0
#> [3,] 1 0 3

3

#> Class 'spam' (32-bit)

For larger objects, not all the elements are printed. For example:

diag.spam(100)
#> [1] 1
#> [38] 1
#> [75] 1
#> Class 'spam' (32-bit)

The size of the matrix when switching from the first printing format to the second is a spam option, see Section
Options. Naturally, we can also use the str command which gives us further insight into the individual slots
of the spam object:

str(Smat)
#> Formal class 'spam' [package "spam"] with 4 slots
#> ..@ entries : num [1:5] 3 1 2 1 3
#> ..@ colindices : int [1:5] 1 3 2 1 3
#> ..@ rowpointers: int [1:4] 1 3 4 6
#> ..@ dimension : int [1:2] 3 3

Alternatively, calling summary gives additional information of the matrix.

summary(Smat)
#> Matrix object of class 'spam' of dimension 3x3,
#> with 5 (row-wise) nonzero elements.
#> Density of the matrix is 55.6%.
#> Class 'spam' (32-bit)

summary itself prints on the standard output but also returns a list containing the number of non-zeros (nnz)
and the density (density) (percentage of nnz over the total number of elements).

Quite often, it is interesting to look at the sparsity structure of a sparse matrix. This is implemented with the
command display. Again, depending on the size, the structure is shown as proper rectangles or as points.
Figure 1 is the result of the following code.

Additionally, compare Figures of this document. Depending on the cex value, the image may issue a warning,
meaning that the dot-size is probably not optimal. In fact, visually the density of the matrix Smat1 seems to
be around some percentage whereas the actual density is 0.024.

The function image goes beyond the structure of the matrix by using a specified color scheme for the values.
Labels can be added manually or with image.plot from the package fields.

5 Solving Linear Systems

To be more specific about one of spam’s main features, assume we need to calculate A−1b with A a symmetric
positive definite matrix featuring some sparsity structure, which is usually accomplished by solving Ax = b.
We proceed by factorizing A into RT R, where R is an upper triangular matrix, called the Cholesky factor

4

column

ro
w

1.0 1.5 2.0 2.5 3.0

3
2.

5
2

1.
5

1

column

ro
w

1000 2000 3000 4000

40
00

30
00

20
00

10
00

Figure 1: Sparsity structure of sparse matrices.

or Cholesky triangle of A, followed by solving RT y = b and Rx = y, called forwardsolve and backsolve,
respectively. To reduce the fill-in of the Cholesky factor R, we permute the columns and rows of A according
to a (cleverly chosen) permutation P , i.e., UT U = P T AP , with U an upper triangular matrix. There exist
many different algorithms to find permutations which are optimal for specific matrices %tridiagonal matrices
finite element/difference matrices defined on square grids or at least close to optimal with respect to different
criteria. Note that R and U cannot be linked through P alone. The right panel of Figure 2 illustrates
the factorization with and without permutation. For solving a linear system the two triangular solves are
performed after the factorization. The determinant of A is the squared product of the diagonal elements
of its Cholesky factor R. Hence the same factorization can be used to calculate determinants (a necessary
and computational bottleneck in the computation of the log-likelihood of a Gaussian model), illustrating
that it is very important to have a very efficient integration (with respect to calculation time and storage
capacity) of the Cholesky factorization. In the case of GMRF, the off-diagonal non-zero elements correspond
to the conditional dependence structure. However, for the calculation of the Cholesky factor, the values
themselves are less important than the sparsity structure, which is often represented using a graph with edges
representing the non-zero elements or using a “pixel” image of the zero/non-zero structure, see Figure 2.

i <- c(2, 4, 4, 5, 5)
j <- c(1, 1, 2, 1, 3)

A <- spam(0, nrow = 5, ncol = 5)
A[cbind(i, j)] <- rep(0.5, length(i))
A <- t(A) + A + diag.spam(5)
A
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1.0 0.5 0.0 0.5 0.5
#> [2,] 0.5 1.0 0.0 0.5 0.0

5

#> [3,] 0.0 0.0 1.0 0.0 0.5
#> [4,] 0.5 0.5 0.0 1.0 0.0
#> [5,] 0.5 0.0 0.5 0.0 1.0
#> Class 'spam' (32-bit)

U <- chol(x = A)

Figure 2: On the left side the associated graph to the matrix A is visualized. The nodes of the graph are
labeled according to A (upright) and P T AP (italics). On the right side the sparsity structure of A and
P T AP (top row) and the Cholesky factors R and U of A and P T AP respectively are given in the bottom
row. The dashed lines in U indicate the supernode partition.

The Cholesky factor of a banded matrix is again a banded matrix. But arbitrary matrices may produce full
Cholesky factors. To reduce this so-called fill-in of the Cholesky factor R, we permute the columns and
rows of A according to a (cleverly chosen) permutation P , i.e., UT U = P T AP , with U an upper triangular
matrix. There exist many different algorithms to find permutations which are optimal for specific matrices or
at least close to optimal with respect to different criteria. The cost of finding a good permutation matrix P

is at least of order O(n3/2). However, there exist good, but suboptimal, approaches for O(n log(n)).

A typical Cholesky factorization of a sparse matrix consists of the steps illustrated in the following pseudo
code algorithm.

Step Description

[1] Determine permutation and permute the input matrix A to obtain P T AP

[2] Symbolic factorization, where the sparsity structure of U is constructed
[3] Numeric factorization, where the elements of U are computed

When factorizing matrices with the same sparsity structure Step 1 and 2 do not need to be repeated. In
MCMC algorithms, this is commonly the case, and exploiting this shortcut leads to very considerable gains
in computational efficiency (also noticed by Rue and Held [2005], page 51). However, none of the existing

6

sparse matrix packages in R (SparseM, Matrix) provide the possibility to carry out Step 3 separately and
spam fills this gap.

As for Step 1, there are many different algorithms to find a permutation, for example, the multiple minimum
degree (MMD) algorithm, Liu [1985], and the reverse Cuthill-McKee (RCM) algorithm, George [1971]. The
resulting sparsity structure in the permuted matrix determines the sparsity structure of the Cholesky factor.
As an illustration, Figure 3 shows the sparsity structure of the Cholesky factor resulting from an MMD, an
RCM, and no permutation of a precision matrix induced by a second-order neighbor structure of the US
counties.

How much fill-in with zeros is present depends on the permutation algorithm, in the example of Figure 3
there are 146735, 256198 and 689615 non-zero elements in the Cholesky factors resulting from the MMD,
RCM, and no permutation, respectively. Note that the actual number of non-zero elements of the Cholesky
factor may be smaller than what the constructed sparsity structure indicates. Here, there are 14111, 97565
and 398353 zero elements (up to machine precision) that are not exploited.

Figure 3: Sparsity structure of the Cholesky factor with MMD, RCM and no permutation of a precision
matrix induced by a second-order neighbor structure of the US counties. The values *nnzR* and *fillin* are
the number of non-zero elements in the sparsity structure of the factor and the fill-in, respectively.

6 More about Methods

For both sparse classes of spam standard methods like plot, dim, backsolve/forwardsolve, determinant
(based on a Cholesky factor) are implemented and behave as in the case of full matrices. Print methods
display the sparse matrix as a full matrix in case of small matrices and display only the non-zero values
otherwise. The corresponding cutoff value as well as other parameters can be set and read via spam.options.

6.1 Methods with Particular Behavior

For the spam class additional methods are defined, for examples rbind/cbind, dim<-, etc. The group generic
functions from Math, Math2 and Summary are treated particularly since they operate only on the nonzero
entries of the spam class. For example, for the matrix A presented in the introduction range(A) is the vector
c(0.5, 1), i.e. the zeros are omitted from the calculation. The help lists further available methods and
highlights the (dis-)similarities compared to when applied to regular matrices or arrays.

7

6.2 Particular Methods with Ordinary Behavior

Besides the two sparse classes mentioned above, spam does not maintain different classes for different types
of sparse matrices, such as symmetric or diagonal matrices. Doing so would result in some storage and
computational gain for some matrix operations, at the cost of user visibility. Instead of creating more classes
we consider additional specific operators. As an illustration, consider multiplying a diagonal matrix with
a sparse matrix. The operator \%d*\% uses standard matrix multiplication if both sides are matrices or
multiplies each column according the diagonal entry if the left hand side is a diagonal matrix represented by
vector.

6.3 Importing Foreign Formats

spam is not the only R package for sparse matrix algebra. The packages SparseM Koenker and Ng [2003] and
Matrix Bates and Maechler [2006] contain similar functionalities for handling sparse matrices, however, both
packages do not provide the possibility to split up the Cholesky factorization as discussed previously. We
briefly discuss the major differences with respect to spam; for a detailed description see their manual.

SparseM is also based on the Fortran Cholesky factorization of Ng and Peyton [1993] using the MMD
permutation and almost exclusively on SparseKit. It was originally designed for large least squares problems
and later also ported to S4 but is in a few cases inconsistent with existing R methods. It supports different
sparse storage systems.

Matrix incorporates many classes for sparse and full matrices and is based on C. For sparse matrices, it uses
different storage formats, defines classes for different types of matrices and uses a Cholesky factorization
based on UMFPACK, Davis [2004].

spam has a few functions that allow to transform matrix formats of the different packages.

spam also contains functions that download matrices from MatrixMarket, a web side that stores many different
sparse matrices. The function read.MM(file), very similar to the function readMM from Matrix, opens a
connection, specified by the argument, and reads a matrix market file. However, as entries of spam matrices
are of mode double, integers matrices are coerced to doubles, patterns lead to matrices containing ones and
complex are coerced to the real part thereof. In these aforementioned cases, a warning is issued.

MatrixMarket also defines an array format, in which case a (possibly) dense spam object is return (retaining
only elements which are larger than getOption('spam.eps')), a warning is issued.

Similarly to read.MM(file), the function read.HB(file) reads matrices in the Harwell-Boeing format.
Currently, only real assembled Harwell-Boeing can be read with read.HB. Reading MatrixMarket formats is
more flexible.

The functions are based on readHB and readMM from the library Matrix to build the connection and read
the raw data. At present, read.MM(file) is more flexible than readMM.

For many operations, spam is faster than Matrix and SparseM. It would also be interesting to compare spam
and the sparse matrix routines of Matlab (see Figure 6 of Furrer et al. [2006] for a comparison between
SparseM and Matlab).

8

Bibliography
Douglas Bates and Martin Maechler. Matrix: A Matrix package for R, 2006. R package version 0.995-12.

John M. Chambers. Programming with Data: A Guide to the S Language. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1998. ISBN 0387985034.

Timothy A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM
Transactions on Mathematical Software (TOMS), 30(2):196–199, 2004. ISSN 0098-3500. doi: 10.1145/9922
00.992206.

R. Furrer and T. Bengtsson. Estimation of high-dimensional prior and posteriori covariance matrices in
kalman filter variants. J. Multivariate Anal., 98(2):227–255, 2007. doi: 10.1016/j.jmva.2006.08.003.

R. Furrer and S. R. Sain. spam: A sparse matrix R package with emphasis on MCMC methods for Gaussian
Markov random fields. Journal of Statistical Software, 36(10):1–25, 2010. URL https://www.jstatsoft.org/
v36/i10/.

R. Furrer, M. G. Genton, and D. Nychka. Covariance tapering for interpolation of large spatial datasets. J.
Comput. Graph. Statist., 15(3):502–523, 2006.

John Alan George. Computer implementation of the finite element method. PhD thesis, Stanford University,
Stanford, CA, USA, 1971.

Roger Koenker and Pin Ng. SparseM: Sparse Matrix Package for R, 2003. http://www.econ.uiuc.edu/~roger
/research/sparse/SparseM.pdf.

Joseph W. H. Liu. Modification of the minimum-degree algorithm by multiple elimination. ACM Transactions
on Mathematical Software (TOMS), 11(2):141–153, 1985. ISSN 0098-3500. doi: 10.1145/214392.214398.

Thomas Lumley. Programmers’ niche: A simple class, in S3 and S4. R News, 4(1)(1):33–36, 2004.

Esmond G. Ng and Barry W. Peyton. Block sparse Cholesky algorithms on advanced uniprocessor computers.
SIAM Journal on Scientific Computing, 14(5):1034–1056, 1993. ISSN 1064-8275. doi: 10.1137/0914063.

H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall, London,
2005.

9

https://www.jstatsoft.org/v36/i10/
https://www.jstatsoft.org/v36/i10/
http://www.econ.uiuc.edu/~roger/research/sparse/SparseM.pdf
http://www.econ.uiuc.edu/~roger/research/sparse/SparseM.pdf

	Rational for spam
	A Simple Example
	Creating Sparse Matrices
	Displaying
	Solving Linear Systems
	More about Methods
	Methods with Particular Behavior
	Particular Methods with Ordinary Behavior
	Importing Foreign Formats

