
Package ‘recipes’
February 18, 2024

Title Preprocessing and Feature Engineering Steps for Modeling

Version 1.0.10

Description A recipe prepares your data for modeling. We provide an
extensible framework for pipeable sequences of feature engineering
steps provides preprocessing tools to be applied to data. Statistical
parameters for the steps can be estimated from an initial data set and
then applied to other data sets. The resulting processed output can
then be used as inputs for statistical or machine learning models.

License MIT + file LICENSE

URL https://github.com/tidymodels/recipes,

https://recipes.tidymodels.org/

BugReports https://github.com/tidymodels/recipes/issues

Depends dplyr (>= 1.1.0), R (>= 3.6)

Imports cli, clock (>= 0.6.1), ellipsis, generics (>= 0.1.2), glue,
gower, hardhat (>= 1.3.0), ipred (>= 0.9-12), lifecycle (>=
1.0.3), lubridate (>= 1.8.0), magrittr, Matrix, purrr (>=
1.0.0), rlang (>= 1.1.0), stats, tibble, tidyr (>= 1.0.0),
tidyselect (>= 1.2.0), timeDate, utils, vctrs (>= 0.5.0), withr

Suggests covr, ddalpha, dials (>= 1.2.0), ggplot2, igraph, kernlab,
knitr, modeldata (>= 0.1.1), parsnip (>= 1.2.0), RANN,
RcppRoll, rmarkdown, rpart, rsample, RSpectra, splines2,
testthat (>= 3.0.0), workflows, xml2

VignetteBuilder knitr

RdMacros lifecycle

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

1

https://github.com/tidymodels/recipes
https://recipes.tidymodels.org/
https://github.com/tidymodels/recipes/issues

2 R topics documented:

Author Max Kuhn [aut, cre],
Hadley Wickham [aut],
Emil Hvitfeldt [aut],
Posit Software, PBC [cph, fnd]

Maintainer Max Kuhn <max@posit.co>

Repository CRAN

Date/Publication 2024-02-18 18:00:02 UTC

R topics documented:
.get_data_types . 4
add_step . 6
bake . 7
case-weight-helpers . 9
case_weights . 10
check_class . 11
check_cols . 13
check_missing . 15
check_new_values . 16
check_range . 18
detect_step . 20
developer_functions . 21
discretize . 24
formula.recipe . 25
fully_trained . 26
has_role . 27
juice . 29
names0 . 30
prep . 31
prepper . 33
print.recipe . 34
recipe . 34
recipes_eval_select . 40
recipes_extension_check . 42
roles . 43
selections . 46
step_arrange . 49
step_bin2factor . 51
step_BoxCox . 53
step_bs . 55
step_center . 57
step_classdist . 59
step_classdist_shrunken . 62
step_corr . 65
step_count . 68
step_cut . 70
step_date . 72

R topics documented: 3

step_depth . 74
step_discretize . 77
step_dummy . 79
step_dummy_extract . 82
step_dummy_multi_choice . 85
step_factor2string . 88
step_filter . 90
step_filter_missing . 92
step_geodist . 94
step_harmonic . 96
step_holiday . 100
step_hyperbolic . 102
step_ica . 104
step_impute_bag . 107
step_impute_knn . 110
step_impute_linear . 113
step_impute_lower . 116
step_impute_mean . 118
step_impute_median . 121
step_impute_mode . 123
step_impute_roll . 125
step_indicate_na . 128
step_integer . 130
step_interact . 132
step_intercept . 134
step_inverse . 136
step_invlogit . 137
step_isomap . 139
step_kpca . 142
step_kpca_poly . 145
step_kpca_rbf . 148
step_lag . 151
step_lincomb . 153
step_log . 155
step_logit . 157
step_mutate . 159
step_mutate_at . 161
step_naomit . 163
step_nnmf . 165
step_nnmf_sparse . 168
step_normalize . 170
step_novel . 172
step_ns . 175
step_num2factor . 177
step_nzv . 179
step_ordinalscore . 182
step_other . 184
step_pca . 187

4 .get_data_types

step_percentile . 190
step_pls . 192
step_poly . 195
step_poly_bernstein . 198
step_profile . 200
step_range . 203
step_ratio . 205
step_regex . 207
step_relevel . 209
step_relu . 211
step_rename . 214
step_rename_at . 215
step_rm . 217
step_sample . 219
step_scale . 221
step_select . 223
step_shuffle . 225
step_slice . 227
step_spatialsign . 229
step_spline_b . 231
step_spline_convex . 234
step_spline_monotone . 236
step_spline_natural . 239
step_spline_nonnegative . 241
step_sqrt . 244
step_string2factor . 245
step_time . 248
step_unknown . 250
step_unorder . 252
step_window . 253
step_YeoJohnson . 256
step_zv . 259
summary.recipe . 261
tidy.step_BoxCox . 262
update.step . 269
update_role_requirements . 270

Index 272

.get_data_types Get types for use in recipes

Description

The .get_data_types() generic is used internally to supply types to columns used in recipes.
These functions underlie the work that the user sees in selections.

.get_data_types 5

Usage

.get_data_types(x)

Default S3 method:
.get_data_types(x)

S3 method for class 'character'
.get_data_types(x)

S3 method for class 'ordered'
.get_data_types(x)

S3 method for class 'factor'
.get_data_types(x)

S3 method for class 'integer'
.get_data_types(x)

S3 method for class 'numeric'
.get_data_types(x)

S3 method for class 'double'
.get_data_types(x)

S3 method for class 'Surv'
.get_data_types(x)

S3 method for class 'logical'
.get_data_types(x)

S3 method for class 'Date'
.get_data_types(x)

S3 method for class 'POSIXct'
.get_data_types(x)

S3 method for class 'list'
.get_data_types(x)

S3 method for class 'textrecipes_tokenlist'
.get_data_types(x)

S3 method for class 'hardhat_case_weights'
.get_data_types(x)

Arguments

x An object

6 add_step

Details

This function acts as an extended recipes-specific version of class(). By ignoring differences in
similar types ("double" and "numeric") and allowing each element to have multiple types ("factor"
returns "factor", "unordered", and "nominal", and "character" returns "string", "unordered", and
"nominal") we are able to create more natural selectors such as all_nominal(), all_string()
and all_integer().

The following list shows the data types for different classes, as defined by recipes. If an object has
a class not supported by .get_data_types(), it will get data type "other".

• character: string, unordered, and nominal

• ordered: ordered, and nominal

• factor: factor, unordered, and nominal

• integer: integer, and numeric

• numeric: double, and numeric

• double: double, and numeric

• Surv: surv

• logical: logical

• Date: date

• POSIXct: datetime

• list: list

• textrecipes_tokenlist: tokenlist

• hardhat_case_weights: case_weights

See Also

developer_functions

Examples

data(Sacramento, package = "modeldata")
lapply(Sacramento, .get_data_types)

add_step Add a New Operation to the Current Recipe

Description

add_step adds a step to the last location in the recipe. add_check does the same for checks.

bake 7

Usage

add_step(rec, object)

add_check(rec, object)

Arguments

rec A recipe().

object A step or check object.

Value

A updated recipe() with the new operation in the last slot.

See Also

developer_functions

bake Apply a trained preprocessing recipe

Description

For a recipe with at least one preprocessing operation that has been trained by prep(), apply the
computations to new data.

Usage

bake(object, ...)

S3 method for class 'recipe'
bake(object, new_data, ..., composition = "tibble")

Arguments

object A trained object such as a recipe() with at least one preprocessing operation.

... One or more selector functions to choose which variables will be returned by
the function. See selections() for more details. If no selectors are given, the
default is to use everything().

new_data A data frame or tibble for whom the preprocessing will be applied. If NULL is
given to new_data, the pre-processed training data will be returned (assuming
that prep(retain = TRUE) was used).

composition Either "tibble", "matrix", "data.frame", or "dgCMatrix" for the format of the
processed data set. Note that all computations during the baking process are
done in a non-sparse format. Also, note that this argument should be called
after any selectors and the selectors should only resolve to numeric columns
(otherwise an error is thrown).

8 bake

Details

bake() takes a trained recipe and applies its operations to a data set to create a design matrix.
If you are using a recipe as a preprocessor for modeling, we highly recommend that you use a
workflow() instead of manually applying a recipe (see the example in recipe()).

If the data set is not too large, time can be saved by using the retain = TRUE option of prep().
This stores the processed version of the training set. With this option set, bake(object, new_data
= NULL) will return it for free.

Also, any steps with skip = TRUE will not be applied to the data when bake() is invoked with a
data set in new_data. bake(object, new_data = NULL) will always have all of the steps applied.

Value

A tibble, matrix, or sparse matrix that may have different columns than the original columns in
new_data.

See Also

recipe(), prep()

Examples

data(ames, package = "modeldata")

ames <- mutate(ames, Sale_Price = log10(Sale_Price))

ames_rec <-
recipe(Sale_Price ~ ., data = ames[-(1:6),]) %>%
step_other(Neighborhood, threshold = 0.05) %>%
step_dummy(all_nominal()) %>%
step_interact(~ starts_with("Central_Air"):Year_Built) %>%
step_ns(Longitude, Latitude, deg_free = 2) %>%
step_zv(all_predictors()) %>%
prep()

return the training set (already embedded in ames_rec)
bake(ames_rec, new_data = NULL)

apply processing to other data:
bake(ames_rec, new_data = head(ames))

only return selected variables:
bake(ames_rec, new_data = head(ames), all_numeric_predictors())
bake(ames_rec, new_data = head(ames), starts_with(c("Longitude", "Latitude")))

case-weight-helpers 9

case-weight-helpers Helpers for steps with case weights

Description

These functions can be used to do basic calculations with or without case weights.

Usage

get_case_weights(info, .data, call = rlang::caller_env())

averages(x, wts = NULL, na_rm = TRUE)

medians(x, wts = NULL)

variances(x, wts = NULL, na_rm = TRUE)

correlations(x, wts = NULL, use = "everything", method = "pearson")

covariances(x, wts = NULL, use = "everything", method = "pearson")

pca_wts(x, wts = NULL)

are_weights_used(wts, unsupervised = FALSE)

Arguments

info A data frame from the info argument within steps

.data The training data

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

x A numeric vector or a data frame

wts A vector of case weights

na_rm A logical value indicating whether NA values should be removed during compu-
tations.

use Used by correlations() or covariances() to pass argument to cor() or
cov()

method Used by correlations() or covariances() to pass argument to cor() or
cov()

unsupervised Can the step handle unsupervised weights

10 case_weights

Details

get_case_weights() is designed for developers of recipe steps, to return a column with the role
of "case weight" as a vector.

For the other functions, rows with missing case weights are removed from calculations.

For averages() and variances(), missing values in the data (not the case weights) only affect the
calculations for those rows. For correlations(), the correlation matrix computation first removes
rows with any missing values (equal to the "complete.obs" strategy in stats::cor()).

are_weights_used() is designed for developers of recipe steps and is used inside print method to
determine how printing should be done.

See Also

developer_functions

case_weights Using case weights with recipes

Description

Case weights are positive numeric values that may influence how much each data point has during
the preprocessing. There are a variety of situations where case weights can be used.

Details

tidymodels packages differentiate how different types of case weights should be used during the
entire data analysis process, including preprocessing data, model fitting, performance calculations,
etc.

The tidymodels packages require users to convert their numeric vectors to a vector class that reflects
how these should be used. For example, there are some situations where the weights should not
affect operations such as centering and scaling or other preprocessing operations.

The types of weights allowed in tidymodels are:

• Frequency weights via hardhat::frequency_weights()

• Importance weights via hardhat::importance_weights()

More types can be added by request.

For recipes, we distinguish between supervised and unsupervised steps. Supervised steps use the
outcome in the calculations, this type of steps will use frequency and importance weights. Unsu-
pervised steps don’t use the outcome and will only use frequency weights.

There are 3 main principles about how case weights are used within recipes. First, the data set that
is passed to the recipe() function should already have a case weights column in it. This column can
be created beforehand using hardhat::frequency_weights() or hardhat::importance_weights().
Second, There can only be 1 case weights column in a recipe at any given time. Third, You
can not modify the case weights column with most of the steps or using the update_role() and
add_role() functions.

check_class 11

These principles ensure that you experience minimal surprises when using case weights, as the
steps automatically apply case weighted operations when supported. The printing method will
additionally show which steps where weighted and which steps ignored the weights because they
were of an incompatible type.

See Also

frequency_weights(), importance_weights()

check_class Check variable class

Description

check_class creates a specification of a recipe check that will check if a variable is of a designated
class.

Usage

check_class(
recipe,
...,
role = NA,
trained = FALSE,
class_nm = NULL,
allow_additional = FALSE,
skip = FALSE,
class_list = NULL,
id = rand_id("class")

)

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this check. See selections()
for more details.

role Not used by this check since no new variables are created.

trained A logical for whether the selectors in ... have been resolved by prep().

class_nm A character vector that will be used in inherits to check the class. If NULL the
classes will be learned in prep. Can contain more than one class.

allow_additional

If TRUE a variable is allowed to have additional classes to the one(s) that are
checked.

12 check_class

skip A logical. Should the check be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

class_list A named list of column classes. This is NULL until computed by prep().

id A character string that is unique to this check to identify it.

Details

This function can check the classes of the variables in two ways. When the class argument is
provided it will check if all the variables specified are of the given class. If this argument is NULL,
the check will learn the classes of each of the specified variables in prep. Both ways will break
bake if the variables are not of the requested class. If a variable has multiple classes in prep, all the
classes are checked. Please note that in prep the argument strings_as_factors defaults to TRUE.
If the train set contains character variables the check will be break bake when strings_as_factors
is TRUE.

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Tidying

When you tidy() this check, a tibble with columns terms (the selectors or variables selected) and
value (the type) is returned.

Case weights

The underlying operation does not allow for case weights.

See Also

Other checks: check_cols(), check_missing(), check_new_values(), check_range()

Examples

library(dplyr)
data(Sacramento, package = "modeldata")

Learn the classes on the train set
train <- Sacramento[1:500,]
test <- Sacramento[501:nrow(Sacramento),]
recipe(train, sqft ~ .) %>%

check_class(everything()) %>%
prep(train, strings_as_factors = FALSE) %>%
bake(test)

Manual specification

check_cols 13

recipe(train, sqft ~ .) %>%
check_class(sqft, class_nm = "integer") %>%
check_class(city, zip, type, class_nm = "factor") %>%
check_class(latitude, longitude, class_nm = "numeric") %>%
prep(train, strings_as_factors = FALSE) %>%
bake(test)

By default only the classes that are specified
are allowed.
x_df <- tibble(time = c(Sys.time() - 60, Sys.time()))
x_df$time %>% class()
Not run:
recipe(x_df) %>%

check_class(time, class_nm = "POSIXt") %>%
prep(x_df) %>%
bake_(x_df)

End(Not run)

Use allow_additional = TRUE if you are fine with it
recipe(x_df) %>%

check_class(time, class_nm = "POSIXt", allow_additional = TRUE) %>%
prep(x_df) %>%
bake(x_df)

check_cols Check if all columns are present

Description

check_cols creates a specification of a recipe step that will check if all the columns of the training
frame are present in the new data.

Usage

check_cols(
recipe,
...,
role = NA,
trained = FALSE,
skip = FALSE,
id = rand_id("cols")

)

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.

14 check_cols

... One or more selector functions to choose variables for this check. See selections()
for more details.

role Not used by this check since no new variables are created.

trained A logical for whether the selectors in ... have been resolved by prep().

skip A logical. Should the check be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this check to identify it.

Details

This check will break the bake function if any of the specified columns is not present in the data. If
the check passes, nothing is changed to the data.

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Tidying

When you tidy() this check, a tibble with columns terms (the selectors or variables selected) and
value (the type) is returned.

See Also

Other checks: check_class(), check_missing(), check_new_values(), check_range()

Examples

data(biomass, package = "modeldata")

biomass_rec <- recipe(HHV ~ ., data = biomass) %>%
step_rm(sample, dataset) %>%
check_cols(contains("gen")) %>%
step_center(all_numeric_predictors())

Not run:
bake(biomass_rec, biomass[, c("carbon", "HHV")])

End(Not run)

check_missing 15

check_missing Check for missing values

Description

check_missing creates a specification of a recipe operation that will check if variables contain
missing values.

Usage

check_missing(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("missing")

)

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this check. See selections()
for more details.

role Not used by this check since no new variables are created.

trained A logical for whether the selectors in ... have been resolved by prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the check be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this check to identify it.

Details

This check will break the bake function if any of the checked columns does contain NA values. If
the check passes, nothing is changed to the data.

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

16 check_new_values

tidy() results

When you tidy() this check, a tibble with column terms (the selectors or variables selected) is
returned.

See Also

Other checks: check_class(), check_cols(), check_new_values(), check_range()

Examples

data(credit_data, package = "modeldata")
is.na(credit_data) %>% colSums()

If the test passes, `new_data` is returned unaltered
recipe(credit_data) %>%

check_missing(Age, Expenses) %>%
prep() %>%
bake(credit_data)

If your training set doesn't pass, prep() will stop with an error
Not run:
recipe(credit_data) %>%

check_missing(Income) %>%
prep()

End(Not run)

If `new_data` contain missing values, the check will stop `bake()`

train_data <- credit_data %>% dplyr::filter(Income > 150)
test_data <- credit_data %>% dplyr::filter(Income <= 150 | is.na(Income))

rp <- recipe(train_data) %>%
check_missing(Income) %>%
prep()

bake(rp, train_data)
Not run:
bake(rp, test_data)

End(Not run)

check_new_values Check for new values

Description

check_new_values creates a specification of a recipe operation that will check if variables contain
new values.

check_new_values 17

Usage

check_new_values(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
ignore_NA = TRUE,
values = NULL,
skip = FALSE,
id = rand_id("new_values")

)

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this check. See selections()
for more details.

role Not used by this check since no new variables are created.

trained A logical for whether the selectors in ... have been resolved by prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

ignore_NA A logical that indicates if we should consider missing values as value or not.
Defaults to TRUE.

values A named list with the allowed values. This is NULL until computed by prep.recipe().

skip A logical. Should the check be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this check to identify it.

Details

This check will break the bake function if any of the checked columns does contain values it did
not contain when prep was called on the recipe. If the check passes, nothing is changed to the data.

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Tidying

When you tidy() this check, a tibble with columns terms (the selectors or variables selected) is
returned.

18 check_range

Case weights

The underlying operation does not allow for case weights.

See Also

Other checks: check_class(), check_cols(), check_missing(), check_range()

Examples

data(credit_data, package = "modeldata")

If the test passes, `new_data` is returned unaltered
recipe(credit_data) %>%

check_new_values(Home) %>%
prep() %>%
bake(new_data = credit_data)

If `new_data` contains values not in `x` at the [prep()] function,
the [bake()] function will break.
Not run:
recipe(credit_data %>% dplyr::filter(Home != "rent")) %>%

check_new_values(Home) %>%
prep() %>%
bake(new_data = credit_data)

End(Not run)

By default missing values are ignored, so this passes.
recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%

check_new_values(Home) %>%
prep() %>%
bake(credit_data)

Use `ignore_NA = FALSE` if you consider missing values as a value,
that should not occur when not observed in the train set.
Not run:
recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%

check_new_values(Home, ignore_NA = FALSE) %>%
prep() %>%
bake(credit_data)

End(Not run)

check_range Check range consistency

check_range 19

Description

check_range creates a specification of a recipe check that will check if the range of a numeric
variable changed in the new data.

Usage

check_range(
recipe,
...,
role = NA,
skip = FALSE,
trained = FALSE,
slack_prop = 0.05,
warn = FALSE,
lower = NULL,
upper = NULL,
id = rand_id("range_check_")

)

Arguments

recipe A recipe object. The check will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this check. See selections()
for more details.

role Not used by this check since no new variables are created.

skip A logical. Should the check be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

trained A logical for whether the selectors in ... have been resolved by prep().

slack_prop The allowed slack as a proportion of the range of the variable in the train set.

warn If TRUE the check will throw a warning instead of an error when failing.

lower A named numeric vector of minimum values in the train set. This is NULL until
computed by prep().

upper A named numeric vector of maximum values in the train set. This is NULL until
computed by prep().

id A character string that is unique to this check to identify it.

Details

The amount of slack that is allowed is determined by the slack_prop. This is a numeric of length
one or two. If of length one, the same proportion will be used at both ends of the train set range.
If of length two, its first value is used to compute the allowed slack at the lower end, the second to
compute the allowed slack at the upper end.

20 detect_step

Value

An updated version of recipe with the new check added to the sequence of any existing operations.

Tidying

When you tidy() this check, a tibble with columns terms (the selectors or variables selected) and
value (the means) is returned.

See Also

Other checks: check_class(), check_cols(), check_missing(), check_new_values()

Examples

slack_df <- data_frame(x = 0:100)
slack_new_data <- data_frame(x = -10:110)

this will fail the check both ends
Not run:
recipe(slack_df) %>%

check_range(x) %>%
prep() %>%
bake(slack_new_data)

End(Not run)

this will fail the check only at the upper end
Not run:
recipe(slack_df) %>%

check_range(x, slack_prop = c(0.1, 0.05)) %>%
prep() %>%
bake(slack_new_data)

End(Not run)

give a warning instead of an error
Not run:
recipe(slack_df) %>%

check_range(x, warn = TRUE) %>%
prep() %>%
bake(slack_new_data)

End(Not run)

detect_step Detect if a particular step or check is used in a recipe

Description

Detect if a particular step or check is used in a recipe

developer_functions 21

Usage

detect_step(recipe, name)

Arguments

recipe A recipe to check.

name Character name of a step or check, omitted the prefix. That is, to check if
step_intercept is present, use name = intercept.

Value

Logical indicating if recipes contains given step.

See Also

developer_functions

Examples

rec <- recipe(Species ~ ., data = iris) %>%
step_intercept()

detect_step(rec, "intercept")

developer_functions Developer functions for creating recipes steps

Description

This page provides a comprehensive list of the exported functions for creating recipes steps and
guidance on how to use them.

Creating steps

add_step() and add_check() are required when creating a new step. The output of add_step()
should be the return value of all steps and should have the following format:

step_example <- function(recipe,
...,
role = NA,
trained = FALSE,
skip = FALSE,
id = rand_id("example")) {

add_step(
recipe,
step_example_new(
terms = enquos(...),

22 developer_functions

role = role,
trained = trained,
skip = skip,
id = id

)
)

}

rand_id() should be used in the arguments of step_example() to specify the argument, as we see
in the above example.

recipes_pkg_check() should be used in step_example() functions together with required_pkgs()
to alert users that certain other packages are required. The standard way of using this function is
the following format:

recipes_pkg_check(required_pkgs.step_example())

step() and check() are used within the step_*_new() function that you use in your new step. It
will be used in the following way:

step_example_new <- function(terms, role, trained, skip, id) {
step(
subclass = "example",
terms = terms,
role = role,
trained = trained,
skip = skip,
id = id

)
}

recipes_eval_select() is used within prep.step_*() functions, and are used to turn the terms
object into a character vector of the selected variables.

It will most likely be used like so:

col_names <- recipes_eval_select(x$terms, training, info)

check_type() can be used within prep.step_*() functions to check that the variables passed in
are the right types. We recommend that you use the types argument as it offers higher flexibility
and it matches the types defined by .get_data_types(). When using types we find it better to
be explicit, e.g. writing types = c("double", "integer") instead of types = "numeric", as it
produces cleaner error messages.

It should be used like so:

check_type(training[, col_names], types = c("double", "integer"))

check_new_data() should be used within bake.step_*(). This function is used to make check
that the required columns are present in the data. It should be one of the first lines inside the
function.

It should be used like so:

developer_functions 23

check_new_data(names(object$columns), object, new_data)

check_name() should be used in bake.step_*() functions for steps that add new columns to the
data set. The function throws an error if the column names already exist in the data set. It should be
called before adding the new columns to the data set.

get_keep_original_cols() and remove_original_cols() are used within steps with the keep_original_cols
argument. get_keep_original_cols() is used in prep.step_*() functions for steps that were
created before the keep_original_cols argument was added, and acts as a way to throw a warning
that the user should regenerate the recipe. remove_original_cols() should be used in bake.step_*()
functions to remove the original columns. It is worth noting that remove_original_cols() can
remove multiple columns at once and when possible should be put outside for loops.

new_data <- remove_original_cols(new_data, object, names_of_original_cols)

recipes_remove_cols() should be used in prep.step_*() functions, and is used to remove
columns from the data set, either by using the object$removals field or by using the col_names
argument.

get_case_weights() and are_weights_used() are functions that help you extract case weights
and help determine if they are used or not within the step. They will typically be used within the
prep.step_*() functions if the step in question supports case weights.

print_step() is used inside print.step_*() functions. This function is replacing the internally
deprecated printer() function.

sel2char() is mostly used within tidy.step_*() functions to turn selections into character vec-
tors.

names0() creates a series of num names with a common prefix. The names are numbered with
leading zeros (e.g. prefix01-prefix10 instead of prefix1-prefix10). This is useful for many
types of steps that produce new columns.

Interacting with recipe objects

detect_step() returns a logical indicator to determine if a given step or check is included in a
recipe.

fully_trained() returns a logical indicator if the recipe is fully trained. The function is_trained()
can be used to check in any individual steps are trained or not.

.get_data_types() is an S3 method that is used for selections. This method can be extended to
work with column types not supported by recipes.

recipes_extension_check() is recommended to be used by package authors to make sure that all
steps have prep.step_*(), bake.step_*(), print.step_*(), tidy.step_*(), and required_pkgs.step_*()
methods. It should be used as a test, preferably like this:

test_that("recipes_extension_check", {
expect_snapshot(
recipes::recipes_extension_check(
pkg = "pkgname"

)
)

})

24 discretize

discretize Discretize Numeric Variables

Description

discretize() converts a numeric vector into a factor with bins having approximately the same
number of data points (based on a training set).

Usage

discretize(x, ...)

Default S3 method:
discretize(x, ...)

S3 method for class 'numeric'
discretize(
x,
cuts = 4,
labels = NULL,
prefix = "bin",
keep_na = TRUE,
infs = TRUE,
min_unique = 10,
...

)

S3 method for class 'discretize'
predict(object, new_data, ...)

Arguments

x A numeric vector

... Options to pass to stats::quantile() that should not include x or probs.

cuts An integer defining how many cuts to make of the data.

labels A character vector defining the factor levels that will be in the new factor (from
smallest to largest). This should have length cuts+1 and should not include a
level for missing (see keep_na below).

prefix A single parameter value to be used as a prefix for the factor levels (e.g. bin1,
bin2, ...). If the string is not a valid R name, it is coerced to one. If prefix =
NULL then the factor levels will be labelled according to the output of cut().

keep_na A logical for whether a factor level should be created to identify missing val-
ues in x. If keep_na is set to TRUE then na.rm = TRUE is used when calling
stats::quantile().

infs A logical indicating whether the smallest and largest cut point should be infinite.

formula.recipe 25

min_unique An integer defining a sample size line of dignity for the binning. If (the number
of unique values)/(cuts+1) is less than min_unique, no discretization takes
place.

object An object of class discretize.

new_data A new numeric object to be binned.

Details

discretize estimates the cut points from x using percentiles. For example, if cuts = 3, the function
estimates the quartiles of x and uses these as the cut points. If cuts = 2, the bins are defined as being
above or below the median of x.

The predict method can then be used to turn numeric vectors into factor vectors.

If keep_na = TRUE, a suffix of "_missing" is used as a factor level (see the examples below).

If infs = FALSE and a new value is greater than the largest value of x, a missing value will result.

Value

discretize returns an object of class discretize and predict.discretize returns a factor vec-
tor.

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

median(biomass_tr$carbon)
discretize(biomass_tr$carbon, cuts = 2)
discretize(biomass_tr$carbon, cuts = 2, infs = FALSE)
discretize(biomass_tr$carbon, cuts = 2, infs = FALSE, keep_na = FALSE)
discretize(biomass_tr$carbon, cuts = 2, prefix = "maybe a bad idea to bin")

carbon_binned <- discretize(biomass_tr$carbon)
table(predict(carbon_binned, biomass_tr$carbon))

carbon_no_infs <- discretize(biomass_tr$carbon, infs = FALSE)
predict(carbon_no_infs, c(50, 100))

formula.recipe Create a formula from a prepared recipe

Description

In case a model formula is required, the formula method can be used on a recipe to show what
predictors and outcome(s) could be used.

26 fully_trained

Usage

S3 method for class 'recipe'
formula(x, ...)

Arguments

x A recipe object that has been prepared.

... Note currently used.

Value

A formula.

Examples

formula(recipe(Species + Sepal.Length ~ ., data = iris) %>% prep())

iris_rec <- recipe(Species ~ ., data = iris) %>%
step_center(all_numeric()) %>%
prep()

formula(iris_rec)

fully_trained Check to see if a recipe is trained/prepared

Description

Check to see if a recipe is trained/prepared

Usage

fully_trained(x)

Arguments

x A recipe

Value

A logical which is true if all of the recipe steps have been run through prep. If no steps have been
added to the recipe, TRUE is returned only if the recipe has been prepped.

See Also

developer_functions

has_role 27

Examples

rec <- recipe(Species ~ ., data = iris) %>%
step_center(all_numeric())

rec %>% fully_trained()

rec %>%
prep(training = iris) %>%
fully_trained()

has_role Role Selection

Description

has_role(), all_predictors(), and all_outcomes() can be used to select variables in a formula
that have certain roles.

In most cases, the right approach for users will be use to use the predictor-specific selectors such as
all_numeric_predictors() and all_nominal_predictors(). In general you should be careful
about using -all_outcomes() if a *_predictors() selector would do what you want.

Similarly, has_type(), all_numeric(), all_integer(), all_double(), all_nominal(), all_ordered(),
all_unordered(), all_factor(), all_string(), all_date() and all_datetime() are used to
select columns based on their data type.

all_factor() captures ordered and unordered factors, all_string() captures characters, all_unordered()
captures unordered factors and characters, all_ordered() captures ordered factors, all_nominal()
captures characters, unordered and ordered factors.

all_integer() captures integers, all_double() captures doubles, all_numeric() captures all
kinds of numeric.

all_date() captures Date() variables, all_datetime() captures POSIXct() variables.

See selections for more details.

current_info() is an internal function.

All of these functions have have limited utility outside of column selection in step functions.

Usage

has_role(match = "predictor")

has_type(match = "numeric")

all_outcomes()

all_predictors()

all_date()

28 has_role

all_date_predictors()

all_datetime()

all_datetime_predictors()

all_double()

all_double_predictors()

all_factor()

all_factor_predictors()

all_integer()

all_integer_predictors()

all_logical()

all_logical_predictors()

all_nominal()

all_nominal_predictors()

all_numeric()

all_numeric_predictors()

all_ordered()

all_ordered_predictors()

all_string()

all_string_predictors()

all_unordered()

all_unordered_predictors()

current_info()

Arguments

match A single character string for the query. Exact matching is used (i.e. regular
expressions won’t work).

juice 29

Value

Selector functions return an integer vector.

current_info() returns an environment with objects vars and data.

Examples

data(biomass, package = "modeldata")

rec <- recipe(biomass) %>%
update_role(
carbon, hydrogen, oxygen, nitrogen, sulfur,
new_role = "predictor"

) %>%
update_role(HHV, new_role = "outcome") %>%
update_role(sample, new_role = "id variable") %>%
update_role(dataset, new_role = "splitting indicator")

recipe_info <- summary(rec)
recipe_info

Centering on all predictors except carbon
rec %>%

step_center(all_predictors(), -carbon) %>%
prep(training = biomass) %>%
bake(new_data = NULL)

juice Extract transformed training set

Description

[Superseded]

As of recipes version 0.1.14, juice() is superseded in favor of bake(object, new_data =
NULL).

As steps are estimated by prep, these operations are applied to the training set. Rather than running
bake() to duplicate this processing, this function will return variables from the processed training
set.

Usage

juice(object, ..., composition = "tibble")

30 names0

Arguments

object A recipe object that has been prepared with the option retain = TRUE.

... One or more selector functions to choose which variables will be returned by
the function. See selections() for more details. If no selectors are given, the
default is to use everything().

composition Either "tibble", "matrix", "data.frame", or "dgCMatrix" for the format of the
processed data set. Note that all computations during the baking process are
done in a non-sparse format. Also, note that this argument should be called
after any selectors and the selectors should only resolve to numeric columns
(otherwise an error is thrown).

Details

juice() will return the results of a recipe where all steps have been applied to the data, irrespective
of the value of the step’s skip argument.

juice() can only be used if a recipe was prepped with retain = TRUE. This is equivalent to
bake(object, new_data = NULL) which is the preferred way to extract the transformation of the
training data set.

See Also

recipe() prep() bake()

names0 Naming Tools

Description

names0 creates a series of num names with a common prefix. The names are numbered with leading
zeros (e.g. prefix01-prefix10 instead of prefix1-prefix10). dummy_names can be used for
renaming unordered and ordered dummy variables (in step_dummy()).

Usage

names0(num, prefix = "x")

dummy_names(var, lvl, ordinal = FALSE, sep = "_")

dummy_extract_names(var, lvl, ordinal = FALSE, sep = "_")

Arguments

num A single integer for how many elements are created.

prefix A character string that will start each name.

var A single string for the original factor name.

prep 31

lvl A character vectors of the factor levels (in order). When used with step_dummy(),
lvl would be the suffixes that result after model.matrix is called (see the ex-
ample below).

ordinal A logical; was the original factor ordered?

sep A single character value for the separator between the names and levels.

Details

When using dummy_names(), factor levels that are not valid variable names (e.g. "some text with
spaces") will be changed to valid names by base::make.names(); see example below. This func-
tion will also change the names of ordinal dummy variables. Instead of values such as ".L", ".Q",
or "^4", ordinal dummy variables are given simple integer suffixes such as "_1", "_2", etc.

Value

names0 returns a character string of length num and dummy_names generates a character vector the
same length as lvl.

See Also

developer_functions

Examples

names0(9, "a")
names0(10, "a")

example <- data.frame(
x = ordered(letters[1:5]),
y = factor(LETTERS[1:5]),
z = factor(paste(LETTERS[1:5], 1:5))

)

dummy_names("y", levels(example$y)[-1])
dummy_names("z", levels(example$z)[-1])

after_mm <- colnames(model.matrix(~x, data = example))[-1]
after_mm
levels(example$x)

dummy_names("x", substring(after_mm, 2), ordinal = TRUE)

prep Estimate a preprocessing recipe

Description

For a recipe with at least one preprocessing operation, estimate the required parameters from a
training set that can be later applied to other data sets.

32 prep

Usage

prep(x, ...)

S3 method for class 'recipe'
prep(
x,
training = NULL,
fresh = FALSE,
verbose = FALSE,
retain = TRUE,
log_changes = FALSE,
strings_as_factors = TRUE,
...

)

Arguments

x an object

... further arguments passed to or from other methods (not currently used).

training A data frame or tibble that will be used to estimate parameters for preprocessing.

fresh A logical indicating whether already trained operation should be re-trained. If
TRUE, you should pass in a data set to the argument training.

verbose A logical that controls whether progress is reported as operations are executed.

retain A logical: should the preprocessed training set be saved into the template slot
of the recipe after training? This is a good idea if you want to add more steps
later but want to avoid re-training the existing steps. Also, it is advisable to
use retain = TRUE if any steps use the option skip = FALSE. Note that this can
make the final recipe size large. When verbose = TRUE, a message is written
with the approximate object size in memory but may be an underestimate since
it does not take environments into account.

log_changes A logical for printing a summary for each step regarding which (if any) columns
were added or removed during training.

strings_as_factors

A logical: should character columns be converted to factors? This affects the
preprocessed training set (when retain = TRUE) as well as the results of bake.recipe.

Details

Given a data set, this function estimates the required quantities and statistics needed by any op-
erations. prep() returns an updated recipe with the estimates. If you are using a recipe as a
preprocessor for modeling, we highly recommend that you use a workflow() instead of manually
estimating a recipe (see the example in recipe()).

Note that missing data is handled in the steps; there is no global na.rm option at the recipe level or
in prep().

Also, if a recipe has been trained using prep() and then steps are added, prep() will only update
the new operations. If fresh = TRUE, all of the operations will be (re)estimated.

prepper 33

As the steps are executed, the training set is updated. For example, if the first step is to center the
data and the second is to scale the data, the step for scaling is given the centered data.

Value

A recipe whose step objects have been updated with the required quantities (e.g. parameter esti-
mates, model objects, etc). Also, the term_info object is likely to be modified as the operations
are executed.

Examples

data(ames, package = "modeldata")

library(dplyr)

ames <- mutate(ames, Sale_Price = log10(Sale_Price))

ames_rec <-
recipe(
Sale_Price ~ Longitude + Latitude + Neighborhood + Year_Built + Central_Air,
data = ames

) %>%
step_other(Neighborhood, threshold = 0.05) %>%
step_dummy(all_nominal()) %>%
step_interact(~ starts_with("Central_Air"):Year_Built) %>%
step_ns(Longitude, Latitude, deg_free = 5)

prep(ames_rec, verbose = TRUE)

prep(ames_rec, log_changes = TRUE)

prepper Wrapper function for preparing recipes within resampling

Description

When working with the rsample package, a simple recipe must be prepared using the prep function
first. When using recipes with rsample it is helpful to have a function that can prepare a recipe
across a series of split objects that are produced in this package. prepper is a wrapper function
around prep that can be used to do this. See the vignette on "Recipes and rsample" for an example.

Usage

prepper(split_obj, recipe, ...)

34 recipe

Arguments

split_obj An rplit object

recipe An untrained recipe object.

... Arguments to pass to prep such as verbose or retain.

Details

prepper() sets the underlying prep() argument fresh to TRUE.

print.recipe Print a Recipe

Description

Print a Recipe

Usage

S3 method for class 'recipe'
print(x, form_width = 30, ...)

Arguments

x A recipe object

form_width The number of characters used to print the variables or terms in a formula

... further arguments passed to or from other methods (not currently used).

Value

The original object (invisibly)

recipe Create a recipe for preprocessing data

Description

A recipe is a description of the steps to be applied to a data set in order to prepare it for data analysis.

recipe 35

Usage

recipe(x, ...)

Default S3 method:
recipe(x, ...)

S3 method for class 'data.frame'
recipe(x, formula = NULL, ..., vars = NULL, roles = NULL)

S3 method for class 'formula'
recipe(formula, data, ...)

S3 method for class 'matrix'
recipe(x, ...)

Arguments

x, data A data frame or tibble of the template data set (see below).

... Further arguments passed to or from other methods (not currently used).

formula A model formula. No in-line functions should be used here (e.g. log(x), x:y,
etc.) and minus signs are not allowed. These types of transformations should be
enacted using step functions in this package. Dots are allowed as are sim-
ple multivariate outcome terms (i.e. no need for cbind; see Examples). A
model formula may not be the best choice for high-dimensional data with many
columns, because of problems with memory.

vars A character string of column names corresponding to variables that will be used
in any context (see below)

roles A character string (the same length of vars) that describes a single role that
the variable will take. This value could be anything but common roles are
"outcome", "predictor", "case_weight", or "ID"

Details

Defining recipes:
Variables in recipes can have any type of role, including outcome, predictor, observation ID, case
weights, stratification variables, etc.
recipe objects can be created in several ways. If an analysis only contains outcomes and pre-
dictors, the simplest way to create one is to use a formula (e.g. y ~ x1 + x2) that does not contain
inline functions such as log(x3) (see the first example below).
Alternatively, a recipe object can be created by first specifying which variables in a data set
should be used and then sequentially defining their roles (see the last example). This alternative is
an excellent choice when the number of variables is very high, as the formula method is memory-
inefficient with many variables.
There are two different types of operations that can be sequentially added to a recipe.

• Steps can include operations like scaling a variable, creating dummy variables or interactions,
and so on. More computationally complex actions such as dimension reduction or imputation
can also be specified.

36 recipe

• Checks are operations that conduct specific tests of the data. When the test is satisfied, the
data are returned without issue or modification. Otherwise, an error is thrown.

If you have defined a recipe and want to see which steps are included, use the tidy() method on
the recipe object.
Note that the data passed to recipe() need not be the complete data that will be used to train the
steps (by prep()). The recipe only needs to know the names and types of data that will be used.
For large data sets, head() could be used to pass a smaller data set to save time and memory.

Using recipes:
Once a recipe is defined, it needs to be estimated before being applied to data. Most recipe steps
have specific quantities that must be calculated or estimated. For example, step_normalize()
needs to compute the training set’s mean for the selected columns, while step_dummy() needs to
determine the factor levels of selected columns in order to make the appropriate indicator columns.
The two most common application of recipes are modeling and stand-alone preprocessing. How
the recipe is estimated depends on how it is being used.

Modeling:
The best way to use use a recipe for modeling is via the workflows package. This bundles
a model and preprocessor (e.g. a recipe) together and gives the user a fluent way to train the
model/recipe and make predictions.

library(dplyr)
library(workflows)
library(recipes)
library(parsnip)

data(biomass, package = "modeldata")

split data
biomass_tr <- biomass %>% filter(dataset == "Training")
biomass_te <- biomass %>% filter(dataset == "Testing")

With only predictors and outcomes, use a formula:
rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,

data = biomass_tr)

Now add preprocessing steps to the recipe:
sp_signed <-
rec %>%
step_normalize(all_numeric_predictors()) %>%
step_spatialsign(all_numeric_predictors())

sp_signed

##

-- Recipe --

##

-- Inputs

recipe 37

Number of variables by role

outcome: 1
predictor: 5

##

-- Operations

* Centering and scaling for: all_numeric_predictors()

* Spatial sign on: all_numeric_predictors()

We can create a parsnip model, and then build a workflow with the model and recipe:
linear_mod <- linear_reg()

linear_sp_sign_wflow <-
workflow() %>%
add_model(linear_mod) %>%
add_recipe(sp_signed)

linear_sp_sign_wflow

== Workflow ==
Preprocessor: Recipe
Model: linear_reg()
##
-- Preprocessor --
2 Recipe Steps
##
* step_normalize()
* step_spatialsign()
##
-- Model ---
Linear Regression Model Specification (regression)
##
Computational engine: lm

To estimate the preprocessing steps and then fit the linear model, a single call to fit() is used:
linear_sp_sign_fit <- fit(linear_sp_sign_wflow, data = biomass_tr)

When predicting, there is no need to do anything other than call predict(). This preprocesses
the new data in the same manner as the training set, then gives the data to the linear model
prediction code:
predict(linear_sp_sign_fit, new_data = head(biomass_te))

A tibble: 6 x 1
.pred
<dbl>
1 18.1
2 17.9

38 recipe

3 17.2
4 18.8
5 19.6
6 14.6

Stand-alone use of recipes:
When using a recipe to generate data for a visualization or to troubleshoot any problems with
the recipe, there are functions that can be used to estimate the recipe and apply it to new data
manually.
Once a recipe has been defined, the prep() function can be used to estimate quantities required
for the operations using a data set (a.k.a. the training data). prep() returns a recipe.
As an example of using PCA (perhaps to produce a plot):
Define the recipe
pca_rec <-
rec %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors())

Now to estimate the normalization statistics and the PCA loadings:
pca_rec <- prep(pca_rec, training = biomass_tr)
pca_rec

##

-- Recipe --

##

-- Inputs

Number of variables by role

outcome: 1
predictor: 5

##

-- Training information

Training data contained 456 data points and no incomplete rows.

##

-- Operations

* Centering and scaling for: carbon and hydrogen, ... | Trained

* PCA extraction with: carbon, hydrogen, oxygen, ... | Trained

Note that the estimated recipe shows the actual column names captured by the selectors.
You can tidy.recipe() a recipe, either when it is prepped or unprepped, to learn more about
its components.

recipe 39

tidy(pca_rec)

A tibble: 2 x 6
number operation type trained skip id
<int> <chr> <chr> <lgl> <lgl> <chr>
1 1 step normalize TRUE FALSE normalize_AeYA4
2 2 step pca TRUE FALSE pca_Zn1yz

You can also tidy() recipe steps with a number or id argument.
To apply the prepped recipe to a data set, the bake() function is used in the same manner that
predict() would be for models. This applies the estimated steps to any data set.

bake(pca_rec, head(biomass_te))

A tibble: 6 x 6
HHV PC1 PC2 PC3 PC4 PC5
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 18.3 0.730 -0.412 -0.495 0.333 0.253
2 17.6 0.617 1.41 0.118 -0.466 0.815
3 17.2 0.761 1.10 -0.0550 -0.397 0.747
4 18.9 0.0400 0.950 0.158 0.405 -0.143
5 20.5 0.792 -0.732 0.204 0.465 -0.148
6 18.5 0.433 -0.127 -0.354 -0.0168 -0.0888

In general, the workflow interface to recipes is recommended for most applications.

Value

An object of class recipe with sub-objects:

var_info A tibble containing information about the original data set columns

term_info A tibble that contains the current set of terms in the data set. This initially
defaults to the same data contained in var_info.

steps A list of step or check objects that define the sequence of preprocessing oper-
ations that will be applied to data. The default value is NULL

template A tibble of the data. This is initialized to be the same as the data given in the
data argument but can be different after the recipe is trained.

Examples

formula example with single outcome:
data(biomass, package = "modeldata")

split data
biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

With only predictors and outcomes, use a formula
rec <- recipe(

HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

40 recipes_eval_select

)

Now add preprocessing steps to the recipe
sp_signed <- rec %>%

step_normalize(all_numeric_predictors()) %>%
step_spatialsign(all_numeric_predictors())

sp_signed

formula multivariate example:
no need for `cbind(carbon, hydrogen)` for left-hand side

multi_y <- recipe(carbon + hydrogen ~ oxygen + nitrogen + sulfur,
data = biomass_tr

)
multi_y <- multi_y %>%

step_center(all_numeric_predictors()) %>%
step_scale(all_numeric_predictors())

example using `update_role` instead of formula:
best choice for high-dimensional data

rec <- recipe(biomass_tr) %>%
update_role(carbon, hydrogen, oxygen, nitrogen, sulfur,
new_role = "predictor"

) %>%
update_role(HHV, new_role = "outcome") %>%
update_role(sample, new_role = "id variable") %>%
update_role(dataset, new_role = "splitting indicator")

rec

recipes_eval_select Evaluate a selection with tidyselect semantics specific to recipes

Description

recipes_eval_select() is a recipes specific variant of tidyselect::eval_select() enhanced
with the ability to recognize recipes selectors, such as all_numeric_predictors(). See selections
for more information about the unique recipes selectors.

This is a developer tool that is only useful for creating new recipes steps.

Usage

recipes_eval_select(
quos,
data,
info,

recipes_eval_select 41

...,
allow_rename = FALSE,
check_case_weights = TRUE,
call = caller_env()

)

Arguments

quos A list of quosures describing the selection. This is generally the ... argument
of your step function, captured with rlang::enquos() and stored in the step
object as the terms element.

data A data frame to use as the context to evaluate the selection in. This is generally
the training data passed to the prep() method of your step.

info A data frame of term information describing each column’s type and role for use
with the recipes selectors. This is generally the info data passed to the prep()
method of your step.

... These dots are for future extensions and must be empty.

allow_rename Should the renaming syntax c(foo = bar) be allowed? This is rarely required,
and is currently only used by step_select(). It is unlikely that your step will
need renaming capabilities.

check_case_weights

Should selecting case weights throw an error? Defaults to TRUE. This is rarely
changed and only needed in juice(), bake.recipe(), update_role(), and
add_role().

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of rlang::abort() for more information.

Value

A named character vector containing the evaluated selection. The names are always the same as the
values, except when allow_rename = TRUE, in which case the names reflect the new names chosen
by the user.

See Also

developer_functions

Examples

library(rlang)
data(scat, package = "modeldata")

rec <- recipe(Species ~ ., data = scat)

info <- summary(rec)
info

42 recipes_extension_check

quos <- quos(all_numeric_predictors(), where(is.factor))

recipes_eval_select(quos, scat, info)

recipes_extension_check

Checks that steps have all S3 methods

Description

This is a developer tool intended to help making sure all methods for each step have been created.

Usage

recipes_extension_check(
pkg,
exclude_steps = character(),
exclude_methods = character()

)

Arguments

pkg Character, name of package containing steps to check

exclude_steps Character, name of steps to exclude. This is mostly used to remove false posi-
tives.

exclude_methods

Character, which methods to exclude testing for. Can take the values "prep",
"bake", "print", "tidy", and "required_pkgs".

Details

It is recommended that the following test in placed in packages that add recipes steps to help keep
everything up to date.

test_that("recipes_extension_check", {
expect_snapshot(
recipes::recipes_extension_check(
pkg = "pkgname"

)
)

})

Value

cli output

roles 43

See Also

developer_functions

Examples

recipes_extension_check(
pkg = "recipes"

)

recipes_extension_check(
pkg = "recipes",
exclude_steps = "step_testthat_helper",
exclude_methods = c("required_pkgs")

)

roles Manually alter roles

Description

update_role() alters an existing role in the recipe or assigns an initial role to variables that do not
yet have a declared role.

add_role() adds an additional role to variables that already have a role in the recipe. It does not
overwrite old roles, as a single variable can have multiple roles.

remove_role() eliminates a single existing role in the recipe.

Usage

add_role(recipe, ..., new_role = "predictor", new_type = NULL)

update_role(recipe, ..., new_role = "predictor", old_role = NULL)

remove_role(recipe, ..., old_role)

Arguments

recipe An existing recipe().

... One or more selector functions to choose which variables are being assigned a
role. See selections() for more details.

new_role A character string for a single role.

new_type A character string for specific type that the variable should be identified as. If
left as NULL, the type is automatically identified as the first type you see for that
variable in summary(recipe).

old_role A character string for the specific role to update for the variables selected by
.... update_role() accepts a NULL as long as the variables have only a single
role.

44 roles

Details

update_role(), add_role() and remove_role() will be applied on a recipe before any of the
steps or checks, regardless of where they are located in position. This means that roles can only be
changed with these three functions for columns that are already present in the original data supplied
to recipe(). See the role argument in some step functions to update roles for columns created by
steps.

Variables can have any arbitrary role (see the examples) but there are two special standard roles,
"predictor" and "outcome". These two roles are typically required when fitting a model.

update_role() should be used when a variable doesn’t currently have a role in the recipe, or to
replace an old_role with a new_role. add_role() only adds additional roles to variables that
already have roles and will throw an error when the current role is missing (i.e. NA).

When using add_role(), if a variable is selected that already has the new_role, a warning is
emitted and that variable is skipped so no duplicate roles are added.

Adding or updating roles is a useful way to group certain variables that don’t fall in the standard
"predictor" bucket. You can perform a step on all of the variables that have a custom role with
the selector has_role().

Effects of non-standard roles:
Recipes can label and retain column(s) of your data set that should not be treated as outcomes or
predictors. A unique identifier column or some other ancillary data could be used to troubleshoot
issues during model development but may not be either an outcome or predictor.
For example, the modeldata::biomass dataset has a column named sample with information
about the specific sample type. We can change that role:

library(recipes)

data(biomass, package = "modeldata")
biomass_train <- biomass[1:100,]
biomass_test <- biomass[101:200,]

rec <- recipe(HHV ~ ., data = biomass_train) %>%
update_role(sample, new_role = "id variable") %>%
step_center(carbon)

rec <- prep(rec, biomass_train)

This means that sample is no longer treated as a "predictor" (the default role for columns on
the right-hand side of the formula supplied to recipe()) and won’t be used in model fitting or
analysis, but will still be retained in the data set.
If you really aren’t using sample in your recipe, we recommend that you instead remove sample
from your dataset before passing it to recipe(). The reason for this is because recipes assumes
that all non-standard roles are required at bake() time (or predict() time, if you are using a
workflow). Since you didn’t use sample in any steps of the recipe, you might think that you don’t
need to pass it to bake(), but this isn’t true because recipes doesn’t know that you didn’t use it:

biomass_test$sample <- NULL

bake(rec, biomass_test)

roles 45

#> Error in `bake()`:
#> x The following required columns are missing from `new_data`: `sample`.
#> i These columns have one of the following roles, which are required at `bake()`
#> time: `id variable`.
#> i If these roles are not required at `bake()` time, use
#> `update_role_requirements(role = "your_role", bake = FALSE)`.

As we mentioned before, the best way to avoid this issue is to not even use a role, just remove the
sample column from biomass before calling recipe(). In general, predictors and non-standard
roles that are supplied to recipe() should be present at both prep() and bake() time.
If you can’t remove sample for some reason, then the second best way to get around this issue is
to tell recipes that the "id variable" role isn’t required at bake() time. You can do that by using
update_role_requirements():

rec <- recipe(HHV ~ ., data = biomass_train) %>%
update_role(sample, new_role = "id variable") %>%
update_role_requirements("id variable", bake = FALSE) %>%
step_center(carbon)

rec <- prep(rec, biomass_train)

No errors!
biomass_test_baked <- bake(rec, biomass_test)

It should be very rare that you need this feature.

Value

An updated recipe object.

Examples

library(recipes)
data(biomass, package = "modeldata")

Using the formula method, roles are created for any outcomes and predictors:
recipe(HHV ~ ., data = biomass) %>%

summary()

However `sample` and `dataset` aren't predictors. Since they already have
roles, `update_role()` can be used to make changes, to any arbitrary role:
recipe(HHV ~ ., data = biomass) %>%
update_role(sample, new_role = "id variable") %>%
update_role(dataset, new_role = "splitting variable") %>%
summary()

`update_role()` cannot set a role to NA, use `remove_role()` for that
Not run:
recipe(HHV ~ ., data = biomass) %>%

update_role(sample, new_role = NA_character_)

46 selections

End(Not run)

--

Variables can have more than one role. `add_role()` can be used
if the column already has at least one role:
recipe(HHV ~ ., data = biomass) %>%

add_role(carbon, sulfur, new_role = "something") %>%
summary()

`update_role()` has an argument called `old_role` that is required to
unambiguously update a role when the column currently has multiple roles.
recipe(HHV ~ ., data = biomass) %>%

add_role(carbon, new_role = "something") %>%
update_role(carbon, new_role = "something else", old_role = "something") %>%
summary()

`carbon` has two roles at the end, so the last `update_roles()` fails since
`old_role` was not given.
Not run:
recipe(HHV ~ ., data = biomass) %>%

add_role(carbon, sulfur, new_role = "something") %>%
update_role(carbon, new_role = "something else")

End(Not run)

--

To remove a role, `remove_role()` can be used to remove a single role.
recipe(HHV ~ ., data = biomass) %>%

add_role(carbon, new_role = "something") %>%
remove_role(carbon, old_role = "something") %>%
summary()

To remove all roles, call `remove_role()` multiple times to reset to `NA`
recipe(HHV ~ ., data = biomass) %>%

add_role(carbon, new_role = "something") %>%
remove_role(carbon, old_role = "something") %>%
remove_role(carbon, old_role = "predictor") %>%
summary()

--

If the formula method is not used, all columns have a missing role:
recipe(biomass) %>%

summary()

selections Methods for selecting variables in step functions

selections 47

Description

Tips for selecting columns in step functions.

Details

When selecting variables or model terms in step functions, dplyr-like tools are used. The selector
functions can choose variables based on their name, current role, data type, or any combination of
these. The selectors are passed as any other argument to the step. If the variables are explicitly
named in the step function, this might look like:

recipe(~ ., data = USArrests) %>%
step_pca(Murder, Assault, UrbanPop, Rape, num_comp = 3)

The first four arguments indicate which variables should be used in the PCA while the last argument
is a specific argument to step_pca() about the number of components.

Note that:

1. These arguments are not evaluated until the prep function for the step is executed.

2. The dplyr-like syntax allows for negative signs to exclude variables (e.g. -Murder) and the
set of selectors will processed in order.

3. A leading exclusion in these arguments (e.g. -Murder) has the effect of adding all variables
to the list except the excluded variable(s), ignoring role information.

Select helpers from the tidyselect package can also be used: tidyselect::starts_with(),
tidyselect::ends_with(), tidyselect::contains(), tidyselect::matches(), tidyselect::num_range(),
tidyselect::everything(), tidyselect::one_of(), tidyselect::all_of(), and tidyselect::any_of()

For example:

recipe(Species ~ ., data = iris) %>%
step_center(starts_with("Sepal"), -contains("Width"))

would only select Sepal.Length

Columns of the design matrix that may not exist when the step is coded can also be selected. For
example, when using step_pca(), the number of columns created by feature extraction may not be
known when subsequent steps are defined. In this case, using matches("^PC") will select all of the
columns whose names start with "PC" once those columns are created.

There are sets of recipes-specific functions that can be used to select variables based on their role
or type: has_role() and has_type(). For convenience, there are also functions that are more spe-
cific. The functions all_numeric() and all_nominal() select based on type, with nominal vari-
ables including both character and factor; the functions all_predictors() and all_outcomes()
select based on role. The functions all_numeric_predictors() and all_nominal_predictors()
select intersections of role and type. Any can be used in conjunction with the previous functions
described for selecting variables using their names.

A selection like this:

48 selections

data(biomass)
recipe(HHV ~ ., data = biomass) %>%
step_center(all_numeric(), -all_outcomes())

is equivalent to:

data(biomass)
recipe(HHV ~ ., data = biomass) %>%
step_center(all_numeric_predictors())

Both result in all the numeric predictors: carbon, hydrogen, oxygen, nitrogen, and sulfur.

If a role for a variable has not been defined, it will never be selected using role-specific selectors.

Interactions:
Selectors can be used in step_interact() in similar ways but must be embedded in a model
formula (as opposed to a sequence of selectors). For example, the interaction specification could
be ~ starts_with("Species"):Sepal.Width. This can be useful if Species was converted to
dummy variables previously using step_dummy(). The implementation of step_interact() is
special, and is more restricted than the other step functions. Only the selector functions from
recipes and tidyselect are allowed. User defined selector functions will not be recognized. Addi-
tionally, the tidyselect domain specific language is not recognized here, meaning that &, |, !, and
- will not work.

Tips for saving recipes and filtering columns:
When creating variable selections:

• If you are using column filtering steps, such as step_corr(), try to avoid hardcoding specific
variable names in downstream steps in case those columns are removed by the filter. Instead,
use dplyr::any_of() and dplyr::all_of().

– dplyr::any_of() will be tolerant if a column has been removed.
– dplyr::all_of() will fail unless all of the columns are present in the data.

• For both of these functions, if you are going to save the recipe as a binary object to use in
another R session, try to avoid referring to a vector in your workspace.

– Preferred: any_of(!!var_names)
– Avoid: any_of(var_names)

Some examples:

some_vars <- names(mtcars)[4:6]

No filter steps, OK for not saving the recipe
rec_1 <-
recipe(mpg ~ ., data = mtcars) %>%
step_log(all_of(some_vars)) %>%
prep()

No filter steps, saving the recipe
rec_2 <-
recipe(mpg ~ ., data = mtcars) %>%

step_arrange 49

step_log(!!!some_vars) %>%
prep()

This fails since `wt` is not in the data
recipe(mpg ~ ., data = mtcars) %>%
step_rm(wt) %>%
step_log(!!!some_vars) %>%
prep()

Error in `step_log()`:
Caused by error in `prep()` at recipes/R/recipe.R:473:8:
! Can't subset columns that don't exist.
x Column `wt` doesn't exist.

Best for filters (using any_of()) and when
saving the recipe
rec_4 <-

recipe(mpg ~ ., data = mtcars) %>%
step_rm(wt) %>%
step_log(any_of(!!some_vars)) %>%
equal to step_log(any_of(c("hp", "drat", "wt")))
prep()

step_arrange Sort rows using dplyr

Description

step_arrange() creates a specification of a recipe step that will sort rows using dplyr::arrange().

Usage

step_arrange(
recipe,
...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("arrange")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Comma separated list of unquoted variable names. Use ‘desc()“ to sort a variable
in descending order. See dplyr::arrange() for more details.

50 step_arrange

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs Quosure of values given by

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!!) to embed the value of the object in the
expression (to be portable between sessions). See the examples.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other row operation steps: step_filter(), step_impute_roll(), step_lag(), step_naomit(),
step_sample(), step_shuffle(), step_slice()

Other dplyr steps: step_filter(), step_mutate_at(), step_mutate(), step_rename_at(),
step_rename(), step_sample(), step_select(), step_slice()

Examples

rec <- recipe(~., data = iris) %>%
step_arrange(desc(Sepal.Length), 1 / Petal.Length)

prepped <- prep(rec, training = iris %>% slice(1:75))
tidy(prepped, number = 1)

library(dplyr)

dplyr_train <-

step_bin2factor 51

iris %>%
as_tibble() %>%
slice(1:75) %>%
dplyr::arrange(desc(Sepal.Length), 1 / Petal.Length)

rec_train <- bake(prepped, new_data = NULL)
all.equal(dplyr_train, rec_train)

dplyr_test <-
iris %>%
as_tibble() %>%
slice(76:150) %>%
dplyr::arrange(desc(Sepal.Length), 1 / Petal.Length)

rec_test <- bake(prepped, iris %>% slice(76:150))
all.equal(dplyr_test, rec_test)

When you have variables/expressions, you can create a
list of symbols with `rlang::syms()`` and splice them in
the call with `!!!`. See https://tidyeval.tidyverse.org

sort_vars <- c("Sepal.Length", "Petal.Length")

qq_rec <-
recipe(~., data = iris) %>%
Embed the `values` object in the call using !!!
step_arrange(!!!syms(sort_vars)) %>%
prep(training = iris)

tidy(qq_rec, number = 1)

step_bin2factor Create a factors from A dummy variable

Description

step_bin2factor() creates a specification of a recipe step that will create a two-level factor from
a single dummy variable.

Usage

step_bin2factor(
recipe,
...,
role = NA,
trained = FALSE,
levels = c("yes", "no"),
ref_first = TRUE,
columns = NULL,
skip = FALSE,
id = rand_id("bin2factor")

)

52 step_bin2factor

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
levels A length 2 character string that indicates the factor levels for the 1’s (in the first

position) and the zeros (second)
ref_first Logical. Should the first level, which replaces 1’s, be the factor reference level?
columns A character string of the selected variable names. This field is a placeholder and

will be populated once prep() is used.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

This operation may be useful for situations where a binary piece of information may need to be
represented as categorical instead of numeric. For example, naive Bayes models would do better to
have factor predictors so that the binomial distribution is modeled instead of a Gaussian probability
density of numeric binary data. Note that the numeric data is only verified to be numeric (and does
not count levels).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected
id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_count(), step_date(), step_dummy_extract(),
step_dummy_multi_choice(), step_dummy(), step_factor2string(), step_holiday(), step_indicate_na(),
step_integer(), step_novel(), step_num2factor(), step_ordinalscore(), step_other(),
step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(), step_unorder()

step_BoxCox 53

Examples

data(covers, package = "modeldata")

rec <- recipe(~description, covers) %>%
step_regex(description, pattern = "(rock|stony)", result = "rocks") %>%
step_regex(description, pattern = "(rock|stony)", result = "more_rocks") %>%
step_bin2factor(rocks)

tidy(rec, number = 3)

rec <- prep(rec, training = covers)
results <- bake(rec, new_data = covers)

table(results$rocks, results$more_rocks)

tidy(rec, number = 3)

step_BoxCox Box-Cox transformation for non-negative data

Description

step_BoxCox() creates a specification of a recipe step that will transform data using a Box-Cox
transformation.

Usage

step_BoxCox(
recipe,
...,
role = NA,
trained = FALSE,
lambdas = NULL,
limits = c(-5, 5),
num_unique = 5,
skip = FALSE,
id = rand_id("BoxCox")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

54 step_BoxCox

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

lambdas A numeric vector of transformation values. This is NULL until computed by
prep().

limits A length 2 numeric vector defining the range to compute the transformation
parameter lambda.

num_unique An integer to specify minimum required unique values to evaluate for a trans-
formation.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The Box-Cox transformation, which requires a strictly positive variable, can be used to rescale a
variable to be more similar to a normal distribution. In this package, the partial log-likelihood func-
tion is directly optimized within a reasonable set of transformation values (which can be changed
by the user).

This transformation is typically done on the outcome variable using the residuals for a statistical
model (such as ordinary least squares). Here, a simple null model (intercept only) is used to apply
the transformation to the predictor variables individually. This can have the effect of making the
variable distributions more symmetric.

If the transformation parameters are estimated to be very closed to the bounds, or if the optimization
fails, a value of NA is used and no transformation is applied.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value numeric, the lambda estimate

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

References

Sakia, R. M. (1992). The Box-Cox transformation technique: A review. The Statistician, 169-178..

step_bs 55

See Also

Other individual transformation steps: step_YeoJohnson(), step_bs(), step_harmonic(), step_hyperbolic(),
step_inverse(), step_invlogit(), step_logit(), step_log(), step_mutate(), step_ns(),
step_percentile(), step_poly(), step_relu(), step_sqrt()

Examples

rec <- recipe(~., data = as.data.frame(state.x77))

bc_trans <- step_BoxCox(rec, all_numeric())

bc_estimates <- prep(bc_trans, training = as.data.frame(state.x77))

bc_data <- bake(bc_estimates, as.data.frame(state.x77))

plot(density(state.x77[, "Illiteracy"]), main = "before")
plot(density(bc_data$Illiteracy), main = "after")

tidy(bc_trans, number = 1)
tidy(bc_estimates, number = 1)

step_bs B-spline basis functions

Description

step_bs() creates a specification of a recipe step that will create new columns that are basis ex-
pansions of variables using B-splines.

Usage

step_bs(
recipe,
...,
role = "predictor",
trained = FALSE,
deg_free = NULL,
degree = 3,
objects = NULL,
options = list(),
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("bs")

)

56 step_bs

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

deg_free The degrees of freedom for the spline. As the degrees of freedom for a spline
increase, more flexible and complex curves can be generated. When a single
degree of freedom is used, the result is a rescaled version of the original data.

degree Degree of polynomial spline (integer).

objects A list of splines::bs() objects created once the step has been trained.

options A list of options for splines::bs() which should not include x, degree, or df.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

step_bs can create new features from a single variable that enable fitting routines to model this
variable in a nonlinear manner. The extent of the possible nonlinearity is determined by the df,
degree, or knot arguments of splines::bs(). The original variables are removed from the data
and new columns are added. The naming convention for the new variables is varname_bs_1 and so
on.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

step_center 57

Tuning Parameters

This step has 2 tuning parameters:

• deg_free: Spline Degrees of Freedom (type: integer, default: NULL)

• degree: Polynomial Degree (type: integer, default: 3)

Case weights

The underlying operation does not allow for case weights.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_harmonic(),
step_hyperbolic(), step_inverse(), step_invlogit(), step_logit(), step_log(), step_mutate(),
step_ns(), step_percentile(), step_poly(), step_relu(), step_sqrt()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

with_splines <- rec %>%
step_bs(carbon, hydrogen)

with_splines <- prep(with_splines, training = biomass_tr)

expanded <- bake(with_splines, biomass_te)
expanded

step_center Centering numeric data

Description

step_center() creates a specification of a recipe step that will normalize numeric data to have a
mean of zero.

58 step_center

Usage

step_center(
recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
na_rm = TRUE,
skip = FALSE,
id = rand_id("center")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

means A named numeric vector of means. This is NULL until computed by prep().

na_rm A logical value indicating whether NA values should be removed during compu-
tations.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Centering data means that the average of a variable is subtracted from the data. step_center esti-
mates the variable means from the data used in the training argument of prep.recipe. bake.recipe
then applies the centering to new data sets using these means.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, and id:

terms character, the selectors or variables selected

value numeric, the means

id character, id of this step

step_classdist 59

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

Other normalization steps: step_normalize(), step_range(), step_scale()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

center_trans <- rec %>%
step_center(carbon, contains("gen"), -hydrogen)

center_obj <- prep(center_trans, training = biomass_tr)

transformed_te <- bake(center_obj, biomass_te)

biomass_te[1:10, names(transformed_te)]
transformed_te

tidy(center_trans, number = 1)
tidy(center_obj, number = 1)

step_classdist Distances to class centroids

Description

step_classdist() creates a specification of a recipe step that will convert numeric data into Ma-
halanobis distance measurements to the data centroid. This is done for each value of a categorical
class variable.

60 step_classdist

Usage

step_classdist(
recipe,
...,
class,
role = "predictor",
trained = FALSE,
mean_func = mean,
cov_func = cov,
pool = FALSE,
log = TRUE,
objects = NULL,
prefix = "classdist_",
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("classdist")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

class A single character string that specifies a single categorical variable to be used as
the class.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

mean_func A function to compute the center of the distribution.

cov_func A function that computes the covariance matrix

pool A logical: should the covariance matrix be computed by pooling the data for all
of the classes?

log A logical: should the distances be transformed by the natural log function?

objects Statistics are stored here once this step has been trained by prep().

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

step_classdist 61

Details

step_classdist will create a new column for every unique value of the class variable. The
resulting variables will not replace the original values and, by default, have the prefix classdist_.
The naming format can be changed using the prefix argument.

Class-specific centroids are the multivariate averages of each predictor using the data from each
class in the training set. When pre-processing a new data point, this step computes the distance
from the new point to each of the class centroids. These distance features can be very effective at
capturing linear class boundaries. For this reason, they can be useful to add to an existing predictor
set used within a nonlinear model. If the true boundary is actually linear, the model will have an
easier time learning the training data patterns.

Note that, by default, the default covariance function requires that each class should have at least as
many rows as variables listed in the terms argument. If pool = TRUE, there must be at least as many
data points are variables overall.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, class , and id:

terms character, the selectors or variables selected

value numeric, location of centroid

class character, name of the class

id character, id of this step

Case weights

This step performs an supervised operation that can utilize case weights. As a result, case weights
are used with frequency weights as well as importance weights. For more information„ see the
documentation in case_weights and the examples on tidymodels.org.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_depth(), step_geodist(),
step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(), step_mutate_at(),
step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

data(penguins, package = "modeldata")
penguins <- penguins[complete.cases(penguins),]
penguins$island <- NULL
penguins$sex <- NULL

in case of missing data...

62 step_classdist_shrunken

mean2 <- function(x) mean(x, na.rm = TRUE)

define naming convention
rec <- recipe(species ~ ., data = penguins) %>%

step_classdist(all_numeric_predictors(),
class = "species",
pool = FALSE, mean_func = mean2, prefix = "centroid_"

)

default naming
rec <- recipe(species ~ ., data = penguins) %>%

step_classdist(all_numeric_predictors(),
class = "species",
pool = FALSE, mean_func = mean2

)

rec_dists <- prep(rec, training = penguins)

dists_to_species <- bake(rec_dists, new_data = penguins, everything())
on log scale:
dist_cols <- grep("classdist", names(dists_to_species), value = TRUE)
dists_to_species[, c("species", dist_cols)]

tidy(rec, number = 1)
tidy(rec_dists, number = 1)

step_classdist_shrunken

Compute shrunken centroid distances for classification models

Description

step_classdist_shrunken creates a specification of a recipe step that will convert numeric data
into Euclidean distance to the regularized class centroid. This is done for each value of a categorical
class variable.

Usage

step_classdist_shrunken(
recipe,
...,
class = NULL,
role = NA,
trained = FALSE,
threshold = 1/2,
sd_offset = 1/2,
log = TRUE,
prefix = "classdist_",

step_classdist_shrunken 63

keep_original_cols = TRUE,
objects = NULL,
skip = FALSE,
id = rand_id("classdist_shrunken")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

class A single character string that specifies a single categorical variable to be used as
the class.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

threshold A regularization parameter between zero and one. Zero means that no regu-
larization is used and one means that centroids should be shrunk to the global
centroid.

sd_offset A value between zero and one for the quantile that should be used to stabilize
the pooled standard deviation.

log A logical: should the distances be transformed by the natural log function?

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

objects Statistics are stored here once this step has been trained by prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Class-specific centroids are the multivariate averages of each predictor using the data from each
class in the training set. When pre-processing a new data point, this step computes the distance
from the new point to each of the class centroids. These distance features can be very effective at
capturing linear class boundaries. For this reason, they can be useful to add to an existing predictor
set used within a nonlinear model. If the true boundary is actually linear, the model will have an
easier time learning the training data patterns.

Shrunken centroids use a form of regularization where the class-specific centroids are contracted
to the overall class-independent centroid. If a predictor is uninformative, shrinking it may move it
entirely to the overall centroid. This has the effect of removing that predictor’s effect on the new

64 step_classdist_shrunken

distance features. However, it may not move all of the class-specific features to the center in many
cases. This means that some features will only affect the classification of specific classes.

The threshold parameter can be used to optimized how much regularization should be used.

step_classdist_shrunken will create a new column for every unique value of the class vari-
able. The resulting variables will not replace the original values and, by default, have the prefix
classdist_. The naming format can be changed using the prefix argument.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, class, type, threshold
, and id:

terms character, the selectors or variables selected

value numeric, the centroid

class character, name of class variable

type character, has values "global", "by_class", and "shrunken"

threshold numeric, value of threshold

id character, id of this step

The first two types of centroids are in the original units while the last has been standardized.

Case weights

This step performs an supervised operation that can utilize case weights. As a result, case weights
are used with frequency weights as well as importance weights. For more information„ see the
documentation in case_weights and the examples on tidymodels.org.

References

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by
shrunken centroids of gene expression. Proceedings of the National Academy of Sciences, 99(10),
6567-6572.

See Also

Other multivariate transformation steps: step_classdist(), step_depth(), step_geodist(),
step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(), step_mutate_at(),
step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

data(penguins, package = "modeldata")
penguins <- penguins[complete.cases(penguins),]
penguins$island <- NULL
penguins$sex <- NULL

define naming convention

step_corr 65

rec <- recipe(species ~ ., data = penguins) %>%
step_classdist_shrunken(all_numeric_predictors(),
class = "species",
threshold = 1 / 4, prefix = "centroid_"

)

default naming
rec <- recipe(species ~ ., data = penguins) %>%

step_classdist_shrunken(all_numeric_predictors(),
class = "species",
threshold = 3 / 4

)

rec_dists <- prep(rec, training = penguins)

dists_to_species <- bake(rec_dists, new_data = penguins, everything())
on log scale:
dist_cols <- grep("classdist", names(dists_to_species), value = TRUE)
dists_to_species[, c("species", dist_cols)]

tidy(rec, number = 1)
tidy(rec_dists, number = 1)

step_corr High correlation filter

Description

step_corr() creates a specification of a recipe step that will potentially remove variables that have
large absolute correlations with other variables.

Usage

step_corr(
recipe,
...,
role = NA,
trained = FALSE,
threshold = 0.9,
use = "pairwise.complete.obs",
method = "pearson",
removals = NULL,
skip = FALSE,
id = rand_id("corr")

)

66 step_corr

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

threshold A value for the threshold of absolute correlation values. The step will try to
remove the minimum number of columns so that all the resulting absolute cor-
relations are less than this value.

use A character string for the use argument to the stats::cor() function.

method A character string for the method argument to the stats::cor() function.

removals A character string that contains the names of columns that should be removed.
These values are not determined until prep() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

This step can potentially remove columns from the data set. This may cause issues for subsequent
steps in your recipe if the missing columns are specifically referenced by name. To avoid this, see
the advice in the Tips for saving recipes and filtering columns section of selections.

This step attempts to remove variables to keep the largest absolute correlation between the variables
less than threshold.

When a column has a single unique value, that column will be excluded from the correlation analy-
sis. Also, if the data set has sporadic missing values (and an inappropriate value of use is chosen),
some columns will also be excluded from the filter.

The arguments use and method don’t take effect if case weights are used in the recipe.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected to be removed

id character, id of this step

step_corr 67

Tuning Parameters

This step has 1 tuning parameters:

• threshold: Threshold (type: double, default: 0.9)

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

Author(s)

Original R code for filtering algorithm by Dong Li, modified by Max Kuhn. Contributions by
Reynald Lescarbeau (for original in caret package). Max Kuhn for the step function.

See Also

Other variable filter steps: step_filter_missing(), step_lincomb(), step_nzv(), step_rm(),
step_select(), step_zv()

Examples

data(biomass, package = "modeldata")

set.seed(3535)
biomass$duplicate <- biomass$carbon + rnorm(nrow(biomass))

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur + duplicate,
data = biomass_tr

)

corr_filter <- rec %>%
step_corr(all_numeric_predictors(), threshold = .5)

filter_obj <- prep(corr_filter, training = biomass_tr)

filtered_te <- bake(filter_obj, biomass_te)
round(abs(cor(biomass_tr[, c(3:7, 9)])), 2)
round(abs(cor(filtered_te)), 2)

tidy(corr_filter, number = 1)
tidy(filter_obj, number = 1)

68 step_count

step_count Create counts of patterns using regular expressions

Description

step_count() creates a specification of a recipe step that will create a variable that counts instances
of a regular expression pattern in text.

Usage

step_count(
recipe,
...,
role = "predictor",
trained = FALSE,
pattern = ".",
normalize = FALSE,
options = list(),
result = make.names(pattern),
input = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("count")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... A single selector function to choose which variable will be searched for the
regex pattern. The selector should resolve to a single variable. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

pattern A character string containing a regular expression (or character string for fixed
= TRUE) to be matched in the given character vector. Coerced by as.character
to a character string if possible.

normalize A logical; should the integer counts be divided by the total number of characters
in the string?.

options A list of options to gregexpr() that should not include x or pattern.

result A single character value for the name of the new variable. It should be a valid
column name.

step_count 69

input A single character value for the name of the variable being searched. This is
NULL until computed by prep().

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, result , and id:

terms character, the selectors or variables selected

result character, the new column names

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_date(), step_dummy_extract(),
step_dummy_multi_choice(), step_dummy(), step_factor2string(), step_holiday(), step_indicate_na(),
step_integer(), step_novel(), step_num2factor(), step_ordinalscore(), step_other(),
step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(), step_unorder()

Examples

data(covers, package = "modeldata")

rec <- recipe(~description, covers) %>%
step_count(description, pattern = "(rock|stony)", result = "rocks") %>%
step_count(description, pattern = "famil", normalize = TRUE)

rec2 <- prep(rec, training = covers)
rec2

count_values <- bake(rec2, new_data = covers)
count_values

70 step_cut

tidy(rec, number = 1)
tidy(rec2, number = 1)

step_cut Cut a numeric variable into a factor

Description

step_cut() creates a specification of a recipe step that cuts a numeric variable into a factor based
on provided boundary values.

Usage

step_cut(
recipe,
...,
role = NA,
trained = FALSE,
breaks,
include_outside_range = FALSE,
skip = FALSE,
id = rand_id("cut")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

breaks A numeric vector with at least one cut point.
include_outside_range

Logical, indicating if values outside the range in the train set should be included
in the lowest or highest bucket. Defaults to FALSE, values outside the original
range will be set to NA.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

step_cut 71

Details

Unlike the base::cut() function there is no need to specify the min and the max values in the
breaks. All values before the lowest break point will end up in the first bucket, all values after the
last break points will end up in the last.

step_cut() will call base::cut() in the baking step with include.lowest set to TRUE.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value numeric, the location of the cuts

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other discretization steps: step_discretize()

Examples

df <- data.frame(x = 1:10, y = 5:14)
rec <- recipe(df)

The min and max of the variable are used as boundaries
if they exceed the breaks
rec %>%

step_cut(x, breaks = 5) %>%
prep() %>%
bake(df)

You can use the same breaks on multiple variables
then for each variable the boundaries are set separately
rec %>%

step_cut(x, y, breaks = c(6, 9)) %>%
prep() %>%
bake(df)

You can keep the original variables using `step_mutate` or
`step_mutate_at`, for transforming multiple variables at once
rec %>%

step_mutate(x_orig = x) %>%
step_cut(x, breaks = 5) %>%

72 step_date

prep() %>%
bake(df)

It is up to you if you want values outside the
range learned at prep to be included
new_df <- data.frame(x = 1:11, y = 5:15)
rec %>%

step_cut(x, breaks = 5, include_outside_range = TRUE) %>%
prep() %>%
bake(new_df)

rec %>%
step_cut(x, breaks = 5, include_outside_range = FALSE) %>%
prep() %>%
bake(new_df)

step_date Date feature generator

Description

step_date() creates a specification of a recipe step that will convert date data into one or more
factor or numeric variables.

Usage

step_date(
recipe,
...,
role = "predictor",
trained = FALSE,
features = c("dow", "month", "year"),
abbr = TRUE,
label = TRUE,
ordinal = FALSE,
locale = clock::clock_locale()$labels,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("date")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. The selected
variables should have class Date or POSIXct. See selections() for more de-
tails.

step_date 73

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

features A character string that includes at least one of the following values: month, dow
(day of week), doy (day of year), week, month, decimal (decimal date, e.g.
2002.197), quarter, semester, year.

abbr A logical. Only available for features month or dow. FALSE will display the
day of the week as an ordered factor of character strings, such as "Sunday".
TRUE will display an abbreviated version of the label, such as "Sun". abbr is
disregarded if label = FALSE.

label A logical. Only available for features month or dow. TRUE will display the day
of the week as an ordered factor of character strings, such as "Sunday." FALSE
will display the day of the week as a number.

ordinal A logical: should factors be ordered? Only available for features month or dow.

locale Locale to be used for month and dow, see locales. On Linux systems you can use
system("locale -a") to list all the installed locales. Can be a locales string, or
a clock::clock_labels() object. Defaults to clock::clock_locale()$labels.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to TRUE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Unlike some other steps, step_date does not remove the original date variables by default. Set
keep_original_cols to FALSE to remove them.

See step_time() if you want to calculate features that are smaller than days.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble with columns terms (the selectors or variables selected), value
(the feature names), and ordinal (a logical) is returned.

When you tidy() this step, a tibble is returned with columns terms, value, ordinal , and id:

terms character, the selectors or variables selected

74 step_depth

value character, the feature names

ordinal logical, are factors ordered

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_dummy_extract(),
step_dummy_multi_choice(), step_dummy(), step_factor2string(), step_holiday(), step_indicate_na(),
step_integer(), step_novel(), step_num2factor(), step_ordinalscore(), step_other(),
step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(), step_unorder()

Examples

library(lubridate)

examples <- data.frame(
Dan = ymd("2002-03-04") + days(1:10),
Stefan = ymd("2006-01-13") + days(1:10)

)
date_rec <- recipe(~ Dan + Stefan, examples) %>%

step_date(all_predictors())

tidy(date_rec, number = 1)

date_rec <- prep(date_rec, training = examples)

date_values <- bake(date_rec, new_data = examples)
date_values

tidy(date_rec, number = 1)

step_depth Data depths

Description

step_depth() creates a specification of a recipe step that will convert numeric data into a measure-
ment of data depth. This is done for each value of a categorical class variable.

step_depth 75

Usage

step_depth(
recipe,
...,
class,
role = "predictor",
trained = FALSE,
metric = "halfspace",
options = list(),
data = NULL,
prefix = "depth_",
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("depth")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

class A single character string that specifies a single categorical variable to be used as
the class.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

metric A character string specifying the depth metric. Possible values are "potential",
"halfspace", "Mahalanobis", "simplicialVolume", "spatial", and "zonoid".

options A list of options to pass to the underlying depth functions. See ddalpha::depth.halfspace(),
ddalpha::depth.Mahalanobis(), ddalpha::depth.potential(), ddalpha::depth.projection(),
ddalpha::depth.simplicial(), ddalpha::depth.simplicialVolume(), ddalpha::depth.spatial(),
ddalpha::depth.zonoid().

data The training data are stored here once after prep() is executed.

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

76 step_depth

Details

Data depth metrics attempt to measure how close data a data point is to the center of its distribution.
There are a number of methods for calculating depth but a simple example is the inverse of the
distance of a data point to the centroid of the distribution. Generally, small values indicate that a
data point not close to the centroid. step_depth can compute a class-specific depth for a new data
point based on the proximity of the new value to the training set distribution.

This step requires the ddalpha package. If not installed, the step will stop with a note about in-
stalling the package.

Note that the entire training set is saved to compute future depth values. The saved data have been
trained (i.e. prepared) and baked (i.e. processed) up to the point before the location that step_depth
occupies in the recipe. Also, the data requirements for the different step methods may vary. For
example, using metric = "Mahalanobis" requires that each class should have at least as many rows
as variables listed in the terms argument.

The function will create a new column for every unique value of the class variable. The resulting
variables will not replace the original values and by default have the prefix depth_. The naming
format can be changed using the prefix argument.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, class , and id:

terms character, the selectors or variables selected

class character, name of class variable

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_geodist(),
step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(), step_mutate_at(),
step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

halfspace depth is the default
rec <- recipe(Species ~ ., data = iris) %>%

step_depth(all_numeric_predictors(), class = "Species")

use zonoid metric instead

step_discretize 77

also, define naming convention for new columns
rec <- recipe(Species ~ ., data = iris) %>%

step_depth(all_numeric_predictors(),
class = "Species",
metric = "zonoid", prefix = "zonoid_"

)

rec_dists <- prep(rec, training = iris)

dists_to_species <- bake(rec_dists, new_data = iris)
dists_to_species

tidy(rec, number = 1)
tidy(rec_dists, number = 1)

step_discretize Discretize Numeric Variables

Description

step_discretize() creates a specification of a recipe step that will convert numeric data into a
factor with bins having approximately the same number of data points (based on a training set).

Usage

step_discretize(
recipe,
...,
role = NA,
trained = FALSE,
num_breaks = 4,
min_unique = 10,
objects = NULL,
options = list(prefix = "bin"),
skip = FALSE,
id = rand_id("discretize")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

78 step_discretize

num_breaks An integer defining how many cuts to make of the data.

min_unique An integer defining a sample size line of dignity for the binning. If (the number
of unique values)/(cuts+1) is less than min_unique, no discretization takes
place.

objects The discretize() objects are stored here once the recipe has be trained by
prep().

options A list of options to discretize(). A default is set for the argument x. Note
that using the options prefix and labels when more than one variable is being
transformed might be problematic as all variables inherit those values.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value numeric, the breaks

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• min_unique: Unique Value Threshold (type: integer, default: 10)

• num_breaks: Number of Cut Points (type: integer, default: 4)

Case weights

The underlying operation does not allow for case weights.

See Also

Other discretization steps: step_cut()

step_dummy 79

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

) %>%
step_discretize(carbon, hydrogen)

rec <- prep(rec, biomass_tr)
binned_te <- bake(rec, biomass_te)
table(binned_te$carbon)

tidy(rec, 1)

step_dummy Create traditional dummy variables

Description

step_dummy() creates a specification of a recipe step that will convert nominal data (e.g. factors)
into one or more numeric binary model terms corresponding to the levels of the original data.

Usage

step_dummy(
recipe,
...,
role = "predictor",
trained = FALSE,
one_hot = FALSE,
preserve = deprecated(),
naming = dummy_names,
levels = NULL,
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("dummy")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

80 step_dummy

... One or more selector functions to choose variables for this step. See selections()
for more details. The selected variables must be factors.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

one_hot A logical. For C levels, should C dummy variables be created rather than C-1?

preserve This argument has been deprecated. Please use keep_original_cols instead.

naming A function that defines the naming convention for new dummy columns. See
Details below.

levels A list that contains the information needed to create dummy variables for each
variable contained in terms. This is NULL until the step is trained by prep().

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

step_dummy() will create a set of binary dummy variables from a factor variable. For example, if
an unordered factor column in the data set has levels of "red", "green", "blue", the dummy variable
bake will create two additional columns of 0/1 data for two of those three values (and remove the
original column). For ordered factors, polynomial contrasts are used to encode the numeric values.

By default, the excluded dummy variable (i.e. the reference cell) will correspond to the first level of
the unordered factor being converted. step_relevel() can be used to create a new reference level
by setting the ref_level argument.

This recipe step allows for flexible naming of the resulting variables. For an unordered factor named
x, with levels "a" and "b", the default naming convention would be to create a new variable called
x_b. The naming format can be changed using the naming argument; the function dummy_names()
is the default.

To change the type of contrast being used, change the global contrast option via options.

When the factor being converted has a missing value, all of the corresponding dummy variables are
also missing. See step_unknown() for a solution.

When data to be processed contains novel levels (i.e., not contained in the training set), a missing
value is assigned to the results. See step_other() for an alternative.

If no columns are selected (perhaps due to an earlier step_zv()), bake() will return the data as-is
(e.g. with no dummy variables).

Note that, by default, the new dummy variable column names obey the naming rules for columns. If
there are levels such as "0", dummy_names() will put a leading "X" in front of the level (since it uses

step_dummy 81

make.names()). This can be changed by passing in a different function to the naming argument for
this step.

Also, there are a number of contrast methods that return fractional values. The columns returned by
this step are doubles (not integers).

The package vignette for dummy variables and interactions has more information.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, columns , and id:

terms character, the selectors or variables selected

columns character, names of resulting columns

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

dummy_names()

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_factor2string(), step_holiday(),
step_indicate_na(), step_integer(), step_novel(), step_num2factor(), step_ordinalscore(),
step_other(), step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(),
step_unorder()

Examples

data(Sacramento, package = "modeldata")

Original data: city has 37 levels
length(unique(Sacramento$city))
unique(Sacramento$city) %>% sort()

rec <- recipe(~ city + sqft + price, data = Sacramento)

Default dummy coding: 36 dummy variables
dummies <- rec %>%

step_dummy(city) %>%
prep(training = Sacramento)

dummy_data <- bake(dummies, new_data = NULL)

dummy_data %>%

https://recipes.tidymodels.org/articles/Dummies.html

82 step_dummy_extract

select(starts_with("city")) %>%
names() # level "anything" is the reference level

Obtain the full set of 37 dummy variables using `one_hot` option
dummies_one_hot <- rec %>%

step_dummy(city, one_hot = TRUE) %>%
prep(training = Sacramento)

dummy_data_one_hot <- bake(dummies_one_hot, new_data = NULL)

dummy_data_one_hot %>%
select(starts_with("city")) %>%
names() # no reference level

tidy(dummies, number = 1)
tidy(dummies_one_hot, number = 1)

step_dummy_extract Extract patterns from nominal data

Description

step_dummy_extract() creates a specification of a recipe step that will convert nominal data (e.g.
characters or factors) into one or more integer model terms for the extracted levels.

Usage

step_dummy_extract(
recipe,
...,
role = "predictor",
trained = FALSE,
sep = NULL,
pattern = NULL,
threshold = 0,
other = "other",
naming = dummy_extract_names,
levels = NULL,
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("dummy_extract")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

step_dummy_extract 83

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

sep Character vector containing a regular expression to use for splitting. strsplit()
is used to perform the split. sep takes priority if pattern is also specified.

pattern Character vector containing a regular expression used for extraction. gregexpr()
and regmatches() are used to perform pattern extraction using perl = TRUE.

threshold A numeric value between 0 and 1, or an integer greater or equal to one. If less
than one, then factor levels with a rate of occurrence in the training set below
threshold will be pooled to other. If greater or equal to one, then this value
is treated as a frequency and factor levels that occur less than threshold times
will be pooled to other.

other A single character value for the "other" category.

naming A function that defines the naming convention for new dummy columns. See
Details below.

levels A list that contains the information needed to create dummy variables for each
variable contained in terms. This is NULL until the step is trained by prep().

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

step_dummy_extract() will create a set of integer dummy variables from a character variable by
extracting individual strings by either splitting or extracting then counting those to create count
variables.

Note that threshold works in a very specific way for this step. While it is possible for one label
to be present multiple times in the same row, it will only be counted once when calculating the
occurrences and frequencies.

This recipe step allows for flexible naming of the resulting variables. For an unordered factor named
x, with levels "a" and "b", the default naming convention would be to create a new variable called
x_b. The naming format can be changed using the naming argument; the function dummy_names()
is the default.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

84 step_dummy_extract

Tidying

When you tidy() this step, a tibble is returned with columns terms, columns , and id:

terms character, the selectors or variables selected

columns character, names of resulting columns

id character, id of this step

The return value is ordered according to the frequency of columns entries in the training data set.

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

dummy_extract_names()

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_multi_choice(), step_dummy(), step_factor2string(), step_holiday(), step_indicate_na(),
step_integer(), step_novel(), step_num2factor(), step_ordinalscore(), step_other(),
step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(), step_unorder()

Examples

data(tate_text, package = "modeldata")

dummies <- recipe(~ artist + medium, data = tate_text) %>%
step_dummy_extract(artist, medium, sep = ", ") %>%
prep()

dummy_data <- bake(dummies, new_data = NULL)

dummy_data %>%
select(starts_with("medium")) %>%
names() %>%
head()

More detailed splitting
dummies_specific <- recipe(~medium, data = tate_text) %>%

step_dummy_extract(medium, sep = "(,)|(and)|(on)") %>%
prep()

dummy_data_specific <- bake(dummies_specific, new_data = NULL)

dummy_data_specific %>%
select(starts_with("medium")) %>%
names() %>%
head()

step_dummy_multi_choice 85

tidy(dummies, number = 1)
tidy(dummies_specific, number = 1)

pattern argument can be useful to extract harder patterns
color_examples <- tibble(

colors = c(
"['red', 'blue']",
"['red', 'blue', 'white']",
"['blue', 'blue', 'blue']"

)
)

dummies_color <- recipe(~colors, data = color_examples) %>%
step_dummy_extract(colors, pattern = "(?<=')[^',]+(?=')") %>%
prep()

dommies_data_color <- dummies_color %>%
bake(new_data = NULL)

dommies_data_color

step_dummy_multi_choice

Handle levels in multiple predictors together

Description

step_dummy_multi_choice() creates a specification of a recipe step that will convert multiple
nominal data (e.g. characters or factors) into one or more numeric binary model terms for the levels
of the original data.

Usage

step_dummy_multi_choice(
recipe,
...,
role = "predictor",
trained = FALSE,
threshold = 0,
levels = NULL,
input = NULL,
other = "other",
naming = dummy_names,
prefix = NULL,
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("dummy_multi_choice")

)

86 step_dummy_multi_choice

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details. The selected variables must be factors.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

threshold A numeric value between 0 and 1, or an integer greater or equal to one. If less
than one, then factor levels with a rate of occurrence in the training set below
threshold will be pooled to other. If greater or equal to one, then this value
is treated as a frequency and factor levels that occur less than threshold times
will be pooled to other.

levels A list that contains the information needed to create dummy variables for each
variable contained in terms. This is NULL until the step is trained by prep().

input A character vector containing the names of the columns used. This is NULL until
the step is trained by prep().

other A single character value for the "other" category.

naming A function that defines the naming convention for new dummy columns. See
Details below.

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The overall proportion (or total counts) of the categories are computed. The "other" category is
used in place of any categorical levels whose individual proportion (or frequency) in the training set
is less than threshold.

This recipe step allows for flexible naming of the resulting variables. For an unordered factor named
x, with levels "a" and "b", the default naming convention would be to create a new variable called
x_b. The naming format can be changed using the naming argument; the function dummy_names()
is the default.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

step_dummy_multi_choice 87

Tuning Parameters

This step has 1 tuning parameters:

• threshold: Threshold (type: double, default: 0)

Tidying

When you tidy() this step, a tibble is returned with columns terms, columns , and id:

terms character, the selectors or variables selected
columns character, names of resulting columns
id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy(), step_factor2string(), step_holiday(), step_indicate_na(),
step_integer(), step_novel(), step_num2factor(), step_ordinalscore(), step_other(),
step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(), step_unorder()

Examples

library(tibble)
languages <- tribble(

~lang_1, ~lang_2, ~lang_3,
"English", "Italian", NA,
"Spanish", NA, "French",
"Armenian", "English", "French",
NA, NA, NA

)

dummy_multi_choice_rec <- recipe(~., data = languages) %>%
step_dummy_multi_choice(starts_with("lang")) %>%
prep()

bake(dummy_multi_choice_rec, new_data = NULL)
tidy(dummy_multi_choice_rec, number = 1)

dummy_multi_choice_rec2 <- recipe(~., data = languages) %>%
step_dummy_multi_choice(starts_with("lang"),
prefix = "lang",
threshold = 0.2

) %>%
prep()

bake(dummy_multi_choice_rec2, new_data = NULL)
tidy(dummy_multi_choice_rec2, number = 1)

88 step_factor2string

step_factor2string Convert factors to strings

Description

step_factor2string() creates a specification of a recipe step that will convert one or more factor
vectors to strings.

Usage

step_factor2string(
recipe,
...,
role = NA,
trained = FALSE,
columns = FALSE,
skip = FALSE,
id = rand_id("factor2string")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

prep() has an option strings_as_factors that defaults to TRUE. If this step is used with the
default option, the strings produced by this step will not be converted to factors.

Remember that categorical data that will be directly passed to a model should be encoded as factors.
This step is helpful for ancillary columns (such as identifiers) that will not be computed on in the
model.

step_factor2string 89

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_holiday(), step_indicate_na(),
step_integer(), step_novel(), step_num2factor(), step_ordinalscore(), step_other(),
step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(), step_unorder()

Examples

data(Sacramento, package = "modeldata")

rec <- recipe(~ city + zip, data = Sacramento)

make_string <- rec %>%
step_factor2string(city)

make_string <- prep(make_string,
training = Sacramento,
strings_as_factors = FALSE

)

make_string

note that `city` is a string in recipe output
bake(make_string, new_data = NULL) %>% head()

...but remains a factor in the original data
Sacramento %>% head()

90 step_filter

step_filter Filter rows using dplyr

Description

step_filter() creates a specification of a recipe step that will remove rows using dplyr::filter().

Usage

step_filter(
recipe,
...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = TRUE,
id = rand_id("filter")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Logical predicates defined in terms of the variables in the data. Multiple condi-
tions are combined with &. Only rows where the condition evaluates to TRUE are
kept. See dplyr::filter() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs Quosure of values given by

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!) to embed the value of the object in the
expression (to be portable between sessions). See the examples.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

step_filter 91

Row Filtering

This step can entirely remove observations (rows of data), which can have unintended and/or prob-
lematic consequences when applying the step to new data later via bake(). Consider whether skip
= TRUE or skip = FALSE is more appropriate in any given use case. In most instances that affect the
rows of the data being predicted, this step probably should not be applied at all; instead, execute
operations like this outside and before starting a preprocessing recipe().

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

The expressions in terms are text representations and are not parsable.

Case weights

The underlying operation does not allow for case weights.

See Also

Other row operation steps: step_arrange(), step_impute_roll(), step_lag(), step_naomit(),
step_sample(), step_shuffle(), step_slice()

Other dplyr steps: step_arrange(), step_mutate_at(), step_mutate(), step_rename_at(),
step_rename(), step_sample(), step_select(), step_slice()

Examples

rec <- recipe(~., data = iris) %>%
step_filter(Sepal.Length > 4.5, Species == "setosa")

prepped <- prep(rec, training = iris %>% slice(1:75))

library(dplyr)

dplyr_train <-
iris %>%
as_tibble() %>%
slice(1:75) %>%
dplyr::filter(Sepal.Length > 4.5, Species == "setosa")

rec_train <- bake(prepped, new_data = NULL)
all.equal(dplyr_train, rec_train)

dplyr_test <-
iris %>%
as_tibble() %>%
slice(76:150) %>%
dplyr::filter(Sepal.Length > 4.5, Species != "setosa")

92 step_filter_missing

rec_test <- bake(prepped, iris %>% slice(76:150))
all.equal(dplyr_test, rec_test)

values <- c("versicolor", "virginica")

qq_rec <-
recipe(~., data = iris) %>%
Embed the `values` object in the call using !!
step_filter(Sepal.Length > 4.5, Species %in% !!values)

tidy(qq_rec, number = 1)

step_filter_missing Missing value column filter

Description

step_filter_missing() creates a specification of a recipe step that will potentially remove vari-
ables that have too many missing values.

Usage

step_filter_missing(
recipe,
...,
role = NA,
trained = FALSE,
threshold = 0.1,
removals = NULL,
skip = FALSE,
id = rand_id("filter_missing")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

threshold A value for the threshold of missing values in column. The step will remove the
columns where the proportion of missing values exceeds the threshold.

removals A character string that contains the names of columns that should be removed.
These values are not determined until prep() is called.

step_filter_missing 93

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

This step can potentially remove columns from the data set. This may cause issues for subsequent
steps in your recipe if the missing columns are specifically referenced by name. To avoid this, see
the advice in the Tips for saving recipes and filtering columns section of selections.

This step will remove variables if the proportion of missing values exceeds the threshold.

All variables with missing values will be removed for threshold = 0.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• threshold: Threshold (type: double, default: 0.1)

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

Other variable filter steps: step_corr(), step_lincomb(), step_nzv(), step_rm(), step_select(),
step_zv()

94 step_geodist

Examples

data(credit_data, package = "modeldata")

rec <- recipe(Status ~ ., data = credit_data) %>%
step_filter_missing(all_predictors(), threshold = 0)

filter_obj <- prep(rec)

filtered_te <- bake(filter_obj, new_data = NULL)

tidy(rec, number = 1)
tidy(filter_obj, number = 1)

step_geodist Distance between two locations

Description

step_geodist() creates a specification of a recipe step that will calculate the distance between
points on a map to a reference location.

Usage

step_geodist(
recipe,
lat = NULL,
lon = NULL,
role = "predictor",
trained = FALSE,
ref_lat = NULL,
ref_lon = NULL,
is_lat_lon = TRUE,
log = FALSE,
name = "geo_dist",
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("geodist")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

lon, lat Selector functions to choose which variables are used by the step. See selections()
for more details.

step_geodist 95

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
ref_lon, ref_lat

Single numeric values for the location of the reference point.

is_lat_lon A logical: Are coordinates in latitude and longitude? If TRUE the Haversine
formula is used and the returned result is meters. If FALSE the Pythagorean
formula is used. Default is TRUE and for recipes created from previous versions
of recipes, a value of FALSE is used.

log A logical: should the distance be transformed by the natural log function?

name A single character value to use for the new predictor column. If a column exists
with this name, an error is issued.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

step_geodist uses the Pythagorean theorem to calculate Euclidean distances if is_lat_lon is
FALSE. If is_lat_lon is TRUE, the Haversine formula is used to calculate the great-circle distance
in meters.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns latitude, longitude, ref_latitude,
ref_longitude, is_lat_lon, name , and id:

latitude character, name of latitude variable

longitude character, name of longitude variable

ref_latitude numeric, location of latitude reference point

ref_longitude numeric, location of longitude reference point

is_lat_lon character, the summary function name

name character, name of resulting variable

id character, id of this step

96 step_harmonic

Case weights

The underlying operation does not allow for case weights.

References

https://en.wikipedia.org/wiki/Haversine_formula

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(), step_mutate_at(),
step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

data(Smithsonian, package = "modeldata")

How close are the museums to Union Station?
near_station <- recipe(~., data = Smithsonian) %>%

update_role(name, new_role = "location") %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 38.8986312, ref_lon = -77.0062457,
is_lat_lon = TRUE

) %>%
prep(training = Smithsonian)

bake(near_station, new_data = NULL) %>%
arrange(geo_dist)

tidy(near_station, number = 1)

step_harmonic Add sin and cos terms for harmonic analysis

Description

step_harmonic() creates a specification of a recipe step that will add sin() and cos() terms for
harmonic analysis.

Usage

step_harmonic(
recipe,
...,
role = "predictor",

step_harmonic 97

trained = FALSE,
frequency = NA_real_,
cycle_size = NA_real_,
starting_val = NA_real_,
keep_original_cols = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("harmonic")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details. This will typically be a single variable.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

frequency A numeric vector with at least one value. The value(s) must be greater than zero
and finite.

cycle_size A numeric vector with at least one value that indicates the size of a single cycle.
cycle_size should have the same units as the input variable(s).

starting_val either NA, numeric, Date or POSIXt value(s) that indicates the reference point
for the sin and cos curves for each input variable. If the value is a Date or
POISXt the value is converted to numeric using as.numeric. This parameter
may be specified to increase control over the signal phase. If starting_val is
not specified the default is 0.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

This step seeks to describe periodic components of observational data using a combination of sin
and cos waves. To do this, each wave of a specified frequency is modeled using one sin and one cos
term. The two terms for each frequency can then be used to estimate the amplitude and phase shift

98 step_harmonic

of a periodic signal in observational data. The equation relating cos waves of known frequency but
unknown phase and amplitude to a sum of sin and cos terms is below:

Ajcos(σjti − Φj) = Cjcos(σjti) + Sjsin(σjti)

Solving the equation yields Cj and Sj . the amplitude can then be obtained with:

Aj =
√
C2

j + S2
j

And the phase can be obtained with:

Φj = arctan (Sj/Cj)

where:

• σj = 2π(frequency/cycle_size))

• Aj is the amplitude of the jth frequency

• Φj is the phase of the jth frequency

• Cj is the coefficient of the cos term for the jth frequency

• Sj is the coefficient of the sin term for the jth frequency

The periodic component is specified by frequency and cycle_size parameters. The cycle size
relates the specified frequency to the input column(s) units. There are multiple ways to specify a
wave of given frequency, for example, a POSIXct input column given a frequency of 24 and a
cycle_size equal to 86400 is equivalent to a frequency of 1.0 with cycle_size equal to 3600.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tuning Parameters

This step has 1 tuning parameters:

• frequency: Harmonic Frequency (type: double, default: NA)

Tidying

When you tidy() this step, a tibble is returned with columns terms, starting_val, cycle_size,
frequency, key , and id:

terms character, the selectors or variables selected

starting_val numeric, the starting value

cycle_size numeric, the cycle size

frequency numeric, the frequency

key character, key describing the calculation

id character, id of this step

step_harmonic 99

Case weights

The underlying operation does not allow for case weights.

References

Doran, H. E., & Quilkey, J. J. (1972). Harmonic analysis of seasonal data: some important proper-
ties. American Journal of Agricultural Economics, 54, volume 4, part 1, 646-651.

Foreman, M. G. G., & Henry, R. F. (1989). The harmonic analysis of tidal model time series.
Advances in water resources, 12(3), 109-120.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_hyperbolic(),
step_inverse(), step_invlogit(), step_logit(), step_log(), step_mutate(), step_ns(),
step_percentile(), step_poly(), step_relu(), step_sqrt()

Examples

library(ggplot2, quietly = TRUE)
library(dplyr)

data(sunspot.year)
sunspots <-

tibble(
year = 1700:1988,
n_sunspot = sunspot.year,
type = "measured"

) %>%
slice(1:75)

sunspots period is around 11 years, sample spacing is one year
dat <- recipe(n_sunspot ~ year, data = sunspots) %>%

step_harmonic(year, frequency = 1 / 11, cycle_size = 1) %>%
prep() %>%
bake(new_data = NULL)

fit <- lm(n_sunspot ~ year_sin_1 + year_cos_1, data = dat)

preds <- tibble(
year = sunspots$year,
n_sunspot = fit$fitted.values,
type = "predicted"

)

bind_rows(sunspots, preds) %>%
ggplot(aes(x = year, y = n_sunspot, color = type)) +
geom_line()

--

100 step_holiday

POSIXct example

date_time <-
as.POSIXct(
paste0(rep(1959:1997, each = 12), "-", rep(1:12, length(1959:1997)), "-01"),
tz = "UTC"

)

carbon_dioxide <- tibble(
date_time = date_time,
co2 = as.numeric(co2),
type = "measured"

)

yearly co2 fluctuations
dat <-

recipe(co2 ~ date_time,
data = carbon_dioxide

) %>%
step_mutate(date_time_num = as.numeric(date_time)) %>%
step_ns(date_time_num, deg_free = 3) %>%
step_harmonic(date_time, frequency = 1, cycle_size = 86400 * 365.24) %>%
prep() %>%
bake(new_data = NULL)

fit <- lm(co2 ~ date_time_num_ns_1 + date_time_num_ns_2 +
date_time_num_ns_3 + date_time_sin_1 +
date_time_cos_1, data = dat)

preds <- tibble(
date_time = date_time,
co2 = fit$fitted.values,
type = "predicted"

)

bind_rows(carbon_dioxide, preds) %>%
ggplot(aes(x = date_time, y = co2, color = type)) +
geom_line()

step_holiday Holiday feature generator

Description

step_holiday() creates a specification of a recipe step that will convert date data into one or more
binary indicator variables for common holidays.

step_holiday 101

Usage

step_holiday(
recipe,
...,
role = "predictor",
trained = FALSE,
holidays = c("LaborDay", "NewYearsDay", "ChristmasDay"),
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("holiday")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. The selected
variables should have class Date or POSIXct. See selections() for more de-
tails.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

holidays A character string that includes at least one holiday supported by the timeDate
package. See timeDate::listHolidays() for a complete list.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to TRUE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Unlike some other steps, step_holiday does not remove the original date variables by default. Set
keep_original_cols to FALSE to remove them.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

102 step_hyperbolic

Tidying

When you tidy() this step, a tibble is returned with columns terms, holiday , and id:

terms character, the selectors or variables selected

holiday character, name of holidays

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

timeDate::listHolidays()

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_indicate_na(), step_integer(), step_novel(), step_num2factor(), step_ordinalscore(),
step_other(), step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(),
step_unorder()

Examples

library(lubridate)

examples <- data.frame(someday = ymd("2000-12-20") + days(0:40))
holiday_rec <- recipe(~someday, examples) %>%

step_holiday(all_predictors())

holiday_rec <- prep(holiday_rec, training = examples)
holiday_values <- bake(holiday_rec, new_data = examples)
holiday_values

step_hyperbolic Hyperbolic transformations

Description

step_hyperbolic() creates a specification of a recipe step that will transform data using a hyper-
bolic function.

Usage

step_hyperbolic(
recipe,
...,
role = NA,
trained = FALSE,

step_hyperbolic 103

func = c("sinh", "cosh", "tanh"),
inverse = TRUE,
columns = NULL,
skip = FALSE,
id = rand_id("hyperbolic")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
func A character value for the function. Valid values are "sinh", "cosh", or "tanh".
inverse A logical: should the inverse function be used?
columns A character string of the selected variable names. This field is a placeholder and

will be populated once prep() is used.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, inverse, func , and id:

terms character, the selectors or variables selected
inverse logical, is the inverse function be used
func character, name of function. "sinh", "cosh", or "tanh"
id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_inverse(), step_invlogit(), step_logit(), step_log(), step_mutate(), step_ns(),
step_percentile(), step_poly(), step_relu(), step_sqrt()

104 step_ica

Examples

set.seed(313)
examples <- matrix(rnorm(40), ncol = 2)
examples <- as.data.frame(examples)

rec <- recipe(~ V1 + V2, data = examples)

cos_trans <- rec %>%
step_hyperbolic(
all_numeric_predictors(),
func = "cosh", inverse = FALSE

)

cos_obj <- prep(cos_trans, training = examples)

transformed_te <- bake(cos_obj, examples)
plot(examples$V1, transformed_te$V1)

tidy(cos_trans, number = 1)
tidy(cos_obj, number = 1)

step_ica ICA signal extraction

Description

step_ica() creates a specification of a recipe step that will convert numeric data into one or more
independent components.

Usage

step_ica(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
options = list(method = "C"),
seed = sample.int(10000, 5),
res = NULL,
columns = NULL,
prefix = "IC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("ica")

)

step_ica 105

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
num_comp The number of components to retain as new predictors. If num_comp is greater

than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

options A list of options to fastICA::fastICA(). No defaults are set here. Note that
the arguments X and n.comp should not be passed here.

seed A single integer to set the random number stream prior to running ICA.
res The fastICA::fastICA() object is stored here once this preprocessing step has

be trained by prep().
columns A character string of the selected variable names. This field is a placeholder and

will be populated once prep() is used.
prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Independent component analysis (ICA) is a transformation of a group of variables that produces a
new set of artificial features or components. ICA assumes that the variables are mixtures of a set of
distinct, non-Gaussian signals and attempts to transform the data to isolate these signals. Like PCA,
the components are statistically independent from one another. This means that they can be used to
combat large inter-variables correlations in a data set. Also like PCA, it is advisable to center and
scale the variables prior to running ICA.

This package produces components using the "FastICA" methodology (see reference below). This
step requires the dimRed and fastICA packages. If not installed, the step will stop with a note
about installing these packages.

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be IC1 - IC9. If num_comp = 101, the
names would be IC1 - IC101.

106 step_ica

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, component, value , and id:

terms character, the selectors or variables selected

component character, name of component

value numeric, the loading

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• num_comp: # Components (type: integer, default: 5)

Case weights

The underlying operation does not allow for case weights.

References

Hyvarinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications.
Neural Networks, 13(4-5), 411-430.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(), step_mutate_at(),
step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

from fastICA::fastICA
set.seed(131)
S <- matrix(runif(400), 200, 2)
A <- matrix(c(1, 1, -1, 3), 2, 2, byrow = TRUE)
X <- as.data.frame(S %*% A)

tr <- X[1:100,]
te <- X[101:200,]

rec <- recipe(~., data = tr)

ica_trans <- step_center(rec, V1, V2)
ica_trans <- step_scale(ica_trans, V1, V2)
ica_trans <- step_ica(ica_trans, V1, V2, num_comp = 2)

step_impute_bag 107

ica_estimates <- prep(ica_trans, training = tr)
ica_data <- bake(ica_estimates, te)

plot(te$V1, te$V2)
plot(ica_data$IC1, ica_data$IC2)

tidy(ica_trans, number = 3)
tidy(ica_estimates, number = 3)

step_impute_bag Impute via bagged trees

Description

step_impute_bag() creates a specification of a recipe step that will create bagged tree models to
impute missing data.

Usage

step_impute_bag(
recipe,
...,
role = NA,
trained = FALSE,
impute_with = imp_vars(all_predictors()),
trees = 25,
models = NULL,
options = list(keepX = FALSE),
seed_val = sample.int(10^4, 1),
skip = FALSE,
id = rand_id("impute_bag")

)

step_bagimpute(
recipe,
...,
role = NA,
trained = FALSE,
impute_with = imp_vars(all_predictors()),
trees = 25,
models = NULL,
options = list(keepX = FALSE),
seed_val = sample.int(10^4, 1),
skip = FALSE,
id = rand_id("impute_bag")

)

108 step_impute_bag

imp_vars(...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables to be imputed. When used
with imp_vars, these dots indicate which variables are used to predict the miss-
ing data in each variable. See selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

impute_with A call to imp_vars to specify which variables are used to impute the variables
that can include specific variable names separated by commas or different selec-
tors (see selections()). If a column is included in both lists to be imputed and
to be an imputation predictor, it will be removed from the latter and not used to
impute itself.

trees An integer for the number of bagged trees to use in each model.

models The ipred::ipredbagg() objects are stored here once this bagged trees have
be trained by prep().

options A list of options to ipred::ipredbagg(). Defaults are set for the arguments
nbagg and keepX but others can be passed in. Note that the arguments X and y
should not be passed here.

seed_val An integer used to create reproducible models. The same seed is used across all
imputation models.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

For each variable requiring imputation, a bagged tree is created where the outcome is the variable
of interest and the predictors are any other variables listed in the impute_with formula. One ad-
vantage to the bagged tree is that is can accept predictors that have missing values themselves. This
imputation method can be used when the variable of interest (and predictors) are numeric or cat-
egorical. Imputed categorical variables will remain categorical. Also, integers will be imputed to
integer too.

Note that if a variable that is to be imputed is also in impute_with, this variable will be ignored.

It is possible that missing values will still occur after imputation if a large majority (or all) of the
imputing variables are also missing.

As of recipes 0.1.16, this function name changed from step_bagimpute() to step_impute_bag().

step_impute_bag 109

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble with columns terms (the selectors or variables selected) and
model (the bagged tree object) is returned.

When you tidy() this step, a tibble is returned with columns terms, model , and id:

terms character, the selectors or variables selected

model list, the bagged tree object

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• trees: # Trees (type: integer, default: 25)

Case weights

The underlying operation does not allow for case weights.

References

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Springer Verlag.

See Also

Other imputation steps: step_impute_knn(), step_impute_linear(), step_impute_lower(),
step_impute_mean(), step_impute_median(), step_impute_mode(), step_impute_roll()

Examples

data("credit_data", package = "modeldata")

missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))

set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training,]
credit_te <- credit_data[-in_training,]
missing_examples <- c(14, 394, 565)

rec <- recipe(Price ~ ., data = credit_tr)
Not run:
impute_rec <- rec %>%

110 step_impute_knn

step_impute_bag(Status, Home, Marital, Job, Income, Assets, Debt)

imp_models <- prep(impute_rec, training = credit_tr)

imputed_te <- bake(imp_models, new_data = credit_te, everything())

credit_te[missing_examples,]
imputed_te[missing_examples, names(credit_te)]

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)

Specifying which variables to imputate with

impute_rec <- rec %>%
step_impute_bag(Status, Home, Marital, Job, Income, Assets, Debt,

impute_with = imp_vars(Time, Age, Expenses),
for quick execution, nbagg lowered
options = list(nbagg = 5, keepX = FALSE)

)

imp_models <- prep(impute_rec, training = credit_tr)

imputed_te <- bake(imp_models, new_data = credit_te, everything())

credit_te[missing_examples,]
imputed_te[missing_examples, names(credit_te)]

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)

End(Not run)

step_impute_knn Impute via k-nearest neighbors

Description

step_impute_knn() creates a specification of a recipe step that will impute missing data using
nearest neighbors.

Usage

step_impute_knn(
recipe,
...,
role = NA,
trained = FALSE,
neighbors = 5,

step_impute_knn 111

impute_with = imp_vars(all_predictors()),
options = list(nthread = 1, eps = 1e-08),
ref_data = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("impute_knn")

)

step_knnimpute(
recipe,
...,
role = NA,
trained = FALSE,
neighbors = 5,
impute_with = imp_vars(all_predictors()),
options = list(nthread = 1, eps = 1e-08),
ref_data = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("impute_knn")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables to be imputed. When used
with imp_vars, these dots indicate which variables are used to predict the miss-
ing data in each variable. See selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

neighbors The number of neighbors.

impute_with A call to imp_vars to specify which variables are used to impute the variables
that can include specific variable names separated by commas or different selec-
tors (see selections()). If a column is included in both lists to be imputed and
to be an imputation predictor, it will be removed from the latter and not used to
impute itself.

options A named list of options to pass to gower::gower_topn(). Available options
are currently nthread and eps.

ref_data A tibble of data that will reflect the data preprocessing done up to the point of
this imputation step. This is NULL until the step is trained by prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).

112 step_impute_knn

Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The step uses the training set to impute any other data sets. The only distance function available is
Gower’s distance which can be used for mixtures of nominal and numeric data.

Once the nearest neighbors are determined, the mode is used to predictor nominal variables and
the mean is used for numeric data. Note that, if the underlying data are integer, the mean will be
converted to an integer too.

Note that if a variable that is to be imputed is also in impute_with, this variable will be ignored.

It is possible that missing values will still occur after imputation if a large majority (or all) of the
imputing variables are also missing.

As of recipes 0.1.16, this function name changed from step_knnimpute() to step_impute_knn().

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, predictors, neighbors ,
and id:

terms character, the selectors or variables selected

predictors character, selected predictors used to impute

neighbors integer, number of neighbors

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• neighbors: # Nearest Neighbors (type: integer, default: 5)

Case weights

The underlying operation does not allow for case weights.

References

Gower, C. (1971) "A general coefficient of similarity and some of its properties," Biometrics, 857-
871.

See Also

Other imputation steps: step_impute_bag(), step_impute_linear(), step_impute_lower(),
step_impute_mean(), step_impute_median(), step_impute_mode(), step_impute_roll()

step_impute_linear 113

Examples

library(recipes)
data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]
biomass_te_whole <- biomass_te

induce some missing data at random
set.seed(9039)
carb_missing <- sample(1:nrow(biomass_te), 3)
nitro_missing <- sample(1:nrow(biomass_te), 3)

biomass_te$carbon[carb_missing] <- NA
biomass_te$nitrogen[nitro_missing] <- NA

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

ratio_recipe <- rec %>%
step_impute_knn(all_predictors(), neighbors = 3)

ratio_recipe2 <- prep(ratio_recipe, training = biomass_tr)
imputed <- bake(ratio_recipe2, biomass_te)

how well did it work?
summary(biomass_te_whole$carbon)
cbind(

before = biomass_te_whole$carbon[carb_missing],
after = imputed$carbon[carb_missing]

)

summary(biomass_te_whole$nitrogen)
cbind(

before = biomass_te_whole$nitrogen[nitro_missing],
after = imputed$nitrogen[nitro_missing]

)

tidy(ratio_recipe, number = 1)
tidy(ratio_recipe2, number = 1)

step_impute_linear Impute numeric variables via a linear model

Description

step_impute_linear() creates a specification of a recipe step that will create linear regression
models to impute missing data.

114 step_impute_linear

Usage

step_impute_linear(
recipe,
...,
role = NA,
trained = FALSE,
impute_with = imp_vars(all_predictors()),
models = NULL,
skip = FALSE,
id = rand_id("impute_linear")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables to be imputed; these vari-
ables must be of type numeric. When used with imp_vars, these dots indi-
cate which variables are used to predict the missing data in each variable. See
selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

impute_with A call to imp_vars to specify which variables are used to impute the variables
that can include specific variable names separated by commas or different selec-
tors (see selections()). If a column is included in both lists to be imputed and
to be an imputation predictor, it will be removed from the latter and not used to
impute itself.

models The lm() objects are stored here once the linear models have been trained by
prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

For each variable requiring imputation, a linear model is fit where the outcome is the variable of
interest and the predictors are any other variables listed in the impute_with formula. Note that if a
variable that is to be imputed is also in impute_with, this variable will be ignored.

The variable(s) to be imputed must be of type numeric. The imputed values will keep the same
type as their original data (i.e, model predictions are coerced to integer as needed).

Since this is a linear regression, the imputation model only uses complete cases for the training set
predictors.

step_impute_linear 115

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, model , and id:

terms character, the selectors or variables selected

model list, list of fitted lm() models

id character, id of this step

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

References

Kuhn, M. and Johnson, K. (2013). Feature Engineering and Selection https://bookdown.org/
max/FES/handling-missing-data.html

See Also

Other imputation steps: step_impute_bag(), step_impute_knn(), step_impute_lower(), step_impute_mean(),
step_impute_median(), step_impute_mode(), step_impute_roll()

Examples

data(ames, package = "modeldata")
set.seed(393)
ames_missing <- ames
ames_missing$Longitude[sample(1:nrow(ames), 200)] <- NA

imputed_ames <-
recipe(Sale_Price ~ ., data = ames_missing) %>%
step_impute_linear(
Longitude,
impute_with = imp_vars(Latitude, Neighborhood, MS_Zoning, Alley)

) %>%
prep(ames_missing)

imputed <-
bake(imputed_ames, new_data = ames_missing) %>%
dplyr::rename(imputed = Longitude) %>%
bind_cols(ames %>% dplyr::select(original = Longitude)) %>%
bind_cols(ames_missing %>% dplyr::select(Longitude)) %>%
dplyr::filter(is.na(Longitude))

https://bookdown.org/max/FES/handling-missing-data.html
https://bookdown.org/max/FES/handling-missing-data.html

116 step_impute_lower

library(ggplot2)
ggplot(imputed, aes(x = original, y = imputed)) +

geom_abline(col = "green") +
geom_point(alpha = .3) +
coord_equal() +
labs(title = "Imputed Values")

step_impute_lower Impute numeric data below the threshold of measurement

Description

step_impute_lower() creates a specification of a recipe step designed for cases where the non-
negative numeric data cannot be measured below a known value. In these cases, one method for
imputing the data is to substitute the truncated value by a random uniform number between zero
and the truncation point.

Usage

step_impute_lower(
recipe,
...,
role = NA,
trained = FALSE,
threshold = NULL,
skip = FALSE,
id = rand_id("impute_lower")

)

step_lowerimpute(
recipe,
...,
role = NA,
trained = FALSE,
threshold = NULL,
skip = FALSE,
id = rand_id("impute_lower")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

step_impute_lower 117

trained A logical to indicate if the quantities for preprocessing have been estimated.

threshold A named numeric vector of lower bounds. This is NULL until computed by
prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

step_impute_lower estimates the variable minimums from the data used in the training argu-
ment of prep.recipe. bake.recipe then simulates a value for any data at the minimum with a
random uniform value between zero and the minimum.

As of recipes 0.1.16, this function name changed from step_lowerimpute() to step_impute_lower().

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value numeric, the estimated value

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other imputation steps: step_impute_bag(), step_impute_knn(), step_impute_linear(), step_impute_mean(),
step_impute_median(), step_impute_mode(), step_impute_roll()

Examples

library(recipes)
data(biomass, package = "modeldata")

Truncate some values to emulate what a lower limit of
the measurement system might look like

biomass$carbon <- ifelse(biomass$carbon > 40, biomass$carbon, 40)
biomass$hydrogen <- ifelse(biomass$hydrogen > 5, biomass$carbon, 5)

118 step_impute_mean

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

impute_rec <- rec %>%
step_impute_lower(carbon, hydrogen)

tidy(impute_rec, number = 1)

impute_rec <- prep(impute_rec, training = biomass_tr)

tidy(impute_rec, number = 1)

transformed_te <- bake(impute_rec, biomass_te)

plot(transformed_te$carbon, biomass_te$carbon,
ylab = "pre-imputation", xlab = "imputed"

)

step_impute_mean Impute numeric data using the mean

Description

step_impute_mean() creates a specification of a recipe step that will substitute missing values of
numeric variables by the training set mean of those variables.

Usage

step_impute_mean(
recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
trim = 0,
skip = FALSE,
id = rand_id("impute_mean")

)

step_meanimpute(
recipe,
...,

step_impute_mean 119

role = NA,
trained = FALSE,
means = NULL,
trim = 0,
skip = FALSE,
id = rand_id("impute_mean")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

means A named numeric vector of means. This is NULL until computed by prep().
Note that, if the original data are integers, the mean will be converted to an
integer to maintain the same data type.

trim The fraction (0 to 0.5) of observations to be trimmed from each end of the vari-
ables before the mean is computed. Values of trim outside that range are taken
as the nearest endpoint.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

step_impute_mean estimates the variable means from the data used in the training argument of
prep.recipe. bake.recipe then applies the new values to new data sets using these averages.

As of recipes 0.1.16, this function name changed from step_meanimpute() to step_impute_mean().

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value numeric, the mean value

id character, id of this step

120 step_impute_mean

Tuning Parameters

This step has 1 tuning parameters:

• trim: Amount of Trimming (type: double, default: 0)

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

Other imputation steps: step_impute_bag(), step_impute_knn(), step_impute_linear(), step_impute_lower(),
step_impute_median(), step_impute_mode(), step_impute_roll()

Examples

data("credit_data", package = "modeldata")

missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))

set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training,]
credit_te <- credit_data[-in_training,]
missing_examples <- c(14, 394, 565)

rec <- recipe(Price ~ ., data = credit_tr)

impute_rec <- rec %>%
step_impute_mean(Income, Assets, Debt)

imp_models <- prep(impute_rec, training = credit_tr)

imputed_te <- bake(imp_models, new_data = credit_te, everything())

credit_te[missing_examples,]
imputed_te[missing_examples, names(credit_te)]

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)

step_impute_median 121

step_impute_median Impute numeric data using the median

Description

step_impute_median() creates a specification of a recipe step that will substitute missing values
of numeric variables by the training set median of those variables.

Usage

step_impute_median(
recipe,
...,
role = NA,
trained = FALSE,
medians = NULL,
skip = FALSE,
id = rand_id("impute_median")

)

step_medianimpute(
recipe,
...,
role = NA,
trained = FALSE,
medians = NULL,
skip = FALSE,
id = rand_id("impute_median")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
medians A named numeric vector of medians. This is NULL until computed by prep().

Note that, if the original data are integers, the median will be converted to an
integer to maintain the same data type.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

122 step_impute_median

Details

step_impute_median estimates the variable medians from the data used in the training argument
of prep.recipe. bake.recipe then applies the new values to new data sets using these medians.

As of recipes 0.1.16, this function name changed from step_medianimpute() to step_impute_median().

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value numeric, the median value

id character, id of this step

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

Other imputation steps: step_impute_bag(), step_impute_knn(), step_impute_linear(), step_impute_lower(),
step_impute_mean(), step_impute_mode(), step_impute_roll()

Examples

data("credit_data", package = "modeldata")

missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))

set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training,]
credit_te <- credit_data[-in_training,]
missing_examples <- c(14, 394, 565)

rec <- recipe(Price ~ ., data = credit_tr)

impute_rec <- rec %>%
step_impute_median(Income, Assets, Debt)

imp_models <- prep(impute_rec, training = credit_tr)

step_impute_mode 123

imputed_te <- bake(imp_models, new_data = credit_te, everything())

credit_te[missing_examples,]
imputed_te[missing_examples, names(credit_te)]

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)

step_impute_mode Impute nominal data using the most common value

Description

step_impute_mode() creates a specification of a recipe step that will substitute missing values of
nominal variables by the training set mode of those variables.

Usage

step_impute_mode(
recipe,
...,
role = NA,
trained = FALSE,
modes = NULL,
ptype = NULL,
skip = FALSE,
id = rand_id("impute_mode")

)

step_modeimpute(
recipe,
...,
role = NA,
trained = FALSE,
modes = NULL,
ptype = NULL,
skip = FALSE,
id = rand_id("impute_mode")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

124 step_impute_mode

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

modes A named character vector of modes. This is NULL until computed by prep().

ptype A data frame prototype to cast new data sets to. This is commonly a 0-row slice
of the training set.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

step_impute_mode estimates the variable modes from the data used in the training argument of
prep.recipe. bake.recipe then applies the new values to new data sets using these values. If the
training set data has more than one mode, one is selected at random.

As of recipes 0.1.16, this function name changed from step_modeimpute() to step_impute_mode().

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value character, the mode value

id character, id of this step

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

Other imputation steps: step_impute_bag(), step_impute_knn(), step_impute_linear(), step_impute_lower(),
step_impute_mean(), step_impute_median(), step_impute_roll()

step_impute_roll 125

Examples

data("credit_data", package = "modeldata")

missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))

set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training,]
credit_te <- credit_data[-in_training,]
missing_examples <- c(14, 394, 565)

rec <- recipe(Price ~ ., data = credit_tr)

impute_rec <- rec %>%
step_impute_mode(Status, Home, Marital)

imp_models <- prep(impute_rec, training = credit_tr)

imputed_te <- bake(imp_models, new_data = credit_te, everything())

table(credit_te$Home, imputed_te$Home, useNA = "always")

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)

step_impute_roll Impute numeric data using a rolling window statistic

Description

step_impute_roll() creates a specification of a recipe step that will substitute missing values of
numeric variables by the measure of location (e.g. median) within a moving window.

Usage

step_impute_roll(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
statistic = median,
window = 5,
skip = FALSE,
id = rand_id("impute_roll")

126 step_impute_roll

)

step_rollimpute(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
statistic = median,
window = 5,
skip = FALSE,
id = rand_id("impute_roll")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables to be imputed; these columns
must be non-integer numerics (i.e., double precision). See selections() for
more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

statistic A function with a single argument for the data to compute the imputed value.
Only complete values will be passed to the function and it should return a double
precision value.

window The size of the window around a point to be imputed. Should be an odd integer
greater than one. See Details below for a discussion of points at the ends of the
series.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

On the tails, the window is shifted towards the ends. For example, for a 5-point window, the
windows for the first four points are 1:5, 1:5, 1:5, and then 2:6.

When missing data are in the window, they are not passed to the function. If all of the data in the
window are missing, a missing value is returned.

The statistics are calculated on the training set values before imputation. This means that if previous
data within the window are missing, their imputed values are not included in the window data used

step_impute_roll 127

for imputation. In other words, each imputation does not know anything about previous imputations
in the series prior to the current point.

As of recipes 0.1.16, this function name changed from step_rollimpute() to step_impute_roll().

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, window , and id:

terms character, the selectors or variables selected

window integer, window size

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• statistic: Rolling Summary Statistic (type: character, default: median)

• window: Window Size (type: integer, default: 5)

Case weights

The underlying operation does not allow for case weights.

See Also

Other imputation steps: step_impute_bag(), step_impute_knn(), step_impute_linear(), step_impute_lower(),
step_impute_mean(), step_impute_median(), step_impute_mode()

Other row operation steps: step_arrange(), step_filter(), step_lag(), step_naomit(), step_sample(),
step_shuffle(), step_slice()

Examples

library(lubridate)

set.seed(145)
example_data <-

data.frame(
day = ymd("2012-06-07") + days(1:12),
x1 = round(runif(12), 2),
x2 = round(runif(12), 2),
x3 = round(runif(12), 2)

)
example_data$x1[c(1, 5, 6)] <- NA
example_data$x2[c(1:4, 10)] <- NA

library(recipes)

128 step_indicate_na

seven_pt <- recipe(~., data = example_data) %>%
update_role(day, new_role = "time_index") %>%
step_impute_roll(all_numeric_predictors(), window = 7) %>%
prep(training = example_data)

The training set:
bake(seven_pt, new_data = NULL)

step_indicate_na Create missing data column indicators

Description

step_indicate_na() creates a specification of a recipe step that will create and append additional
binary columns to the data set to indicate which observations are missing.

Usage

step_indicate_na(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
prefix = "na_ind",
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("indicate_na")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

prefix A character string that will be the prefix to the resulting new variables. Defaults
to "na_ind".

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

step_indicate_na 129

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_integer(), step_novel(), step_num2factor(), step_ordinalscore(),
step_other(), step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(),
step_unorder()

Examples

data("credit_data", package = "modeldata")

missing data per column
purrr::map_dbl(credit_data, function(x) mean(is.na(x)))

set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training,]
credit_te <- credit_data[-in_training,]

rec <- recipe(Price ~ ., data = credit_tr)

impute_rec <- rec %>%
step_indicate_na(Income, Assets, Debt)

imp_models <- prep(impute_rec, training = credit_tr)

130 step_integer

imputed_te <- bake(imp_models, new_data = credit_te, everything())

step_integer Convert values to predefined integers

Description

step_integer() creates a specification of a recipe step that will convert new data into a set of
integers based on the original data values.

Usage

step_integer(
recipe,
...,
role = "predictor",
trained = FALSE,
strict = TRUE,
zero_based = FALSE,
key = NULL,
skip = FALSE,
id = rand_id("integer")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
strict A logical for whether the values should be returned as integers (as opposed to

double).
zero_based A logical for whether the integers should start at zero and new values be ap-

pended as the largest integer.
key A list that contains the information needed to create integer variables for each

variable contained in terms. This is NULL until the step is trained by prep().
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

step_integer 131

Details

step_integer will determine the unique values of each variable from the training set (excluding
missing values), order them, and then assign integers to each value. When baked, each data point
is translated to its corresponding integer or a value of zero for yet unseen data (although see the
zero_based argument above). Missing values propagate.

Factor inputs are ordered by their levels. All others are ordered by sort.

Despite the name, the new values are returned as numeric unless strict = TRUE, which will coerce
the results to integers.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value list, a list column with the conversion key

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_novel(), step_num2factor(), step_ordinalscore(),
step_other(), step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(),
step_unorder()

Examples

data(Sacramento, package = "modeldata")

sacr_tr <- Sacramento[1:100,]
sacr_tr$sqft[1] <- NA

sacr_te <- Sacramento[101:105,]
sacr_te$sqft[1] <- NA
sacr_te$city[1] <- "whoville"
sacr_te$city[2] <- NA

rec <- recipe(type ~ ., data = sacr_tr) %>%
step_integer(all_predictors()) %>%
prep(training = sacr_tr)

132 step_interact

bake(rec, sacr_te, all_predictors())
tidy(rec, number = 1)

step_interact Create interaction variables

Description

step_interact() creates a specification of a recipe step that will create new columns that are
interaction terms between two or more variables.

Usage

step_interact(
recipe,
terms,
role = "predictor",
trained = FALSE,
objects = NULL,
sep = "_x_",
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("interact")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

terms A traditional R formula that contains interaction terms. This can include . and
selectors. See selections() for more details, and consider using tidyselect::starts_with()
when dummy variables have been created.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

objects A list of terms objects for each individual interaction.

sep A character value used to delineate variables in an interaction (e.g. var1_x_var2
instead of the more traditional var1:var2).

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

step_interact 133

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

step_interact can create interactions between variables. It is primarily intended for numeric
data; categorical variables should probably be converted to dummy variables using step_dummy()
prior to being used for interactions.

Unlike other step functions, the terms argument should be a traditional R model formula but should
contain no inline functions (e.g. log). For example, for predictors A, B, and C, a formula such as
~A:B:C can be used to make a three way interaction between the variables. If the formula contains
terms other than interactions (e.g. (A+B+C)^3) only the interaction terms are retained for the design
matrix.

The separator between the variables defaults to "_x_" so that the three way interaction shown pre-
viously would generate a column named A_x_B_x_C. This can be changed using the sep argument.

When dummy variables are created and are used in interactions, selectors can help specify the
interactions succinctly. For example, suppose a factor column X gets converted to dummy variables
x_2, x_3, ..., x_6 using step_dummy(). If you wanted an interaction with numeric column z, you
could create a set of specific interaction effects (e.g. x_2:z + x_3:z and so on) or you could use
starts_with("x_"):z. When prep() evaluates this step, starts_with("x_") resolves to (x_2
+ x_3 + x_4 + x_5 + x_6) so that the formula is now (x_2 + x_3 + x_4 + x_5 + x_6):z and all two-
way interactions are created.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

Examples

data(penguins, package = "modeldata")
penguins <- penguins %>% na.omit()

rec <- recipe(flipper_length_mm ~ ., data = penguins)

134 step_intercept

int_mod_1 <- rec %>%
step_interact(terms = ~ bill_depth_mm:bill_length_mm)

specify all dummy variables succinctly with `starts_with()`
int_mod_2 <- rec %>%

step_dummy(sex, species, island) %>%
step_interact(terms = ~ body_mass_g:starts_with("species"))

int_mod_1 <- prep(int_mod_1, training = penguins)
int_mod_2 <- prep(int_mod_2, training = penguins)

dat_1 <- bake(int_mod_1, penguins)
dat_2 <- bake(int_mod_2, penguins)

names(dat_1)
names(dat_2)

tidy(int_mod_1, number = 1)
tidy(int_mod_2, number = 2)

step_intercept Add intercept (or constant) column

Description

step_intercept() creates a specification of a recipe step that will add an intercept or constant
term in the first column of a data matrix. step_intercept() defaults to predictor role so that it
is by default only called in the bake step. Be careful to avoid unintentional transformations when
calling steps with all_predictors().

Usage

step_intercept(
recipe,
...,
role = "predictor",
trained = FALSE,
name = "intercept",
value = 1L,
skip = FALSE,
id = rand_id("intercept")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

step_intercept 135

... Argument ignored; included for consistency with other step specification func-
tions.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
Again included only for consistency.

name Character name for newly added column

value A numeric constant to fill the intercept column. Defaults to 1L.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)
rec_trans <- recipe(HHV ~ ., data = biomass_tr[, -(1:2)]) %>%

step_intercept(value = 2) %>%
step_scale(carbon)

rec_obj <- prep(rec_trans, training = biomass_tr)

136 step_inverse

with_intercept <- bake(rec_obj, biomass_te)
with_intercept

step_inverse Inverse transformation

Description

step_inverse() creates a specification of a recipe step that will inverse transform the data.

Usage

step_inverse(
recipe,
...,
role = NA,
offset = 0,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("inverse")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

offset An optional value to add to the data prior to logging (to avoid 1/0).

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

step_invlogit 137

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_hyperbolic(), step_invlogit(), step_logit(), step_log(), step_mutate(), step_ns(),
step_percentile(), step_poly(), step_relu(), step_sqrt()

Examples

set.seed(313)
examples <- matrix(runif(40), ncol = 2)
examples <- data.frame(examples)

rec <- recipe(~ X1 + X2, data = examples)

inverse_trans <- rec %>%
step_inverse(all_numeric_predictors())

inverse_obj <- prep(inverse_trans, training = examples)

transformed_te <- bake(inverse_obj, examples)
plot(examples$X1, transformed_te$X1)

tidy(inverse_trans, number = 1)
tidy(inverse_obj, number = 1)

step_invlogit Inverse logit transformation

Description

step_invlogit() creates a specification of a recipe step that will transform the data from real
values to be between zero and one.

138 step_invlogit

Usage

step_invlogit(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("invlogit")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The inverse logit transformation takes values on the real line and translates them to be between zero
and one using the function f(x) = 1/(1+exp(-x)).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

step_isomap 139

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_hyperbolic(), step_inverse(), step_logit(), step_log(), step_mutate(), step_ns(),
step_percentile(), step_poly(), step_relu(), step_sqrt()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

ilogit_trans <- rec %>%
step_center(carbon, hydrogen) %>%
step_scale(carbon, hydrogen) %>%
step_invlogit(carbon, hydrogen)

ilogit_obj <- prep(ilogit_trans, training = biomass_tr)

transformed_te <- bake(ilogit_obj, biomass_te)
plot(biomass_te$carbon, transformed_te$carbon)

step_isomap Isomap embedding

Description

step_isomap() creates a specification of a recipe step that uses multidimensional scaling to convert
numeric data into one or more new dimensions.

Usage

step_isomap(
recipe,
...,
role = "predictor",
trained = FALSE,
num_terms = 5,
neighbors = 50,
options = list(.mute = c("message", "output")),
res = NULL,

140 step_isomap

columns = NULL,
prefix = "Isomap",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("isomap")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_terms The number of isomap dimensions to retain as new predictors. If num_terms
is greater than the number of columns or the number of possible dimensions, a
smaller value will be used.

neighbors The number of neighbors.

options A list of options to dimRed::Isomap().

res The dimRed::Isomap() object is stored here once this preprocessing step has
be trained by prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Isomap is a form of multidimensional scaling (MDS). MDS methods try to find a reduced set of
dimensions such that the geometric distances between the original data points are preserved. This
version of MDS uses nearest neighbors in the data as a method for increasing the fidelity of the new
dimensions to the original data values.

This step requires the dimRed, RSpectra, igraph, and RANN packages. If not installed, the step
will stop with a note about installing these packages.

step_isomap 141

It is advisable to center and scale the variables prior to running Isomap (step_center and step_scale
can be used for this purpose).

The argument num_terms controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_terms < 10, their names will be Isomap1 - Isomap9. If num_terms
= 101, the names would be Isomap001 - Isomap101.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms , and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• num_terms: # Model Terms (type: integer, default: 5)

• neighbors: # Nearest Neighbors (type: integer, default: 50)

Case weights

The underlying operation does not allow for case weights.

References

De Silva, V., and Tenenbaum, J. B. (2003). Global versus local methods in nonlinear dimensionality
reduction. Advances in Neural Information Processing Systems. 721-728.

dimRed, a framework for dimensionality reduction, https://github.com/gdkrmr

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_kpca_poly(), step_kpca_rbf(), step_kpca(), step_mutate_at(),
step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

142 step_kpca

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

im_trans <- rec %>%
step_YeoJohnson(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_isomap(all_numeric_predictors(), neighbors = 100, num_terms = 2)

im_estimates <- prep(im_trans, training = biomass_tr)

im_te <- bake(im_estimates, biomass_te)

rng <- extendrange(c(im_te$Isomap1, im_te$Isomap2))
plot(im_te$Isomap1, im_te$Isomap2,

xlim = rng, ylim = rng
)

tidy(im_trans, number = 3)
tidy(im_estimates, number = 3)

step_kpca Kernel PCA signal extraction

Description

step_kpca() creates a specification of a recipe step that will convert numeric data into one or more
principal components using a kernel basis expansion.

Usage

step_kpca(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
res = NULL,
columns = NULL,
options = list(kernel = "rbfdot", kpar = list(sigma = 0.2)),
prefix = "kPC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("kpca")

)

step_kpca 143

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

res An S4 kernlab::kpca() object is stored here once this preprocessing step has
be trained by prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

options A list of options to kernlab::kpca(). Defaults are set for the arguments kernel
and kpar but others can be passed in. Note that the arguments x and features
should not be passed here (or at all).

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

When performing kPCA with step_kpca(), you must choose the kernel function (and any impor-
tant kernel parameters). This step uses the kernlab package; the reference below discusses the
types of kernels available and their parameter(s). These specifications can be made in the kernel
and kpar slots of the options argument to step_kpca(). Consider using step_kpca_rbf() for a
radial basis function kernel or step_kpca_poly() for a polynomial kernel.

Kernel principal component analysis (kPCA) is an extension of a PCA analysis that conducts the
calculations in a broader dimensionality defined by a kernel function. For example, if a quadratic
kernel function were used, each variable would be represented by its original values as well as its
square. This nonlinear mapping is used during the PCA analysis and can potentially help find better
representations of the original data.

This step requires the kernlab package. If not installed, the step will stop with a prompt about
installing the package.

144 step_kpca

As with ordinary PCA, it is important to center and scale the variables prior to computing PCA
components (step_normalize() can be used for this purpose).

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be kPC1 - kPC9. If num_comp = 101,
the names would be kPC1 - kPC101.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

tidy() results

When you tidy() this step, a tibble with column terms (the selectors or variables selected) is
returned.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

References

Scholkopf, B., Smola, A., and Muller, K. (1997). Kernel principal component analysis. Lecture
Notes in Computer Science, 1327, 583-588.

Karatzoglou, K., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab - An S4 package for kernel
methods in R. Journal of Statistical Software, 11(1), 1-20.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_mutate_at(),
step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

library(ggplot2)
data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

step_kpca_poly 145

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

kpca_trans <- rec %>%
step_YeoJohnson(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_kpca(all_numeric_predictors())

kpca_estimates <- prep(kpca_trans, training = biomass_tr)

kpca_te <- bake(kpca_estimates, biomass_te)

ggplot(kpca_te, aes(x = kPC1, y = kPC2)) +
geom_point() +
coord_equal()

tidy(kpca_trans, number = 3)
tidy(kpca_estimates, number = 3)

step_kpca_poly Polynomial kernel PCA signal extraction

Description

step_kpca_poly() creates a specification of a recipe step that will convert numeric data into one
or more principal components using a polynomial kernel basis expansion.

Usage

step_kpca_poly(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
res = NULL,
columns = NULL,
degree = 2,
scale_factor = 1,
offset = 1,
prefix = "kPC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("kpca_poly")

)

146 step_kpca_poly

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

res An S4 kernlab::kpca() object is stored here once this preprocessing step has
be trained by prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

degree, scale_factor, offset

Numeric values for the polynomial kernel function.

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Kernel principal component analysis (kPCA) is an extension of a PCA analysis that conducts the
calculations in a broader dimensionality defined by a kernel function. For example, if a quadratic
kernel function were used, each variable would be represented by its original values as well as its
square. This nonlinear mapping is used during the PCA analysis and can potentially help find better
representations of the original data.

This step requires the kernlab package. If not installed, the step will stop with a prompt about
installing the package.

As with ordinary PCA, it is important to center and scale the variables prior to computing PCA
components (step_normalize() can be used for this purpose).

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be kPC1 - kPC9. If num_comp = 101,
the names would be kPC1 - kPC101.

step_kpca_poly 147

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

tidy() results

When you tidy() this step, a tibble with column terms (the selectors or variables selected) is
returned.

Tuning Parameters

This step has 4 tuning parameters:

• num_comp: # Components (type: integer, default: 5)

• degree: Polynomial Degree (type: double, default: 2)

• scale_factor: Scale Factor (type: double, default: 1)

• offset: Offset (type: double, default: 1)

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

References

Scholkopf, B., Smola, A., and Muller, K. (1997). Kernel principal component analysis. Lecture
Notes in Computer Science, 1327, 583-588.

Karatzoglou, K., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab - An S4 package for kernel
methods in R. Journal of Statistical Software, 11(1), 1-20.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_isomap(), step_kpca_rbf(), step_kpca(), step_mutate_at(),
step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

library(ggplot2)
data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

148 step_kpca_rbf

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

kpca_trans <- rec %>%
step_YeoJohnson(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_kpca_poly(all_numeric_predictors())

kpca_estimates <- prep(kpca_trans, training = biomass_tr)

kpca_te <- bake(kpca_estimates, biomass_te)

ggplot(kpca_te, aes(x = kPC1, y = kPC2)) +
geom_point() +
coord_equal()

tidy(kpca_trans, number = 3)
tidy(kpca_estimates, number = 3)

step_kpca_rbf Radial basis function kernel PCA signal extraction

Description

step_kpca_rbf() creates a specification of a recipe step that will convert numeric data into one or
more principal components using a radial basis function kernel basis expansion.

Usage

step_kpca_rbf(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
res = NULL,
columns = NULL,
sigma = 0.2,
prefix = "kPC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("kpca_rbf")

)

step_kpca_rbf 149

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

res An S4 kernlab::kpca() object is stored here once this preprocessing step has
be trained by prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

sigma A numeric value for the radial basis function parameter.

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Kernel principal component analysis (kPCA) is an extension of a PCA analysis that conducts the
calculations in a broader dimensionality defined by a kernel function. For example, if a quadratic
kernel function were used, each variable would be represented by its original values as well as its
square. This nonlinear mapping is used during the PCA analysis and can potentially help find better
representations of the original data.

This step requires the kernlab package. If not installed, the step will stop with a prompt about
installing the package.

As with ordinary PCA, it is important to center and scale the variables prior to computing PCA
components (step_normalize() can be used for this purpose).

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be kPC1 - kPC9. If num_comp = 101,
the names would be kPC1 - kPC101.

150 step_kpca_rbf

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

tidy() results

When you tidy() this step, a tibble with column terms (the selectors or variables selected) is
returned.

Tuning Parameters

This step has 2 tuning parameters:

• num_comp: # Components (type: integer, default: 5)

• sigma: Radial Basis Function sigma (type: double, default: 0.2)

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

References

Scholkopf, B., Smola, A., and Muller, K. (1997). Kernel principal component analysis. Lecture
Notes in Computer Science, 1327, 583-588.

Karatzoglou, K., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab - An S4 package for kernel
methods in R. Journal of Statistical Software, 11(1), 1-20.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_isomap(), step_kpca_poly(), step_kpca(), step_mutate_at(),
step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

library(ggplot2)
data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,

step_lag 151

data = biomass_tr
)

kpca_trans <- rec %>%
step_YeoJohnson(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_kpca_rbf(all_numeric_predictors())

kpca_estimates <- prep(kpca_trans, training = biomass_tr)

kpca_te <- bake(kpca_estimates, biomass_te)

ggplot(kpca_te, aes(x = kPC1, y = kPC2)) +
geom_point() +
coord_equal()

tidy(kpca_trans, number = 3)
tidy(kpca_estimates, number = 3)

step_lag Create a lagged predictor

Description

step_lag() creates a specification of a recipe step that will add new columns of lagged data.
Lagged data will by default include NA values where the lag was induced. These can be removed
with step_naomit(), or you may specify an alternative filler value with the default argument.

Usage

step_lag(
recipe,
...,
role = "predictor",
trained = FALSE,
lag = 1,
prefix = "lag_",
default = NA,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("lag")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

152 step_lag

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

lag A vector of positive integers. Each specified column will be lagged for each
value in the vector.

prefix A prefix for generated column names, default to "lag_".

default Passed to dplyr::lag, determines what fills empty rows left by lagging (de-
faults to NA).

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The step assumes that the data are already in the proper sequential order for lagging.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other row operation steps: step_arrange(), step_filter(), step_impute_roll(), step_naomit(),
step_sample(), step_shuffle(), step_slice()

step_lincomb 153

Examples

n <- 10
start <- as.Date("1999/01/01")
end <- as.Date("1999/01/10")

df <- data.frame(
x = runif(n),
index = 1:n,
day = seq(start, end, by = "day")

)

recipe(~., data = df) %>%
step_lag(index, day, lag = 2:3) %>%
prep(df) %>%
bake(df)

step_lincomb Linear combination filter

Description

step_lincomb() creates a specification of a recipe step that will potentially remove numeric vari-
ables that have exact linear combinations between them.

Usage

step_lincomb(
recipe,
...,
role = NA,
trained = FALSE,
max_steps = 5,
removals = NULL,
skip = FALSE,
id = rand_id("lincomb")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

max_steps The number of times to apply the algorithm.

154 step_lincomb

removals A character string that contains the names of columns that should be removed.
These values are not determined until prep() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

This step can potentially remove columns from the data set. This may cause issues for subsequent
steps in your recipe if the missing columns are specifically referenced by name. To avoid this, see
the advice in the Tips for saving recipes and filtering columns section of selections.

This step finds exact linear combinations between two or more variables and recommends which
column(s) should be removed to resolve the issue. This algorithm may need to be applied multiple
times (as defined by max_steps).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

Author(s)

Max Kuhn, Kirk Mettler, and Jed Wing

See Also

Other variable filter steps: step_corr(), step_filter_missing(), step_nzv(), step_rm(),
step_select(), step_zv()

Examples

data(biomass, package = "modeldata")

biomass$new_1 <- with(
biomass,

step_log 155

.1 * carbon - .2 * hydrogen + .6 * sulfur
)
biomass$new_2 <- with(

biomass,
.5 * carbon - .2 * oxygen + .6 * nitrogen

)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen +
sulfur + new_1 + new_2,

data = biomass_tr
)

lincomb_filter <- rec %>%
step_lincomb(all_numeric_predictors())

lincomb_filter_trained <- prep(lincomb_filter, training = biomass_tr)
lincomb_filter_trained

tidy(lincomb_filter, number = 1)
tidy(lincomb_filter_trained, number = 1)

step_log Logarithmic transformation

Description

step_log() creates a specification of a recipe step that will log transform data.

Usage

step_log(
recipe,
...,
role = NA,
trained = FALSE,
base = exp(1),
offset = 0,
columns = NULL,
skip = FALSE,
signed = FALSE,
id = rand_id("log")

)

156 step_log

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

base A numeric value for the base.

offset An optional value to add to the data prior to logging (to avoid log(0)).

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

signed A logical indicating whether to take the signed log. This is sign(x) * log(abs(x))
when abs(x) => 1 or 0 if abs(x) < 1. If TRUE the offset argument will be
ignored.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, base , and id:

terms character, the selectors or variables selected

base numeric, value for the base

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_hyperbolic(), step_inverse(), step_invlogit(), step_logit(), step_mutate(), step_ns(),
step_percentile(), step_poly(), step_relu(), step_sqrt()

step_logit 157

Examples

set.seed(313)
examples <- matrix(exp(rnorm(40)), ncol = 2)
examples <- as.data.frame(examples)

rec <- recipe(~ V1 + V2, data = examples)

log_trans <- rec %>%
step_log(all_numeric_predictors())

log_obj <- prep(log_trans, training = examples)

transformed_te <- bake(log_obj, examples)
plot(examples$V1, transformed_te$V1)

tidy(log_trans, number = 1)
tidy(log_obj, number = 1)

using the signed argument with negative values

examples2 <- matrix(rnorm(40, sd = 5), ncol = 2)
examples2 <- as.data.frame(examples2)

recipe(~ V1 + V2, data = examples2) %>%
step_log(all_numeric_predictors()) %>%
prep(training = examples2) %>%
bake(examples2)

recipe(~ V1 + V2, data = examples2) %>%
step_log(all_numeric_predictors(), signed = TRUE) %>%
prep(training = examples2) %>%
bake(examples2)

step_logit Logit transformation

Description

step_logit() creates a specification of a recipe step that will logit transform the data.

Usage

step_logit(
recipe,
...,
offset = 0,
role = NA,
trained = FALSE,
columns = NULL,

158 step_logit

skip = FALSE,
id = rand_id("logit")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

offset A numeric value to modify values of the columns that are either one or zero.
They are modified to be x - offset or offset, respectively.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The logit transformation takes values between zero and one and translates them to be on the real
line using the function f(p) = log(p/(1-p)).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_hyperbolic(), step_inverse(), step_invlogit(), step_log(), step_mutate(), step_ns(),
step_percentile(), step_poly(), step_relu(), step_sqrt()

step_mutate 159

Examples

set.seed(313)
examples <- matrix(runif(40), ncol = 2)
examples <- data.frame(examples)

rec <- recipe(~ X1 + X2, data = examples)

logit_trans <- rec %>%
step_logit(all_numeric_predictors())

logit_obj <- prep(logit_trans, training = examples)

transformed_te <- bake(logit_obj, examples)
plot(examples$X1, transformed_te$X1)

tidy(logit_trans, number = 1)
tidy(logit_obj, number = 1)

step_mutate Add new variables using dplyr

Description

step_mutate() creates a specification of a recipe step that will add variables using dplyr::mutate().

Usage

step_mutate(
recipe,
...,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("mutate")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Name-value pairs of expressions. See dplyr::mutate().

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs Quosure(s) of

160 step_mutate

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

When using this flexible step, use extra care to avoid data leakage in your preprocessing. Consider,
for example, the transformation x = w > mean(w). When applied to new data or testing data, this
transformation would use the mean of w from the new data, not the mean of w from the training data.

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!) to embed the value of the object in the
expression (to be portable between sessions). See the examples.

If a preceding step removes a column that is selected by name in step_mutate(), the recipe will
error when being estimated with prep().

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value character, expression passed to mutate()

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_hyperbolic(), step_inverse(), step_invlogit(), step_logit(), step_log(), step_ns(),
step_percentile(), step_poly(), step_relu(), step_sqrt()

Other dplyr steps: step_arrange(), step_filter(), step_mutate_at(), step_rename_at(),
step_rename(), step_sample(), step_select(), step_slice()

Examples

rec <-
recipe(~., data = iris) %>%
step_mutate(
dbl_width = Sepal.Width * 2,

step_mutate_at 161

half_length = Sepal.Length / 2
)

prepped <- prep(rec, training = iris %>% slice(1:75))

library(dplyr)

dplyr_train <-
iris %>%
as_tibble() %>%
slice(1:75) %>%
mutate(

dbl_width = Sepal.Width * 2,
half_length = Sepal.Length / 2

)

rec_train <- bake(prepped, new_data = NULL)
all.equal(dplyr_train, rec_train)

dplyr_test <-
iris %>%
as_tibble() %>%
slice(76:150) %>%
mutate(

dbl_width = Sepal.Width * 2,
half_length = Sepal.Length / 2

)
rec_test <- bake(prepped, iris %>% slice(76:150))
all.equal(dplyr_test, rec_test)

Embedding objects:
const <- 1.414

qq_rec <-
recipe(~., data = iris) %>%
step_mutate(

bad_approach = Sepal.Width * const,
best_approach = Sepal.Width * !!const

) %>%
prep(training = iris)

bake(qq_rec, new_data = NULL, contains("appro")) %>% slice(1:4)

The difference:
tidy(qq_rec, number = 1)

step_mutate_at Mutate multiple columns using dplyr

162 step_mutate_at

Description

step_mutate_at() creates a specification of a recipe step that will modify the selected variables
using a common function via dplyr::mutate_at().

Usage

step_mutate_at(
recipe,
...,
fn,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("mutate_at")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

fn A function fun, a quosure style lambda ‘~ fun(.)“ or a list of either form. (see
dplyr::mutate_at()). Note that this argument must be named.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs A vector of column names populated by prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

When using this flexible step, use extra care to avoid data leakage in your preprocessing. Consider,
for example, the transformation x = w > mean(w). When applied to new data or testing data, this
transformation would use the mean of w from the new data, not the mean of w from the training data.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

step_naomit 163

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(),
step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Other dplyr steps: step_arrange(), step_filter(), step_mutate(), step_rename_at(), step_rename(),
step_sample(), step_select(), step_slice()

Examples

library(dplyr)
recipe(~., data = iris) %>%

step_mutate_at(contains("Length"), fn = ~ 1 / .) %>%
prep() %>%
bake(new_data = NULL) %>%
slice(1:10)

recipe(~., data = iris) %>%
leads to more columns being created.
step_mutate_at(contains("Length"), fn = list(log = log, sqrt = sqrt)) %>%
prep() %>%
bake(new_data = NULL) %>%
slice(1:10)

step_naomit Remove observations with missing values

Description

step_naomit() creates a specification of a recipe step that will remove observations (rows of data)
if they contain NA or NaN values.

164 step_naomit

Usage

step_naomit(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = TRUE,
id = rand_id("naomit")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Unused, include for consistency with other steps.

trained A logical to indicate if the quantities for preprocessing have been estimated.
Again included for consistency.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Row Filtering

This step can entirely remove observations (rows of data), which can have unintended and/or prob-
lematic consequences when applying the step to new data later via bake(). Consider whether skip
= TRUE or skip = FALSE is more appropriate in any given use case. In most instances that affect the
rows of the data being predicted, this step probably should not be applied at all; instead, execute
operations like this outside and before starting a preprocessing recipe().

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

step_nnmf 165

Case weights

The underlying operation does not allow for case weights.

See Also

Other row operation steps: step_arrange(), step_filter(), step_impute_roll(), step_lag(),
step_sample(), step_shuffle(), step_slice()

Examples

recipe(Ozone ~ ., data = airquality) %>%
step_naomit(Solar.R) %>%
prep(airquality, verbose = FALSE) %>%
bake(new_data = NULL)

step_nnmf Non-negative matrix factorization signal extraction

Description

step_nnmf() creates a specification of a recipe step that will convert numeric data into one or more
non-negative components.

[Deprecated]

Please use step_nnmf_sparse() instead of this step function.

Usage

step_nnmf(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 2,
num_run = 30,
options = list(),
res = NULL,
columns = NULL,
prefix = "NNMF",
seed = sample.int(10^5, 1),
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("nnmf")

)

166 step_nnmf

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

num_run A positive integer for the number of computations runs used to obtain a consen-
sus projection.

options A list of options to nmf() in the NMF package by way of the NNMF() function
in the dimRed package. Note that the arguments data and ndim should not
be passed here, and that NMF’s parallel processing is turned off in favor of
resample-level parallelization.

res The NNMF() object is stored here once this preprocessing step has been trained
by prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

seed An integer that will be used to set the seed in isolation when computing the
factorization.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Non-negative matrix factorization computes latent components that have non-negative values and
take into account that the original data have non-negative values.

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be NNMF1 - NNMF9. If num_comp = 101,
the names would be NNMF1 - NNMF101.

step_nnmf 167

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, component , and id:

terms character, the selectors or variables selected

value numeric, value of loading

component character, name of component

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• num_comp: # Components (type: integer, default: 2)

• num_run: Number of Computation Runs (type: integer, default: 30)

Case weights

The underlying operation does not allow for case weights.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(),
step_mutate_at(), step_nnmf_sparse(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

data(biomass, package = "modeldata")

rec <- recipe(HHV ~ ., data = biomass) %>%
update_role(sample, new_role = "id var") %>%
update_role(dataset, new_role = "split variable") %>%
step_nnmf(all_numeric_predictors(), num_comp = 2, seed = 473, num_run = 2) %>%
prep(training = biomass)
#
bake(rec, new_data = NULL)
#
library(ggplot2)
bake(rec, new_data = NULL) %>%
ggplot(aes(x = NNMF2, y = NNMF1, col = HHV)) + geom_point()

168 step_nnmf_sparse

step_nnmf_sparse Non-negative matrix factorization signal extraction with lasso penal-
ization

Description

step_nnmf_sparse() creates a specification of a recipe step that will convert numeric data into
one or more non-negative components.

Usage

step_nnmf_sparse(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 2,
penalty = 0.001,
options = list(),
res = NULL,
prefix = "NNMF",
seed = sample.int(10^5, 1),
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("nnmf_sparse")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

penalty A non-negative number used as a penalization factor for the loadings. Values
are usually between zero and one.

options A list of options to nmf() in the RcppML package. That package has a separate
function setRcppMLthreads() that controls the amount of internal paralleliza-
tion. Note that the argument A, k, L1, and seed should not be passed here.

step_nnmf_sparse 169

res A matrix of loadings is stored here, along with the names of the original predic-
tors, once this preprocessing step has been trained by prep().

prefix A character string for the prefix of the resulting new variables. See notes below.

seed An integer that will be used to set the seed in isolation when computing the
factorization.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Non-negative matrix factorization computes latent components that have non-negative values and
take into account that the original data have non-negative values.

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be NNMF1 - NNMF9. If num_comp = 101,
the names would be NNMF1 - NNMF101.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, component , and id:

terms character, the selectors or variables selected

value numeric, value of loading

component character, name of component

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• num_comp: # Components (type: integer, default: 2)

• penalty: Amount of Regularization (type: double, default: 0.001)

Case weights

The underlying operation does not allow for case weights.

170 step_normalize

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(),
step_mutate_at(), step_nnmf(), step_pca(), step_pls(), step_ratio(), step_spatialsign()

Examples

if (rlang::is_installed(c("modeldata", "RcppML", "ggplot2"))) {
library(Matrix)
data(biomass, package = "modeldata")

rec <- recipe(HHV ~ ., data = biomass) %>%
update_role(sample, new_role = "id var") %>%
update_role(dataset, new_role = "split variable") %>%
step_nnmf_sparse(
all_numeric_predictors(),
num_comp = 2,
seed = 473,
penalty = 0.01

) %>%
prep(training = biomass)

bake(rec, new_data = NULL)

library(ggplot2)
bake(rec, new_data = NULL) %>%

ggplot(aes(x = NNMF2, y = NNMF1, col = HHV)) +
geom_point()

}

step_normalize Center and scale numeric data

Description

step_normalize() creates a specification of a recipe step that will normalize numeric data to have
a standard deviation of one and a mean of zero.

Usage

step_normalize(
recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
sds = NULL,

step_normalize 171

na_rm = TRUE,
skip = FALSE,
id = rand_id("normalize")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

means A named numeric vector of means. This is NULL until computed by prep().

sds A named numeric vector of standard deviations This is NULL until computed by
prep().

na_rm A logical value indicating whether NA values should be removed when comput-
ing the standard deviation and mean.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Centering data means that the average of a variable is subtracted from the data. Scaling data
means that the standard deviation of a variable is divided out of the data. step_normalize es-
timates the variable standard deviations and means from the data used in the training argument of
prep.recipe. bake.recipe then applies the scaling to new data sets using these estimates.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, statistic, value , and id:

terms character, the selectors or variables selected

statistic character, name of statistic ("mean" or "sd")

value numeric, value of the statistic

id character, id of this step

172 step_novel

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

Other normalization steps: step_center(), step_range(), step_scale()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

norm_trans <- rec %>%
step_normalize(carbon, hydrogen)

norm_obj <- prep(norm_trans, training = biomass_tr)

transformed_te <- bake(norm_obj, biomass_te)

biomass_te[1:10, names(transformed_te)]
transformed_te
tidy(norm_trans, number = 1)
tidy(norm_obj, number = 1)

To keep the original variables in the output, use `step_mutate_at`:
norm_keep_orig <- rec %>%

step_mutate_at(all_numeric_predictors(), fn = list(orig = ~.)) %>%
step_normalize(-contains("orig"), -all_outcomes())

keep_orig_obj <- prep(norm_keep_orig, training = biomass_tr)
keep_orig_te <- bake(keep_orig_obj, biomass_te)
keep_orig_te

step_novel Simple value assignments for novel factor levels

step_novel 173

Description

step_novel() creates a specification of a recipe step that will assign a previously unseen factor
level to "new".

Usage

step_novel(
recipe,
...,
role = NA,
trained = FALSE,
new_level = "new",
objects = NULL,
skip = FALSE,
id = rand_id("novel")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

new_level A single character value that will be assigned to new factor levels.

objects A list of objects that contain the information on factor levels that will be deter-
mined by prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The selected variables are adjusted to have a new level (given by new_level) that is placed in the
last position. During preparation there will be no data points associated with this new level since all
of the data have been seen.

Note that if the original columns are character, they will be converted to factors by this step.

Missing values will remain missing.

If new_level is already in the data given to prep, an error is thrown.

When fitting a model that can deal with new factor levels, consider using workflows::add_recipe()
with allow_novel_levels = TRUE set in hardhat::default_recipe_blueprint(). This will al-
low your model to handle new levels at prediction time, instead of throwing warnings or errors.

174 step_novel

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value character, the factor levels that are used for the new value

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

dummy_names()

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_integer(), step_num2factor(), step_ordinalscore(),
step_other(), step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(),
step_unorder()

Examples

data(Sacramento, package = "modeldata")

sacr_tr <- Sacramento[1:800,]
sacr_te <- Sacramento[801:806,]
sacr_te$city[3] <- "beeptown"
sacr_te$city[4] <- "boopville"

rec <- recipe(~ city + zip, data = sacr_tr)

rec <- rec %>%
step_novel(city, zip)

rec <- prep(rec, training = sacr_tr)

processed <- bake(rec, sacr_te)
tibble(old = sacr_te$city, new = processed$city)

tidy(rec, number = 1)

step_ns 175

step_ns Natural spline basis functions

Description

step_ns() creates a specification of a recipe step that will create new columns that are basis ex-
pansions of variables using natural splines.

Usage

step_ns(
recipe,
...,
role = "predictor",
trained = FALSE,
objects = NULL,
deg_free = 2,
options = list(),
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("ns")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
objects A list of splines::ns() objects created once the step has been trained.
deg_free The degrees of freedom for the natural spline. As the degrees of freedom for

a natural spline increase, more flexible and complex curves can be generated.
When a single degree of freedom is used, the result is a rescaled version of the
original data.

options A list of options for splines::ns() which should not include x or df.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

176 step_ns

id A character string that is unique to this step to identify it.

Details

step_ns can create new features from a single variable that enable fitting routines to model this
variable in a nonlinear manner. The extent of the possible nonlinearity is determined by the df
or knot arguments of splines::ns(). The original variables are removed from the data and new
columns are added. The naming convention for the new variables is varname_ns_1 and so on.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• deg_free: Spline Degrees of Freedom (type: integer, default: 2)

Case weights

The underlying operation does not allow for case weights.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_hyperbolic(), step_inverse(), step_invlogit(), step_logit(), step_log(), step_mutate(),
step_percentile(), step_poly(), step_relu(), step_sqrt()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

with_splines <- rec %>%
step_ns(carbon, hydrogen)

step_num2factor 177

with_splines <- prep(with_splines, training = biomass_tr)

expanded <- bake(with_splines, biomass_te)
expanded

step_num2factor Convert numbers to factors

Description

step_num2factor() will convert one or more numeric vectors to factors (ordered or unordered).
This can be useful when categories are encoded as integers.

Usage

step_num2factor(
recipe,
...,
role = NA,
transform = function(x) x,
trained = FALSE,
levels,
ordered = FALSE,
skip = FALSE,
id = rand_id("num2factor")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

transform A function taking a single argument x that can be used to modify the numeric
values prior to determining the levels (perhaps using base::as.integer()).
The output of a function should be an integer that corresponds to the value of
levels that should be assigned. If not an integer, the value will be converted to
an integer during bake().

trained A logical to indicate if the quantities for preprocessing have been estimated.

levels A character vector of values that will be used as the levels. These are the nu-
meric data converted to character and ordered. This is modified once prep() is
executed.

ordered A single logical value; should the factor(s) be ordered?

178 step_num2factor

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, ordered , and id:

terms character, the selectors or variables selected

ordered logical, were the factor(s) ordered

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_integer(), step_novel(), step_ordinalscore(),
step_other(), step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(),
step_unorder()

Examples

library(dplyr)
data(attrition, package = "modeldata")

attrition %>%
group_by(StockOptionLevel) %>%
count()

amnt <- c("nothin", "meh", "some", "copious")

rec <-
recipe(Attrition ~ StockOptionLevel, data = attrition) %>%
step_num2factor(
StockOptionLevel,
transform = function(x) x + 1,
levels = amnt

)

step_nzv 179

encoded <- rec %>%
prep() %>%
bake(new_data = NULL)

table(encoded$StockOptionLevel, attrition$StockOptionLevel)

an example for binning

binner <- function(x) {
x <- cut(x, breaks = 1000 * c(0, 5, 10, 20), include.lowest = TRUE)
now return the group number
as.numeric(x)

}

inc <- c("low", "med", "high")

rec <-
recipe(Attrition ~ MonthlyIncome, data = attrition) %>%
step_num2factor(
MonthlyIncome,
transform = binner,
levels = inc,
ordered = TRUE

) %>%
prep()

encoded <- bake(rec, new_data = NULL)

table(encoded$MonthlyIncome, binner(attrition$MonthlyIncome))

What happens when a value is out of range?
ceo <- attrition %>%

slice(1) %>%
mutate(MonthlyIncome = 10^10)

bake(rec, ceo)

step_nzv Near-zero variance filter

Description

step_nzv() creates a specification of a recipe step that will potentially remove variables that are
highly sparse and unbalanced.

180 step_nzv

Usage

step_nzv(
recipe,
...,
role = NA,
trained = FALSE,
freq_cut = 95/5,
unique_cut = 10,
options = list(freq_cut = 95/5, unique_cut = 10),
removals = NULL,
skip = FALSE,
id = rand_id("nzv")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.
freq_cut, unique_cut

Numeric parameters for the filtering process. See the Details section below.

options A list of options for the filter (see Details below).

removals A character string that contains the names of columns that should be removed.
These values are not determined until prep() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

This step can potentially remove columns from the data set. This may cause issues for subsequent
steps in your recipe if the missing columns are specifically referenced by name. To avoid this, see
the advice in the Tips for saving recipes and filtering columns section of selections.

This step diagnoses predictors that have one unique value (i.e. are zero variance predictors) or
predictors that have both of the following characteristics:

1. they have very few unique values relative to the number of samples and

2. the ratio of the frequency of the most common value to the frequency of the second most
common value is large.

step_nzv 181

For example, an example of near-zero variance predictor is one that, for 1000 samples, has two
distinct values and 999 of them are a single value.

To be flagged, first, the frequency of the most prevalent value over the second most frequent value
(called the "frequency ratio") must be above freq_cut. Secondly, the "percent of unique values,"
the number of unique values divided by the total number of samples (times 100), must also be below
unique_cut.

In the above example, the frequency ratio is 999 and the unique value percent is 0.2%.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• freq_cut: Frequency Distribution Ratio (type: double, default: 95/5)

• unique_cut: % Unique Values (type: double, default: 10)

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

Other variable filter steps: step_corr(), step_filter_missing(), step_lincomb(), step_rm(),
step_select(), step_zv()

Examples

data(biomass, package = "modeldata")

biomass$sparse <- c(1, rep(0, nrow(biomass) - 1))

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen +
nitrogen + sulfur + sparse,

data = biomass_tr

182 step_ordinalscore

)

nzv_filter <- rec %>%
step_nzv(all_predictors())

filter_obj <- prep(nzv_filter, training = biomass_tr)

filtered_te <- bake(filter_obj, biomass_te)
any(names(filtered_te) == "sparse")

tidy(nzv_filter, number = 1)
tidy(filter_obj, number = 1)

step_ordinalscore Convert ordinal factors to numeric scores

Description

step_ordinalscore() creates a specification of a recipe step that will convert ordinal factor vari-
ables into numeric scores.

Usage

step_ordinalscore(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
convert = as.numeric,
skip = FALSE,
id = rand_id("ordinalscore")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

convert A function that takes an ordinal factor vector as an input and outputs a single
numeric variable.

step_ordinalscore 183

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Dummy variables from ordered factors with C levels will create polynomial basis functions with C-1
terms. As an alternative, this step can be used to translate the ordered levels into a single numeric
vector of values that represent (subjective) scores. By default, the translation uses a linear scale (1,
2, 3, ... C) but custom score functions can also be used (see the example below).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_integer(), step_novel(), step_num2factor(),
step_other(), step_regex(), step_relevel(), step_string2factor(), step_time(), step_unknown(),
step_unorder()

Examples

fail_lvls <- c("meh", "annoying", "really_bad")

ord_data <-
data.frame(
item = c("paperclip", "twitter", "airbag"),
fail_severity = factor(fail_lvls,

levels = fail_lvls,
ordered = TRUE

)
)

184 step_other

model.matrix(~fail_severity, data = ord_data)

linear_values <- recipe(~ item + fail_severity, data = ord_data) %>%
step_dummy(item) %>%
step_ordinalscore(fail_severity)

linear_values <- prep(linear_values, training = ord_data)

bake(linear_values, new_data = NULL, everything())

custom <- function(x) {
new_values <- c(1, 3, 7)
new_values[as.numeric(x)]

}

nonlin_scores <- recipe(~ item + fail_severity, data = ord_data) %>%
step_dummy(item) %>%
step_ordinalscore(fail_severity, convert = custom)

tidy(nonlin_scores, number = 2)

nonlin_scores <- prep(nonlin_scores, training = ord_data)

bake(nonlin_scores, new_data = NULL, everything())

tidy(nonlin_scores, number = 2)

step_other Collapse infrequent categorical levels

Description

step_other() creates a specification of a recipe step that will potentially pool infrequently occur-
ring values into an "other" category.

Usage

step_other(
recipe,
...,
role = NA,
trained = FALSE,
threshold = 0.05,
other = "other",
objects = NULL,
skip = FALSE,
id = rand_id("other")

)

step_other 185

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

threshold A numeric value between 0 and 1, or an integer greater or equal to one. If less
than one, then factor levels with a rate of occurrence in the training set below
threshold will be pooled to other. If greater or equal to one, then this value
is treated as a frequency and factor levels that occur less than threshold times
will be pooled to other.

other A single character value for the "other" category.

objects A list of objects that contain the information to pool infrequent levels that is
determined by prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The overall proportion (or total counts) of the categories are computed. The "other" category is
used in place of any categorical levels whose individual proportion (or frequency) in the training set
is less than threshold.

If no pooling is done the data are unmodified (although character data may be changed to factors
based on the value of strings_as_factors in prep()). Otherwise, a factor is always returned
with different factor levels.

If threshold is less than the largest category proportion, all levels except for the most frequent are
collapsed to the other level.

If the retained categories include the value of other, an error is thrown. If other is in the list of
discarded levels, no error occurs.

If no pooling is done, novel factor levels are converted to missing. If pooling is needed, they will
be placed into the other category.

When data to be processed contains novel levels (i.e., not contained in the training set), the other
category is assigned.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

186 step_other

Tidying

When you tidy() this step, a tibble is returned with columns terms, retained , and id:

terms character, the selectors or variables selected

retained character, factor levels not pulled into "other"

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• threshold: Threshold (type: double, default: 0.05)

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

dummy_names()

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_integer(), step_novel(), step_num2factor(),
step_ordinalscore(), step_regex(), step_relevel(), step_string2factor(), step_time(),
step_unknown(), step_unorder()

Examples

data(Sacramento, package = "modeldata")

set.seed(19)
in_train <- sample(1:nrow(Sacramento), size = 800)

sacr_tr <- Sacramento[in_train,]
sacr_te <- Sacramento[-in_train,]

rec <- recipe(~ city + zip, data = sacr_tr)

rec <- rec %>%
step_other(city, zip, threshold = .1, other = "other values")

rec <- prep(rec, training = sacr_tr)

collapsed <- bake(rec, sacr_te)
table(sacr_te$city, collapsed$city, useNA = "always")

tidy(rec, number = 1)

step_pca 187

novel levels are also "othered"
tahiti <- Sacramento[1,]
tahiti$zip <- "a magical place"
bake(rec, tahiti)

threshold as a frequency
rec <- recipe(~ city + zip, data = sacr_tr)

rec <- rec %>%
step_other(city, zip, threshold = 2000, other = "other values")

rec <- prep(rec, training = sacr_tr)

tidy(rec, number = 1)
compare it to
sacr_tr %>% count(city, sort = TRUE) %>% top_n(4)
sacr_tr %>% count(zip, sort = TRUE) %>% top_n(3)

step_pca PCA signal extraction

Description

step_pca() creates a specification of a recipe step that will convert numeric variables into one or
more principal components.

Usage

step_pca(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
threshold = NA,
options = list(),
res = NULL,
columns = NULL,
prefix = "PC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("pca")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

188 step_pca

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

threshold A fraction of the total variance that should be covered by the components. For
example, threshold = .75 means that step_pca should generate enough com-
ponents to capture 75 percent of the variability in the variables. Note: using this
argument will override and reset any value given to num_comp.

options A list of options to the default method for stats::prcomp(). Argument defaults
are set to retx = FALSE, center = FALSE, scale. = FALSE, and tol = NULL. Note
that the argument x should not be passed here (or at all).

res The stats::prcomp.default() object is stored here once this preprocessing
step has be trained by prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Principal component analysis (PCA) is a transformation of a group of variables that produces a new
set of artificial features or components. These components are designed to capture the maximum
amount of information (i.e. variance) in the original variables. Also, the components are statistically
independent from one another. This means that they can be used to combat large inter-variables
correlations in a data set.

It is advisable to standardize the variables prior to running PCA. Here, each variable will be centered
and scaled prior to the PCA calculation. This can be changed using the options argument or by
using step_center() and step_scale().

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded

step_pca 189

with zeros. For example, if num_comp < 10, their names will be PC1 - PC9. If num_comp = 101, the
names would be PC1 - PC101.

Alternatively, threshold can be used to determine the number of components that are required to
capture a specified fraction of the total variance in the variables.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step two things can happen depending the type argument. If type = "coef"
a tibble returned with 4 columns terms, value, component , and id:

terms character, the selectors or variables selected

value numeric, variable loading

component character, principle component

id character, id of this step

If type = "variance" a tibble returned with 4 columns terms, value, component , and id:

terms character, type of variance

value numeric, value of the variance

component integer, principle component

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• num_comp: # Components (type: integer, default: 5)

• threshold: Threshold (type: double, default: NA)

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

References

Jolliffe, I. T. (2010). Principal Component Analysis. Springer.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(),
step_mutate_at(), step_nnmf_sparse(), step_nnmf(), step_pls(), step_ratio(), step_spatialsign()

190 step_percentile

Examples

rec <- recipe(~., data = USArrests)
pca_trans <- rec %>%

step_normalize(all_numeric()) %>%
step_pca(all_numeric(), num_comp = 3)

pca_estimates <- prep(pca_trans, training = USArrests)
pca_data <- bake(pca_estimates, USArrests)

rng <- extendrange(c(pca_data$PC1, pca_data$PC2))
plot(pca_data$PC1, pca_data$PC2,

xlim = rng, ylim = rng
)

with_thresh <- rec %>%
step_normalize(all_numeric()) %>%
step_pca(all_numeric(), threshold = .99)

with_thresh <- prep(with_thresh, training = USArrests)
bake(with_thresh, USArrests)

tidy(pca_trans, number = 2)
tidy(pca_estimates, number = 2)
tidy(pca_estimates, number = 2, type = "variance")

step_percentile Percentile transformation

Description

step_percentile() creates a specification of a recipe step that replaces the value of a variable
with its percentile from the training set.

Usage

step_percentile(
recipe,
...,
role = NA,
trained = FALSE,
ref_dist = NULL,
options = list(probs = (0:100)/100),
outside = "none",
skip = FALSE,
id = rand_id("percentile")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

step_percentile 191

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

ref_dist The computed percentiles is stored here once this preprocessing step has be
trained by prep().

options A named list of options to pass to stats::quantile(). See Details for more
information.

outside A character, describing how interpolation is to take place outside the interval
[min(x), max(x)]. none means nothing will happen and values outside the
range will be NA. lower means that new values less than min(x) will be given
the value 0. upper means that new values larger than max(x) will be given the
value 1. both will handle both cases. Defaults to none.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, percentile , and id:

terms character, the selectors or variables selected

value numeric, the value at the percentile

percentile numeric, the percentile as a percentage

id character, id of this step

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_hyperbolic(), step_inverse(), step_invlogit(), step_logit(), step_log(), step_mutate(),
step_ns(), step_poly(), step_relu(), step_sqrt()

192 step_pls

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

) %>%
step_percentile(carbon)

prepped_rec <- prep(rec)

prepped_rec %>%
bake(biomass_te)

tidy(rec, 1)
tidy(prepped_rec, 1)

step_pls Partial least squares feature extraction

Description

step_pls() creates a specification of a recipe step that will convert numeric data into one or more
new dimensions.

Usage

step_pls(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 2,
predictor_prop = 1,
outcome = NULL,
options = list(scale = TRUE),
preserve = deprecated(),
res = NULL,
columns = NULL,
prefix = "PLS",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("pls")

)

step_pls 193

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_comp The number of components to retain as new predictors. If num_comp is greater
than the number of columns or the number of possible components, a smaller
value will be used. If num_comp = 0 is set then no transformation is done and se-
lected variables will stay unchanged, regardless of the value of keep_original_cols.

predictor_prop The maximum number of original predictors that can have non-zero coefficients
for each PLS component (via regularization).

outcome When a single outcome is available, character string or call to dplyr::vars()
can be used to specify a single outcome variable.

options A list of options to mixOmics::pls(), mixOmics::spls(), mixOmics::plsda(),
or mixOmics::splsda() (depending on the data and arguments).

preserve Use keep_original_cols instead to specify whether the original predictor data
should be retained along with the new features.

res A list of results are stored here once this preprocessing step has been trained by
prep().

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

prefix A character string for the prefix of the resulting new variables. See notes below.
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

PLS is a supervised version of principal component analysis that requires the outcome data to
compute the new features.

This step requires the Bioconductor mixOmics package. If not installed, the step will stop with a
note about installing the package. Install mixOmics using the pak package:

install.packages("pak")
pak::pak("mixOmics")

194 step_pls

The argument num_comp controls the number of components that will be retained (the original
variables that are used to derive the components are removed from the data). The new components
will have names that begin with prefix and a sequence of numbers. The variable names are padded
with zeros. For example, if num_comp < 10, their names will be PLS1 - PLS9. If num_comp = 101,
the names would be PLS1 - PLS101.

Sparsity can be encouraged using the predictor_prop parameter. This affects each PLS compo-
nent, and indicates the maximum proportion of predictors with non-zero coefficients in each compo-
nent. step_pls() converts this proportion to determine the keepX parameter in mixOmics::spls()
and mixOmics::splsda(). See the references in mixOmics::spls() for details.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, component , and id:

terms character, the selectors or variables selected

value numeric, coefficients defined as W (P ′W)−1

size character, name of component

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• num_comp: # Components (type: integer, default: 2)

• predictor_prop: Proportion of Predictors (type: double, default: 1)

Case weights

The underlying operation does not allow for case weights.

References

https://en.wikipedia.org/wiki/Partial_least_squares_regression

Rohart F, Gautier B, Singh A, Lê Cao K-A (2017) mixOmics: An R package for ’omics feature
selection and multiple data integration. PLoS Comput Biol 13(11): e1005752. doi:10.1371/
journal.pcbi.1005752

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(),
step_mutate_at(), step_nnmf_sparse(), step_nnmf(), step_pca(), step_ratio(), step_spatialsign()

https://en.wikipedia.org/wiki/Partial_least_squares_regression
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1371/journal.pcbi.1005752

step_poly 195

Examples

requires the Bioconductor mixOmics package
data(biomass, package = "modeldata")

biom_tr <-
biomass %>%
dplyr::filter(dataset == "Training") %>%
dplyr::select(-dataset, -sample)

biom_te <-
biomass %>%
dplyr::filter(dataset == "Testing") %>%
dplyr::select(-dataset, -sample, -HHV)

dense_pls <-
recipe(HHV ~ ., data = biom_tr) %>%
step_pls(all_numeric_predictors(), outcome = "HHV", num_comp = 3)

sparse_pls <-
recipe(HHV ~ ., data = biom_tr) %>%
step_pls(all_numeric_predictors(), outcome = "HHV", num_comp = 3,

predictor_prop = 4 / 5)

PLS discriminant analysis

data(cells, package = "modeldata")

cell_tr <-
cells %>%
dplyr::filter(case == "Train") %>%
dplyr::select(-case)

cell_te <-
cells %>%
dplyr::filter(case == "Test") %>%
dplyr::select(-case, -class)

dense_plsda <-
recipe(class ~ ., data = cell_tr) %>%
step_pls(all_numeric_predictors(), outcome = "class", num_comp = 5)

sparse_plsda <-
recipe(class ~ ., data = cell_tr) %>%
step_pls(all_numeric_predictors(), outcome = "class", num_comp = 5,

predictor_prop = 1 / 4)

step_poly Orthogonal polynomial basis functions

196 step_poly

Description

step_poly() creates a specification of a recipe step that will create new columns that are basis
expansions of variables using orthogonal polynomials.

Usage

step_poly(
recipe,
...,
role = "predictor",
trained = FALSE,
objects = NULL,
degree = 2,
options = list(),
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("poly")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

objects A list of stats::poly() objects created once the step has been trained.

degree The polynomial degree (an integer).

options A list of options for stats::poly() which should not include x, degree, or
simple. Note that the option raw = TRUE will produce the regular polynomial
values (not orthogonalized).

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

step_poly 197

Details

step_poly() can create new features from a single variable that enable fitting routines to model this
variable in a nonlinear manner. The extent of the possible nonlinearity is determined by the degree
argument of stats::poly(). The original variables are removed from the data by default, but
can be retained by setting keep_original_cols = TRUE and new columns are added. The naming
convention for the new variables is varname_poly_1 and so on.

The orthogonal polynomial expansion is used by default because it yields variables that are uncor-
related and doesn’t produce large values which would otherwise be a problem for large values of
degree. Orthogonal polynomial expansion pick up the same signal as their uncorrelated counter-
part.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, degree , and id:

terms character, the selectors or variables selected

degree integer, the polynomial degree

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• degree: Polynomial Degree (type: integer, default: 2)

Case weights

The underlying operation does not allow for case weights.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_hyperbolic(), step_inverse(), step_invlogit(), step_logit(), step_log(), step_mutate(),
step_ns(), step_percentile(), step_relu(), step_sqrt()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

198 step_poly_bernstein

)

quadratic <- rec %>%
step_poly(carbon, hydrogen)

quadratic <- prep(quadratic, training = biomass_tr)

expanded <- bake(quadratic, biomass_te)
expanded

tidy(quadratic, number = 1)

step_poly_bernstein Generalized bernstein polynomial basis

Description

step_poly_bernstein() creates a specification of a recipe step that creates Bernstein polynomial
features.

Usage

step_poly_bernstein(
recipe,
...,
role = NA,
trained = FALSE,
degree = 10,
complete_set = FALSE,
options = NULL,
keep_original_cols = FALSE,
results = NULL,
skip = FALSE,
id = rand_id("poly_bernstein")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

step_poly_bernstein 199

degree The degrees of the polynomial. As the degrees for a polynomial increase, more
flexible and complex curves can be generated.

complete_set If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output. This maps to the intercept argument of
the corresponding function from the splines2 package and has the same default
value.

options A list of options for splines2::bernsteinPoly() which should not include x
or degree.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

results A list of objects created once the step has been trained.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Polynomial transformations take a numeric column and create multiple features that, when used
in a model, can estimate nonlinear trends between the column and some outcome. The degrees of
freedom determines how many new features are added to the data.

If the spline expansion fails for a selected column, the step will remove that column’s results (but
will retain the original data). Use the tidy() method to determine which columns were used.

Value

An object with classes "step_poly_bernstein" and "step".

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• degree: Polynomial Degree (type: integer, default: 10)

Case weights

The underlying operation does not allow for case weights.

200 step_profile

See Also

splines2::bernsteinPoly()

Examples

library(tidyr)
library(dplyr)

library(ggplot2)
data(ames, package = "modeldata")

spline_rec <- recipe(Sale_Price ~ Longitude, data = ames) %>%
step_poly_bernstein(Longitude, degree = 6, keep_original_cols = TRUE) %>%
prep()

tidy(spline_rec, number = 1)

Show where each feature is active
spline_rec %>%

bake(new_data = NULL,-Sale_Price) %>%
pivot_longer(c(starts_with("Longitude_")), names_to = "feature", values_to = "value") %>%
mutate(feature = gsub("Longitude_", "feature ", feature)) %>%
filter(value > 0) %>%
ggplot(aes(x = Longitude, y = value)) +
geom_line() +
facet_wrap(~ feature)

step_profile Create a profiling version of a data set

Description

step_profile() creates a specification of a recipe step that will fix the levels of all variables but
one and will create a sequence of values for the remaining variable. This step can be helpful when
creating partial regression plots for additive models.

Usage

step_profile(
recipe,
...,
profile = NULL,
pct = 0.5,
index = 1,
grid = list(pctl = TRUE, len = 100),
columns = NULL,
role = NA,

step_profile 201

trained = FALSE,
skip = FALSE,
id = rand_id("profile")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

profile A call to dplyr::vars()) to specify which variable will be profiled (see selections()).
If a column is included in both lists to be fixed and to be profiled, an error is
thrown.

pct A value between 0 and 1 that is the percentile to fix continuous variables. This is
applied to all continuous variables captured by the selectors. For date variables,
either the minimum, median, or maximum used based on their distance to pct.

index The level that qualitative variables will be fixed. If the variables are character
(not factors), this will be the index of the sorted unique values. This is applied
to all qualitative variables captured by the selectors.

grid A named list with elements pctl (a logical) and len (an integer). If pctl =
TRUE, then len denotes how many percentiles to use to create the profiling grid.
This creates a grid between 0 and 1 and the profile is determined by the per-
centiles of the data. For example, if pctl = TRUE and len = 3, the profile would
contain the minimum, median, and maximum values. If pctl = FALSE, it de-
fines how many grid points between the minimum and maximum values should
be created. This parameter is ignored for qualitative variables (since all of their
possible levels are profiled). In the case of date variables, pctl = FALSE will
always be used since there is no quantile method for dates.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

This step is atypical in that, when baked, the new_data argument is ignored; the resulting data set
is based on the fixed and profiled variable’s information.

202 step_profile

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, type , and id:

terms character, the selectors or variables selected

type character, "fixed" or "profiled"

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

Examples

data(Sacramento, package = "modeldata")

Setup a grid across beds but keep the other values fixed
recipe(~ city + price + beds, data = Sacramento) %>%

step_profile(-beds, profile = vars(beds)) %>%
prep(training = Sacramento) %>%
bake(new_data = NULL)

##########

An *additive* model; not for use when there are interactions or
other functional relationships between predictors

lin_mod <- lm(mpg ~ poly(disp, 2) + cyl + hp, data = mtcars)

Show the difference in the two grid creation methods

disp_pctl <- recipe(~ disp + cyl + hp, data = mtcars) %>%
step_profile(-disp, profile = vars(disp)) %>%
prep(training = mtcars)

disp_grid <- recipe(~ disp + cyl + hp, data = mtcars) %>%
step_profile(

-disp,
profile = vars(disp),
grid = list(pctl = FALSE, len = 100)

) %>%
prep(training = mtcars)

grid_data <- bake(disp_grid, new_data = NULL)
grid_data <- grid_data %>%

mutate(
pred = predict(lin_mod, grid_data),

step_range 203

method = "grid"
)

pctl_data <- bake(disp_pctl, new_data = NULL)
pctl_data <- pctl_data %>%

mutate(
pred = predict(lin_mod, pctl_data),
method = "percentile"

)

plot_data <- bind_rows(grid_data, pctl_data)

library(ggplot2)

ggplot(plot_data, aes(x = disp, y = pred)) +
geom_point(alpha = .5, cex = 1) +
facet_wrap(~method)

step_range Scaling numeric data to a specific range

Description

step_range() creates a specification of a recipe step that will normalize numeric data to be within
a pre-defined range of values.

Usage

step_range(
recipe,
...,
role = NA,
trained = FALSE,
min = 0,
max = 1,
clipping = TRUE,
ranges = NULL,
skip = FALSE,
id = rand_id("range")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

204 step_range

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

min A single numeric value for the smallest value in the range.

max A single numeric value for the largest value in the range.

clipping A single logical value for determining whether application of transformation
onto new data should be forced to be inside min and max. Defaults to TRUE.

ranges A character vector of variables that will be normalized. Note that this is ignored
until the values are determined by prep(). Setting this value will be ineffective.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

When a new data point is outside of the ranges seen in the training set, the new values are truncated
at min or max.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, min, max , and id:

terms character, the selectors or variables selected

min numeric, lower range

max numeric, upper range

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other normalization steps: step_center(), step_normalize(), step_scale()

step_ratio 205

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

ranged_trans <- rec %>%
step_range(carbon, hydrogen)

ranged_obj <- prep(ranged_trans, training = biomass_tr)

transformed_te <- bake(ranged_obj, biomass_te)

biomass_te[1:10, names(transformed_te)]
transformed_te

tidy(ranged_trans, number = 1)
tidy(ranged_obj, number = 1)

step_ratio Ratio variable creation

Description

step_ratio() creates a specification of a recipe step that will create one or more ratios from
selected numeric variables.

Usage

step_ratio(
recipe,
...,
role = "predictor",
trained = FALSE,
denom = denom_vars(),
naming = function(numer, denom) {

make.names(paste(numer, denom, sep = "_o_"))
},
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,

206 step_ratio

id = rand_id("ratio")
)

denom_vars(...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used in the
numerator of the ratio. When used with denom_vars, the dots indicate which
variables are used in the denominator. See selections() for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

denom A call to denom_vars to specify which variables are used in the denominator that
can include specific variable names separated by commas or different selectors
(see selections()). If a column is included in both lists to be numerator and
denominator, it will be removed from the listing.

naming A function that defines the naming convention for new ratio columns.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to TRUE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble with columns terms (the selectors or variables selected) and
denom is returned.

When you tidy() this step, a tibble is returned with columns terms, denom , and id:

terms character, the selectors or variables selected

denom character, name of denominator selected

id character, id of this step

step_regex 207

Case weights

The underlying operation does not allow for case weights.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(),
step_mutate_at(), step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_spatialsign()

Examples

library(recipes)
data(biomass, package = "modeldata")

biomass$total <- apply(biomass[, 3:7], 1, sum)
biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen +
sulfur + total,

data = biomass_tr
)

ratio_recipe <- rec %>%
all predictors over total
step_ratio(all_numeric_predictors(), denom = denom_vars(total),

keep_original_cols = FALSE)

ratio_recipe <- prep(ratio_recipe, training = biomass_tr)

ratio_data <- bake(ratio_recipe, biomass_te)
ratio_data

step_regex Detect a regular expression

Description

step_regex() creates a specification of a recipe step that will create a new dummy variable based
on a regular expression.

Usage

step_regex(
recipe,
...,
role = "predictor",

208 step_regex

trained = FALSE,
pattern = ".",
options = list(),
result = make.names(pattern),
input = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("regex")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... A single selector function to choose which variable will be searched for the
regex pattern. The selector should resolve to a single variable. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

pattern A character string containing a regular expression (or character string for fixed
= TRUE) to be matched in the given character vector. Coerced by as.character
to a character string if possible.

options A list of options to grepl() that should not include x or pattern.

result A single character value for the name of the new variable. It should be a valid
column name.

input A single character value for the name of the variable being searched. This is
NULL until computed by prep().

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, result , and id:

terms character, the selectors or variables selected

step_relevel 209

result character, new column name

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_integer(), step_novel(), step_num2factor(),
step_ordinalscore(), step_other(), step_relevel(), step_string2factor(), step_time(),
step_unknown(), step_unorder()

Examples

data(covers, package = "modeldata")

rec <- recipe(~description, covers) %>%
step_regex(description, pattern = "(rock|stony)", result = "rocks") %>%
step_regex(description, pattern = "ratake families")

rec2 <- prep(rec, training = covers)
rec2

with_dummies <- bake(rec2, new_data = covers)
with_dummies
tidy(rec, number = 1)
tidy(rec2, number = 1)

step_relevel Relevel factors to a desired level

Description

step_relevel() creates a specification of a recipe step that will reorder the provided factor columns
so that the level specified by ref_level is first. This is useful for contr.treatment() contrasts
which take the first level as the reference.

Usage

step_relevel(
recipe,
...,
role = NA,

210 step_relevel

trained = FALSE,
ref_level,
objects = NULL,
skip = FALSE,
id = rand_id("relevel")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

ref_level A single character value that will be used to relevel the factor column(s) (if the
level is present).

objects A list of objects that contain the information on factor levels that will be deter-
mined by prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The selected variables are releveled to a level (given by ref_level), placing the ref_level in the
first position.

Note that if the original columns are character, they will be converted to factors by this step.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value character, the value of ref_level

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

step_relu 211

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_integer(), step_novel(), step_num2factor(),
step_ordinalscore(), step_other(), step_regex(), step_string2factor(), step_time(),
step_unknown(), step_unorder()

Examples

data(Sacramento, package = "modeldata")
rec <- recipe(~ city + zip, data = Sacramento) %>%

step_unknown(city, new_level = "UNKNOWN") %>%
step_relevel(city, ref_level = "UNKNOWN") %>%
prep()

data <- bake(rec, Sacramento)
levels(data$city)

step_relu Apply (smoothed) rectified linear transformation

Description

step_relu() creates a specification of a recipe step that will add the rectified linear or softplus
transformations of a variable to the data set.

Usage

step_relu(
recipe,
...,
role = "predictor",
trained = FALSE,
shift = 0,
reverse = FALSE,
smooth = FALSE,
prefix = "right_relu_",
columns = NULL,
skip = FALSE,
id = rand_id("relu")

)

212 step_relu

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

shift A numeric value dictating a translation to apply to the data.

reverse A logical to indicate if the left hinge should be used as opposed to the right
hinge.

smooth A logical indicating if the softplus function, a smooth approximation to the rec-
tified linear transformation, should be used.

prefix A prefix for generated column names, defaults to "right_relu_" for right hinge
transformation and "left_relu_" for reversed/left hinge transformations.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The rectified linear transformation is calculated as

max(0, x− c)

and is also known as the ReLu or right hinge function. If reverse is true, then the transformation
is reflected about the y-axis, like so:

max(0, c− x)

Setting the smooth option to true will instead calculate a smooth approximation to ReLu according
to

ln(1 + e(x− c)

The reverse argument may also be applied to this transformation.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

step_relu 213

Connection to MARS:

The rectified linear transformation is used in Multivariate Adaptive Regression Splines as a basis
function to fit piecewise linear functions to data in a strategy similar to that employed in tree based
models. The transformation is a popular choice as an activation function in many neural networks,
which could then be seen as a stacked generalization of MARS when making use of ReLu activa-
tions. The hinge function also appears in the loss function of Support Vector Machines, where it
penalizes residuals only if they are within a certain margin of the decision boundary.

Tidying

When you tidy() this step, a tibble is returned with columns terms, shift, reverse , and id:

terms character, the selectors or variables selected

shift numeric, location of hinge

reverse logical, whether left hinge is used

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_hyperbolic(), step_inverse(), step_invlogit(), step_logit(), step_log(), step_mutate(),
step_ns(), step_percentile(), step_poly(), step_sqrt()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

transformed_te <- rec %>%
step_relu(carbon, shift = 40) %>%
prep(biomass_tr) %>%
bake(biomass_te)

transformed_te

214 step_rename

step_rename Rename variables by name using dplyr

Description

step_rename() creates a specification of a recipe step that will add variables using dplyr::rename().

Usage

step_rename(
recipe,
...,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("rename")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more unquoted expressions separated by commas. See dplyr::rename()
where the convention is new_name = old_name.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs Quosure(s) of

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!) to embed the value of the object in the
expression (to be portable between sessions).

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

step_rename_at 215

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value character, rename expression

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dplyr steps: step_arrange(), step_filter(), step_mutate_at(), step_mutate(), step_rename_at(),
step_sample(), step_select(), step_slice()

Examples

recipe(~., data = iris) %>%
step_rename(Sepal_Width = Sepal.Width) %>%
prep() %>%
bake(new_data = NULL) %>%
slice(1:5)

vars <- c(var1 = "cyl", var2 = "am")
car_rec <-

recipe(~., data = mtcars) %>%
step_rename(!!!vars)

car_rec %>%
prep() %>%
bake(new_data = NULL)

car_rec %>%
tidy(number = 1)

step_rename_at Rename multiple columns using dplyr

Description

step_rename_at() creates a specification of a recipe step that will rename the selected variables
using a common function via dplyr::rename_at().

216 step_rename_at

Usage

step_rename_at(
recipe,
...,
fn,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("rename_at")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

fn A function fun, a quosure style lambda ‘~ fun(.)“ or a list of either form (but
containing only a single function, see dplyr::rename_at()). Note that this
argument must be named.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs A vector of column names populated by prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

step_rm 217

See Also

Other dplyr steps: step_arrange(), step_filter(), step_mutate_at(), step_mutate(), step_rename(),
step_sample(), step_select(), step_slice()

Examples

library(dplyr)
recipe(~., data = iris) %>%

step_rename_at(everything(), fn = ~ gsub(".", "_", ., fixed = TRUE)) %>%
prep() %>%
bake(new_data = NULL) %>%
slice(1:10)

step_rm General variable filter

Description

step_rm() creates a specification of a recipe step that will remove selected variables.

Usage

step_rm(
recipe,
...,
role = NA,
trained = FALSE,
removals = NULL,
skip = FALSE,
id = rand_id("rm")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
removals A character string that contains the names of columns that should be removed.

These values are not determined until prep() is called.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

218 step_rm

Details

This step can potentially remove columns from the data set. This may cause issues for subsequent
steps in your recipe if the missing columns are specifically referenced by name. To avoid this, see
the advice in the Tips for saving recipes and filtering columns section of selections.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other variable filter steps: step_corr(), step_filter_missing(), step_lincomb(), step_nzv(),
step_select(), step_zv()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

library(dplyr)
smaller_set <- rec %>%

step_rm(contains("gen"))

smaller_set <- prep(smaller_set, training = biomass_tr)

filtered_te <- bake(smaller_set, biomass_te)
filtered_te

tidy(smaller_set, number = 1)

step_sample 219

step_sample Sample rows using dplyr

Description

step_sample() creates a specification of a recipe step that will sample rows using dplyr::sample_n()
or dplyr::sample_frac().

Usage

step_sample(
recipe,
...,
role = NA,
trained = FALSE,
size = NULL,
replace = FALSE,
skip = TRUE,
id = rand_id("sample")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Argument ignored; included for consistency with other step specification func-
tions.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

size An integer or fraction. If the value is within (0, 1), dplyr::sample_frac() is
applied to the data. If an integer value of 1 or greater is used, dplyr::sample_n()
is applied. The default of NULL uses dplyr::sample_n() with the size of the
training set (or smaller for smaller new_data).

replace Sample with or without replacement?

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

220 step_sample

Row Filtering

This step can entirely remove observations (rows of data), which can have unintended and/or prob-
lematic consequences when applying the step to new data later via bake(). Consider whether skip
= TRUE or skip = FALSE is more appropriate in any given use case. In most instances that affect the
rows of the data being predicted, this step probably should not be applied at all; instead, execute
operations like this outside and before starting a preprocessing recipe().

Tidying

When you tidy() this step, a tibble is returned with columns terms, size, replace , and id:

terms character, the selectors or variables selected

size numeric, amount of sampling

replace logical, whether sampling is done with replacement

id character, id of this step

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

See Also

Other row operation steps: step_arrange(), step_filter(), step_impute_roll(), step_lag(),
step_naomit(), step_shuffle(), step_slice()

Other dplyr steps: step_arrange(), step_filter(), step_mutate_at(), step_mutate(), step_rename_at(),
step_rename(), step_select(), step_slice()

Examples

Uses `sample_n`
recipe(~., data = mtcars) %>%

step_sample(size = 1) %>%
prep(training = mtcars) %>%
bake(new_data = NULL) %>%
nrow()

Uses `sample_frac`
recipe(~., data = mtcars) %>%

step_sample(size = 0.9999) %>%
prep(training = mtcars) %>%
bake(new_data = NULL) %>%
nrow()

Uses `sample_n` and returns _at maximum_ 20 samples.
smaller_cars <-

recipe(~., data = mtcars) %>%

step_scale 221

step_sample() %>%
prep(training = mtcars %>% slice(1:20))

bake(smaller_cars, new_data = NULL) %>% nrow()
bake(smaller_cars, new_data = mtcars %>% slice(21:32)) %>% nrow()

step_scale Scaling mumeric data

Description

step_scale() creates a specification of a recipe step that will normalize numeric data to have a
standard deviation of one.

Usage

step_scale(
recipe,
...,
role = NA,
trained = FALSE,
sds = NULL,
factor = 1,
na_rm = TRUE,
skip = FALSE,
id = rand_id("scale")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

sds A named numeric vector of standard deviations. This is NULL until computed by
prep().

factor A numeric value of either 1 or 2 that scales the numeric inputs by one or two
standard deviations. By dividing by two standard deviations, the coefficients
attached to continuous predictors can be interpreted the same way as with binary
inputs. Defaults to 1. More in reference below.

na_rm A logical value indicating whether NA values should be removed when comput-
ing the standard deviation.

222 step_scale

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Scaling data means that the standard deviation of a variable is divided out of the data. step_scale
estimates the variable standard deviations from the data used in the training argument of prep.recipe.
bake.recipe then applies the scaling to new data sets using these standard deviations.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value numeric, the standard deviations

id character, id of this step

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, case weights
are only used with frequency weights. For more information, see the documentation in case_weights
and the examples on tidymodels.org.

References

Gelman, A. (2007) "Scaling regression inputs by dividing by two standard deviations." Unpub-
lished. Source: http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.
pdf.

See Also

Other normalization steps: step_center(), step_normalize(), step_range()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(

http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.pdf
http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.pdf

step_select 223

HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

scaled_trans <- rec %>%
step_scale(carbon, hydrogen)

scaled_obj <- prep(scaled_trans, training = biomass_tr)

transformed_te <- bake(scaled_obj, biomass_te)

biomass_te[1:10, names(transformed_te)]
transformed_te
tidy(scaled_trans, number = 1)
tidy(scaled_obj, number = 1)

step_select Select variables using dplyr

Description

step_select() creates a specification of a recipe step that will select variables using dplyr::select().

Usage

step_select(
recipe,
...,
role = NA,
trained = FALSE,
skip = FALSE,
id = rand_id("select")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms selected by this step, what analysis role should they be as-
signed?

trained A logical to indicate if the quantities for preprocessing have been estimated.
skip A logical. Should the step be skipped when the recipe is baked by bake()?

While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

224 step_select

id A character string that is unique to this step to identify it.

Details

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!) to embed the value of the object in the
expression (to be portable between sessions). See the examples.

This step can potentially remove columns from the data set. This may cause issues for subsequent
steps in your recipe if the missing columns are specifically referenced by name. To avoid this, see
the advice in the Tips for saving recipes and filtering columns section of selections.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other variable filter steps: step_corr(), step_filter_missing(), step_lincomb(), step_nzv(),
step_rm(), step_zv()

Other dplyr steps: step_arrange(), step_filter(), step_mutate_at(), step_mutate(), step_rename_at(),
step_rename(), step_sample(), step_slice()

Examples

library(dplyr)

iris_tbl <- as_tibble(iris)
iris_train <- slice(iris_tbl, 1:75)
iris_test <- slice(iris_tbl, 76:150)

dplyr_train <- select(iris_train, Species, starts_with("Sepal"))
dplyr_test <- select(iris_test, Species, starts_with("Sepal"))

rec <- recipe(~., data = iris_train) %>%
step_select(Species, starts_with("Sepal")) %>%
prep(training = iris_train)

rec_train <- bake(rec, new_data = NULL)
all.equal(dplyr_train, rec_train)

step_shuffle 225

rec_test <- bake(rec, iris_test)
all.equal(dplyr_test, rec_test)

Local variables
sepal_vars <- c("Sepal.Width", "Sepal.Length")

qq_rec <-
recipe(~., data = iris_train) %>%
fine for interactive usage
step_select(Species, all_of(sepal_vars)) %>%
best approach for saving a recipe to disk
step_select(Species, all_of(!!sepal_vars))

Note that `sepal_vars` is inlined in the second approach
qq_rec

step_shuffle Shuffle variables

Description

step_shuffle() creates a specification of a recipe step that will randomly change the order of rows
for selected variables.

Usage

step_shuffle(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("shuffle")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

226 step_shuffle

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other row operation steps: step_arrange(), step_filter(), step_impute_roll(), step_lag(),
step_naomit(), step_sample(), step_slice()

Examples

integers <- data.frame(A = 1:12, B = 13:24, C = 25:36)

library(dplyr)
rec <- recipe(~ A + B + C, data = integers) %>%

step_shuffle(A, B)

rand_set <- prep(rec, training = integers)

set.seed(5377)
bake(rand_set, integers)

tidy(rec, number = 1)
tidy(rand_set, number = 1)

step_slice 227

step_slice Filter rows by position using dplyr

Description

step_slice() creates a specification of a recipe step that will filter rows using dplyr::slice().

Usage

step_slice(
recipe,
...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = TRUE,
id = rand_id("slice")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... Integer row values. See dplyr::slice() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

inputs Quosure of values given by

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

When an object in the user’s global environment is referenced in the expression defining the new
variable(s), it is a good idea to use quasiquotation (e.g. !!) to embed the value of the object in the
expression (to be portable between sessions). See the examples.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

228 step_slice

Row Filtering

This step can entirely remove observations (rows of data), which can have unintended and/or prob-
lematic consequences when applying the step to new data later via bake(). Consider whether skip
= TRUE or skip = FALSE is more appropriate in any given use case. In most instances that affect the
rows of the data being predicted, this step probably should not be applied at all; instead, execute
operations like this outside and before starting a preprocessing recipe().

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, containing the filtering indices

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other row operation steps: step_arrange(), step_filter(), step_impute_roll(), step_lag(),
step_naomit(), step_sample(), step_shuffle()

Other dplyr steps: step_arrange(), step_filter(), step_mutate_at(), step_mutate(), step_rename_at(),
step_rename(), step_sample(), step_select()

Examples

rec <- recipe(~., data = iris) %>%
step_slice(1:3)

prepped <- prep(rec, training = iris %>% slice(1:75))
tidy(prepped, number = 1)

library(dplyr)

dplyr_train <-
iris %>%
as_tibble() %>%
slice(1:75) %>%
slice(1:3)

rec_train <- bake(prepped, new_data = NULL)
all.equal(dplyr_train, rec_train)

dplyr_test <-
iris %>%
as_tibble() %>%
slice(76:150)

rec_test <- bake(prepped, iris %>% slice(76:150))

step_spatialsign 229

all.equal(dplyr_test, rec_test)

Embedding the integer expression (or vector) into the
recipe:

keep_rows <- 1:6

qq_rec <-
recipe(~., data = iris) %>%
Embed `keep_rows` in the call using !!!
step_slice(!!!keep_rows) %>%
prep(training = iris)

tidy(qq_rec, number = 1)

step_spatialsign Spatial sign preprocessing

Description

step_spatialsign() is a specification of a recipe step that will convert numeric data into a pro-
jection on to a unit sphere.

Usage

step_spatialsign(
recipe,
...,
role = "predictor",
na_rm = TRUE,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("spatialsign")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

na_rm A logical: should missing data be removed from the norm computation?

trained A logical to indicate if the quantities for preprocessing have been estimated.

230 step_spatialsign

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The spatial sign transformation projects the variables onto a unit sphere and is related to global
contrast normalization. The spatial sign of a vector w is w/norm(w).

The variables should be centered and scaled prior to the computations.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

This step performs an unsupervised operation that can utilize case weights. As a result, only fre-
quency weights are allowed. For more information, see the documentation in case_weights and the
examples on tidymodels.org.

Unlike most, this step requires the case weights to be available when new samples are processed
(e.g., when bake() is used or predict() with a workflow). To tell recipes that the case weights are
required at bake time, use recipe %>% update_role_requirements(role = "case_weights",
bake = TRUE). See update_role_requirements() for more information.

References

Serneels, S., De Nolf, E., and Van Espen, P. (2006). Spatial sign preprocessing: a simple way
to impart moderate robustness to multivariate estimators. Journal of Chemical Information and
Modeling, 46(3), 1402-1409.

See Also

Other multivariate transformation steps: step_classdist_shrunken(), step_classdist(), step_depth(),
step_geodist(), step_ica(), step_isomap(), step_kpca_poly(), step_kpca_rbf(), step_kpca(),
step_mutate_at(), step_nnmf_sparse(), step_nnmf(), step_pca(), step_pls(), step_ratio()

step_spline_b 231

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

ss_trans <- rec %>%
step_center(carbon, hydrogen) %>%
step_scale(carbon, hydrogen) %>%
step_spatialsign(carbon, hydrogen)

ss_obj <- prep(ss_trans, training = biomass_tr)

transformed_te <- bake(ss_obj, biomass_te)

plot(biomass_te$carbon, biomass_te$hydrogen)

plot(transformed_te$carbon, transformed_te$hydrogen)

tidy(ss_trans, number = 3)
tidy(ss_obj, number = 3)

step_spline_b Basis splines

Description

step_spline_b() creates a specification of a recipe step that creates b-spline features.

Usage

step_spline_b(
recipe,
...,
role = "predictor",
trained = FALSE,
deg_free = 10,
degree = 3,
complete_set = FALSE,
options = NULL,
keep_original_cols = FALSE,
results = NULL,

232 step_spline_b

skip = FALSE,
id = rand_id("spline_b")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

deg_free The degrees of freedom for the b-spline. As the degrees of freedom for a b-spline
increase, more flexible and complex curves can be generated.

degree A non-negative integer specifying the degree of the piece-wise polynomial. The
default value is 3 for cubic splines. Zero degree is allowed for piece-wise con-
stant basis functions.

complete_set If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output. This maps to the intercept argument of
the corresponding function from the splines2 package and has the same default
value.

options A list of options for splines2::bSpline() which should not include x, df,
degree, or intercept.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

results A list of objects created once the step has been trained.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Spline transformations take a numeric column and create multiple features that, when used in a
model, can estimate nonlinear trends between the column and some outcome. The degrees of
freedom determines how many new features are added to the data.

Setting periodic = TRUE in the list passed to options, a periodic version of the spline is used.

If the spline expansion fails for a selected column, the step will remove that column’s results (but
will retain the original data). Use the tidy() method to determine which columns were used.

step_spline_b 233

Value

An object with classes "step_spline_b" and "step".

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• deg_free: Spline Degrees of Freedom (type: integer, default: 10)

• degree: Polynomial Degree (type: integer, default: 3)

Case weights

The underlying operation does not allow for case weights.

See Also

splines2::bSpline()

Examples

library(tidyr)
library(dplyr)

library(ggplot2)
data(ames, package = "modeldata")

spline_rec <- recipe(Sale_Price ~ Longitude, data = ames) %>%
step_spline_b(Longitude, deg_free = 6, keep_original_cols = TRUE) %>%
prep()

tidy(spline_rec, number = 1)

Show where each feature is active
spline_rec %>%

bake(new_data = NULL,-Sale_Price) %>%
pivot_longer(c(starts_with("Longitude_")), names_to = "feature", values_to = "value") %>%
mutate(feature = gsub("Longitude_", "feature ", feature)) %>%
filter(value > 0) %>%
ggplot(aes(x = Longitude, y = value)) +
geom_line() +
facet_wrap(~ feature)

234 step_spline_convex

step_spline_convex Convex splines

Description

step_spline_convex() creates a specification of a recipe step that creates convex spline features.

Usage

step_spline_convex(
recipe,
...,
role = "predictor",
trained = FALSE,
deg_free = 10,
degree = 3,
complete_set = TRUE,
options = NULL,
keep_original_cols = FALSE,
results = NULL,
skip = FALSE,
id = rand_id("spline_convex")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

deg_free The degrees of freedom for the b-spline. As the degrees of freedom for a b-spline
increase, more flexible and complex curves can be generated.

degree The degree of C-spline defined to be the degree of the associated M-spline in-
stead of actual polynomial degree. For example, C-spline basis of degree 2 is
defined as the scaled double integral of associated M-spline basis of degree 2.

complete_set If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output. This maps to the intercept argument of
the corresponding function from the splines2 package and has the same default
value.

options A list of options for splines2::cSpline() which should not include x, df,
degree, or intercept.

step_spline_convex 235

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

results A list of objects created once the step has been trained.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Spline transformations take a numeric column and create multiple features that, when used in a
model, can estimate nonlinear trends between the column and some outcome. The degrees of
freedom determines how many new features are added to the data.

These particular spline functions have forms that are guaranteed to be convex.

If the spline expansion fails for a selected column, the step will remove that column’s results (but
will retain the original data). Use the tidy() method to determine which columns were used.

Value

An object with classes "step_spline_convex" and "step".

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• deg_free: Spline Degrees of Freedom (type: integer, default: 10)

• degree: Polynomial Degree (type: integer, default: 3)

Case weights

The underlying operation does not allow for case weights.

See Also

splines2::cSpline()

236 step_spline_monotone

Examples

library(tidyr)
library(dplyr)

library(ggplot2)
data(ames, package = "modeldata")

spline_rec <- recipe(Sale_Price ~ Longitude, data = ames) %>%
step_spline_convex(Longitude, deg_free = 6, keep_original_cols = TRUE) %>%
prep()

tidy(spline_rec, number = 1)

Show where each feature is active
spline_rec %>%

bake(new_data = NULL,-Sale_Price) %>%
pivot_longer(c(starts_with("Longitude_")), names_to = "feature", values_to = "value") %>%
mutate(feature = gsub("Longitude_", "feature ", feature)) %>%
filter(value > 0) %>%
ggplot(aes(x = Longitude, y = value)) +
geom_line() +
facet_wrap(~ feature)

step_spline_monotone Monotone splines

Description

step_spline_monotone() creates a specification of a recipe step that creates monotone spline
features.

Usage

step_spline_monotone(
recipe,
...,
role = "predictor",
trained = FALSE,
deg_free = 10,
degree = 3,
complete_set = TRUE,
options = NULL,
keep_original_cols = FALSE,
results = NULL,
skip = FALSE,
id = rand_id("spline_monotone")

)

step_spline_monotone 237

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

deg_free The degrees of freedom for the b-spline. As the degrees of freedom for a b-spline
increase, more flexible and complex curves can be generated.

degree The degree of I-spline defined to be the degree of the associated M-spline instead
of actual polynomial degree. For example, I-spline basis of degree 2 is defined
as the integral of associated M-spline basis of degree 2.

complete_set If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output. This maps to the intercept argument of
the corresponding function from the splines2 package and has the same default
value.

options A list of options for splines2::iSpline() which should not include x, df,
degree, periodic, or intercept.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

results A list of objects created once the step has been trained.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Spline transformations take a numeric column and create multiple features that, when used in a
model, can estimate nonlinear trends between the column and some outcome. The degrees of
freedom determines how many new features are added to the data.

These splines are integrated forms of M-splines and are non-negative and monotonic. This means
that, when used with a fitting function that produces non-negative regression coefficients, the re-
sulting fit is monotonic.

If the spline expansion fails for a selected column, the step will remove that column’s results (but
will retain the original data). Use the tidy() method to determine which columns were used.

Value

An object with classes "step_spline_monotone" and "step".

238 step_spline_monotone

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• deg_free: Spline Degrees of Freedom (type: integer, default: 10)

• degree: Polynomial Degree (type: integer, default: 3)

Case weights

The underlying operation does not allow for case weights.

See Also

splines2::iSpline()

Examples

library(tidyr)
library(dplyr)

library(ggplot2)
data(ames, package = "modeldata")

spline_rec <- recipe(Sale_Price ~ Longitude, data = ames) %>%
step_spline_monotone(Longitude, deg_free = 6, keep_original_cols = TRUE) %>%
prep()

tidy(spline_rec, number = 1)

Show where each feature is active
spline_rec %>%

bake(new_data = NULL,-Sale_Price) %>%
pivot_longer(c(starts_with("Longitude_")), names_to = "feature", values_to = "value") %>%
mutate(feature = gsub("Longitude_", "feature ", feature)) %>%
filter(value > 0) %>%
ggplot(aes(x = Longitude, y = value)) +
geom_line() +
facet_wrap(~ feature)

step_spline_natural 239

step_spline_natural Natural splines

Description

step_spline_natural() creates a specification of a recipe step that creates natural spline features.

Usage

step_spline_natural(
recipe,
...,
role = "predictor",
trained = FALSE,
deg_free = 10,
complete_set = FALSE,
options = NULL,
keep_original_cols = FALSE,
results = NULL,
skip = FALSE,
id = rand_id("spline_natural")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

deg_free The degrees of freedom for the natural spline. As the degrees of freedom for
a natural spline increase, more flexible and complex curves can be generated.
This step requires at least two degrees of freedom.

complete_set If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output. This maps to the intercept argument of
the corresponding function from the splines2 package and has the same default
value.

options A list of options for splines2::naturalSpline() which should not include x,
df, or intercept.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

results A list of objects created once the step has been trained.

240 step_spline_natural

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Spline transformations take a numeric column and create multiple features that, when used in a
model, can estimate nonlinear trends between the column and some outcome. The degrees of
freedom determines how many new features are added to the data.

This spline is a piece-wise cubic polynomial function.

If the spline expansion fails for a selected column, the step will remove that column’s results (but
will retain the original data). Use the tidy() method to determine which columns were used.

Value

An object with classes "step_spline_natural" and "step".

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• deg_free: Spline Degrees of Freedom (type: integer, default: 10)

Case weights

The underlying operation does not allow for case weights.

See Also

splines2::naturalSpline()

Examples

library(tidyr)
library(dplyr)

library(ggplot2)
data(ames, package = "modeldata")

step_spline_nonnegative 241

spline_rec <- recipe(Sale_Price ~ Longitude, data = ames) %>%
step_spline_natural(Longitude, deg_free = 6, keep_original_cols = TRUE) %>%
prep()

tidy(spline_rec, number = 1)

Show where each feature is active
spline_rec %>%

bake(new_data = NULL,-Sale_Price) %>%
pivot_longer(c(starts_with("Longitude_")), names_to = "feature", values_to = "value") %>%
mutate(feature = gsub("Longitude_", "feature ", feature)) %>%
filter(value > 0) %>%
ggplot(aes(x = Longitude, y = value)) +
geom_line() +
facet_wrap(~ feature)

step_spline_nonnegative

Non-negative splines

Description

step_spline_nonnegative() creates a specification of a recipe step that creates non-negative
spline features.

Usage

step_spline_nonnegative(
recipe,
...,
role = "predictor",
trained = FALSE,
deg_free = 10,
degree = 3,
complete_set = FALSE,
options = NULL,
keep_original_cols = FALSE,
results = NULL,
skip = FALSE,
id = rand_id("spline_nonnegative")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

242 step_spline_nonnegative

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

deg_free The degrees of freedom for the b-spline. As the degrees of freedom for a b-spline
increase, more flexible and complex curves can be generated.

degree A nonnegative integer specifying the degree of the piecewise polynomial. The
default value is 3 for cubic splines. Zero degree is allowed for piecewise constant
basis functions.

complete_set If TRUE, the complete basis matrix will be returned. Otherwise, the first basis
will be excluded from the output. This maps to the intercept argument of
the corresponding function from the splines2 package and has the same default
value.

options A list of options for splines2::mSpline() which should not include x, df,
degree, periodic, or intercept.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

results A list of objects created once the step has been trained.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Spline transformations take a numeric column and create multiple features that, when used in a
model, can estimate nonlinear trends between the column and some outcome. The degrees of
freedom determines how many new features are added to the data.

This function generates M-splines (Curry, and Schoenberg 1988) which are non-negative and have
interesting statistical properties (such as integrating to one). A zero-degree M-spline generates
box/step functions while a first degree basis function is triangular.

Setting periodic = TRUE in the list passed to options, a periodic version of the spline is used.

If the spline expansion fails for a selected column, the step will remove that column’s results (but
will retain the original data). Use the tidy() method to determine which columns were used.

Value

An object with classes "step_spline_nonnegative" and "step".

step_spline_nonnegative 243

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• deg_free: Spline Degrees of Freedom (type: integer, default: 10)

• degree: Polynomial Degree (type: integer, default: 3)

Case weights

The underlying operation does not allow for case weights.

References

Curry, H.B., Schoenberg, I.J. (1988). On Polya Frequency Functions IV: The Fundamental Spline
Functions and their Limits. In: de Boor, C. (eds) I. J. Schoenberg Selected Papers. Contemporary
Mathematicians. Birkhäuser, Boston, MA

Ramsay, J. O. "Monotone Regression Splines in Action." Statistical Science, vol. 3, no. 4, 1988,
pp. 425–41

See Also

splines2::mSpline()

Examples

library(tidyr)
library(dplyr)

library(ggplot2)
data(ames, package = "modeldata")

spline_rec <- recipe(Sale_Price ~ Longitude, data = ames) %>%
step_spline_nonnegative(Longitude, deg_free = 6, keep_original_cols = TRUE) %>%
prep()

tidy(spline_rec, number = 1)

Show where each feature is active
spline_rec %>%

bake(new_data = NULL,-Sale_Price) %>%
pivot_longer(c(starts_with("Longitude_")), names_to = "feature", values_to = "value") %>%
mutate(feature = gsub("Longitude_", "feature ", feature)) %>%
filter(value > 0) %>%

244 step_sqrt

ggplot(aes(x = Longitude, y = value)) +
geom_line() +
facet_wrap(~ feature)

step_sqrt Square root transformation

Description

step_sqrt() creates a specification of a recipe step that will apply square root transform to the
variables.

Usage

step_sqrt(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("sqrt")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

step_string2factor 245

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other individual transformation steps: step_BoxCox(), step_YeoJohnson(), step_bs(), step_harmonic(),
step_hyperbolic(), step_inverse(), step_invlogit(), step_logit(), step_log(), step_mutate(),
step_ns(), step_percentile(), step_poly(), step_relu()

Examples

set.seed(313)
examples <- matrix(rnorm(40)^2, ncol = 2)
examples <- as.data.frame(examples)

rec <- recipe(~ V1 + V2, data = examples)

sqrt_trans <- rec %>%
step_sqrt(all_numeric_predictors())

sqrt_obj <- prep(sqrt_trans, training = examples)

transformed_te <- bake(sqrt_obj, examples)
plot(examples$V1, transformed_te$V1)

tidy(sqrt_trans, number = 1)
tidy(sqrt_obj, number = 1)

step_string2factor Convert strings to factors

Description

step_string2factor() will convert one or more character vectors to factors (ordered or un-
ordered).

Use this step only in special cases (see Details) and instead convert strings to factors before using
any tidymodels functions.

246 step_string2factor

Usage

step_string2factor(
recipe,
...,
role = NA,
trained = FALSE,
levels = NULL,
ordered = FALSE,
skip = FALSE,
id = rand_id("string2factor")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

levels An options specification of the levels to be used for the new factor. If left NULL,
the sorted unique values present when bake is called will be used.

ordered A single logical value; should the factor(s) be ordered?

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

When should you use this step?:
In most cases, if you are planning to use step_string2factor() without setting levels, you
will be better off converting those character variables to factor variables before using a recipe.
This can be done using dplyr with the following code

df <- mutate(df, across(where(is.character), as.factor))

During resampling, the complete set of values might not be in the character data. Converting them
to factors with step_string2factor() then will misconfigure the levels.
If the levels argument to step_string2factor()is used, it will convert all variables affected
by this step to have the same levels. Because of this, you will need to know the full set of level
when you define the recipe.
Also, note that prep() has an option strings_as_factors that defaults to TRUE. This should be
changed so that raw character data will be applied to step_string2factor(). However, this step
can also take existing factors (but will leave them as-is).

step_string2factor 247

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, ordered , and id:

terms character, the selectors or variables selected

ordered logical, are factors ordered

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_integer(), step_novel(), step_num2factor(),
step_ordinalscore(), step_other(), step_regex(), step_relevel(), step_time(), step_unknown(),
step_unorder()

Examples

data(Sacramento, package = "modeldata")

convert factor to string to demonstrate
Sacramento$city <- as.character(Sacramento$city)

rec <- recipe(~ city + zip, data = Sacramento)

make_factor <- rec %>%
step_string2factor(city)

make_factor <- prep(make_factor,
training = Sacramento

)

make_factor

note that `city` is a factor in recipe output
bake(make_factor, new_data = NULL) %>% head()

...but remains a string in the data
Sacramento %>% head()

248 step_time

step_time Time feature generator

Description

step_time() creates a specification of a recipe step that will convert date-time data into one or
more factor or numeric variables.

Usage

step_time(
recipe,
...,
role = "predictor",
trained = FALSE,
features = c("hour", "minute", "second"),
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("time")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. The selected
variables should have class POSIXct or POSIXlt. See selections() for more
details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

features A character string that includes at least one of the following values: am (is is
AM), hour, hour12, minute, second, decimal_day.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to TRUE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

step_time 249

Details

Unlike some other steps, step_time() does not remove the original time variables by default. Set
keep_original_cols to FALSE to remove them.

decimal_day return time of day as a decimal number between 0 and 24. for example "07:15:00"
would be transformed to 7.25 and "03:59:59" would be transformed to 3.999722. The formula
for these calculations are hour(x) + (second(x) + minute(x) * 60) / 3600.

See step_date() if you want to calculate features that are larger than hours.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

value character, the feature names

id character, id of this step

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_integer(), step_novel(), step_num2factor(),
step_ordinalscore(), step_other(), step_regex(), step_relevel(), step_string2factor(),
step_unknown(), step_unorder()

Examples

library(lubridate)

examples <- data.frame(
times = ymd_hms("2022-05-06 23:51:07") +
hours(1:5) + minutes(1:5) + seconds(1:5)

)
time_rec <- recipe(~ times, examples) %>%

step_time(all_predictors())

tidy(time_rec, number = 1)

time_rec <- prep(time_rec, training = examples)

time_values <- bake(time_rec, new_data = examples)
time_values

tidy(time_rec, number = 1)

250 step_unknown

step_unknown Assign missing categories to "unknown"

Description

step_unknown() creates a specification of a recipe step that will assign a missing value in a factor
level to "unknown".

Usage

step_unknown(
recipe,
...,
role = NA,
trained = FALSE,
new_level = "unknown",
objects = NULL,
skip = FALSE,
id = rand_id("unknown")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

new_level A single character value that will be assigned to new factor levels.

objects A list of objects that contain the information on factor levels that will be deter-
mined by prep().

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The selected variables are adjusted to have a new level (given by new_level) that is placed in the
last position.

Note that if the original columns are character, they will be converted to factors by this step.

If new_level is already in the data given to prep, an error is thrown.

step_unknown 251

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected

statistic character, the factor levels for the new values

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

dummy_names()

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_integer(), step_novel(), step_num2factor(),
step_ordinalscore(), step_other(), step_regex(), step_relevel(), step_string2factor(),
step_time(), step_unorder()

Examples

data(Sacramento, package = "modeldata")

rec <-
recipe(~ city + zip, data = Sacramento) %>%
step_unknown(city, new_level = "unknown city") %>%
step_unknown(zip, new_level = "unknown zip") %>%
prep()

table(bake(rec, new_data = NULL) %>% pull(city),
Sacramento %>% pull(city),
useNA = "always"

) %>%
as.data.frame() %>%
dplyr::filter(Freq > 0)

tidy(rec, number = 1)

252 step_unorder

step_unorder Convert ordered factors to unordered factors

Description

step_unorder() creates a specification of a recipe step that will turn ordered factor variables into
unordered factor variables.

Usage

step_unorder(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("unorder")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The factors level order is preserved during the transformation.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

step_window 253

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other dummy variable and encoding steps: step_bin2factor(), step_count(), step_date(),
step_dummy_extract(), step_dummy_multi_choice(), step_dummy(), step_factor2string(),
step_holiday(), step_indicate_na(), step_integer(), step_novel(), step_num2factor(),
step_ordinalscore(), step_other(), step_regex(), step_relevel(), step_string2factor(),
step_time(), step_unknown()

Examples

lmh <- c("Low", "Med", "High")

examples <- data.frame(
X1 = factor(rep(letters[1:4], each = 3)),
X2 = ordered(rep(lmh, each = 4),
levels = lmh

)
)

rec <- recipe(~ X1 + X2, data = examples)

factor_trans <- rec %>%
step_unorder(all_nominal_predictors())

factor_obj <- prep(factor_trans, training = examples)

transformed_te <- bake(factor_obj, examples)
table(transformed_te$X2, examples$X2)

tidy(factor_trans, number = 1)
tidy(factor_obj, number = 1)

step_window Moving window functions

Description

step_window() creates a specification of a recipe step that will create new columns that are the
results of functions that compute statistics across moving windows.

254 step_window

Usage

step_window(
recipe,
...,
role = NA,
trained = FALSE,
size = 3,
na_rm = TRUE,
statistic = "mean",
columns = NULL,
names = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("window")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
If names is left to be NULL, the rolling statistics replace the original columns and
the roles are left unchanged. If names is set, those new columns will have a role
of NULL unless this argument has a value.

trained A logical to indicate if the quantities for preprocessing have been estimated.

size An odd integer >= 3 for the window size.

na_rm A logical for whether missing values should be removed from the calculations
within each window.

statistic A character string for the type of statistic that should be calculated for each mov-
ing window. Possible values are: 'max', 'mean', 'median', 'min', 'prod',
'sd', 'sum', 'var'

columns A character string of the selected variable names. This field is a placeholder and
will be populated once prep() is used.

names An optional character string that is the same length of the number of terms se-
lected by terms. If you are not sure what columns will be selected, use the
summary function (see the example below). These will be the names of the new
columns created by the step.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

step_window 255

id A character string that is unique to this step to identify it.

Details

The calculations use a somewhat atypical method for handling the beginning and end parts of the
rolling statistics. The process starts with the center justified window calculations and the beginning
and ending parts of the rolling values are determined using the first and last rolling values, respec-
tively. For example, if a column x with 12 values is smoothed with a 5-point moving median, the
first three smoothed values are estimated by median(x[1:5]) and the fourth uses median(x[2:6]).

keep_original_cols also applies to this step if names is specified.

step will stop with a note about installing the package.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, statistic, size , and id:

terms character, the selectors or variables selected

statistic character, the summary function name

size integer, window size

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• statistic: Rolling Summary Statistic (type: character, default: mean)

• size: Window Size (type: integer, default: 3)

Case weights

The underlying operation does not allow for case weights.

Examples

library(recipes)
library(dplyr)
library(rlang)
library(ggplot2, quietly = TRUE)

set.seed(5522)
sim_dat <- data.frame(x1 = (20:100) / 10)
n <- nrow(sim_dat)
sim_dat$y1 <- sin(sim_dat$x1) + rnorm(n, sd = 0.1)
sim_dat$y2 <- cos(sim_dat$x1) + rnorm(n, sd = 0.1)

256 step_YeoJohnson

sim_dat$x2 <- runif(n)
sim_dat$x3 <- rnorm(n)

rec <- recipe(y1 + y2 ~ x1 + x2 + x3, data = sim_dat) %>%
step_window(starts_with("y"),
size = 7, statistic = "median",
names = paste0("med_7pt_", 1:2),
role = "outcome"

) %>%
step_window(starts_with("y"),

names = paste0("mean_3pt_", 1:2),
role = "outcome"

)
rec <- prep(rec, training = sim_dat)

smoothed_dat <- bake(rec, sim_dat, everything())

ggplot(data = sim_dat, aes(x = x1, y = y1)) +
geom_point() +
geom_line(data = smoothed_dat, aes(y = med_7pt_1)) +
geom_line(data = smoothed_dat, aes(y = mean_3pt_1), col = "red") +
theme_bw()

tidy(rec, number = 1)
tidy(rec, number = 2)

If you want to replace the selected variables with the rolling statistic
don't set `names`
sim_dat$original <- sim_dat$y1
rec <- recipe(y1 + y2 + original ~ x1 + x2 + x3, data = sim_dat) %>%

step_window(starts_with("y"))
rec <- prep(rec, training = sim_dat)
smoothed_dat <- bake(rec, sim_dat, everything())
ggplot(smoothed_dat, aes(x = original, y = y1)) +

geom_point() +
theme_bw()

step_YeoJohnson Yeo-Johnson transformation

Description

step_YeoJohnson() creates a specification of a recipe step that will transform data using a Yeo-
Johnson transformation.

Usage

step_YeoJohnson(
recipe,

step_YeoJohnson 257

...,
role = NA,
trained = FALSE,
lambdas = NULL,
limits = c(-5, 5),
num_unique = 5,
na_rm = TRUE,
skip = FALSE,
id = rand_id("YeoJohnson")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

lambdas A numeric vector of transformation values. This is NULL until computed by
prep().

limits A length 2 numeric vector defining the range to compute the transformation
parameter lambda.

num_unique An integer where data that have less possible values will not be evaluated for a
transformation.

na_rm A logical value indicating whether NA values should be removed during compu-
tations.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

The Yeo-Johnson transformation is very similar to the Box-Cox but does not require the input vari-
ables to be strictly positive. In the package, the partial log-likelihood function is directly optimized
within a reasonable set of transformation values (which can be changed by the user).

This transformation is typically done on the outcome variable using the residuals for a statistical
model (such as ordinary least squares). Here, a simple null model (intercept only) is used to apply
the transformation to the predictor variables individually. This can have the effect of making the
variable distributions more symmetric.

If the transformation parameters are estimated to be very closed to the bounds, or if the optimization
fails, a value of NA is used and no transformation is applied.

258 step_YeoJohnson

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms, value , and id:

terms character, the selectors or variables selected
value numeric, the lambda estimate
id character, id of this step

Case weights

The underlying operation does not allow for case weights.

References

Yeo, I. K., and Johnson, R. A. (2000). A new family of power transformations to improve normality
or symmetry. Biometrika.

See Also

Other individual transformation steps: step_BoxCox(), step_bs(), step_harmonic(), step_hyperbolic(),
step_inverse(), step_invlogit(), step_logit(), step_log(), step_mutate(), step_ns(),
step_percentile(), step_poly(), step_relu(), step_sqrt()

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

)

yj_transform <- step_YeoJohnson(rec, all_numeric())

yj_estimates <- prep(yj_transform, training = biomass_tr)

yj_te <- bake(yj_estimates, biomass_te)

plot(density(biomass_te$sulfur), main = "before")
plot(density(yj_te$sulfur), main = "after")

tidy(yj_transform, number = 1)
tidy(yj_estimates, number = 1)

step_zv 259

step_zv Zero variance filter

Description

step_zv() creates a specification of a recipe step that will remove variables that contain only a
single value.

Usage

step_zv(
recipe,
...,
role = NA,
trained = FALSE,
group = NULL,
removals = NULL,
skip = FALSE,
id = rand_id("zv")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
group An optional character string or call to dplyr::vars() that can be used to spec-

ify a group(s) within which to identify variables that contain only a single value.
If the grouping variables are contained in terms selector, they will not be con-
sidered for removal.

removals A character string that contains the names of columns that should be removed.
These values are not determined until prep() is called.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

This step can potentially remove columns from the data set. This may cause issues for subsequent
steps in your recipe if the missing columns are specifically referenced by name. To avoid this, see
the advice in the Tips for saving recipes and filtering columns section of selections.

260 step_zv

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, names of the columns that will be removed

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other variable filter steps: step_corr(), step_filter_missing(), step_lincomb(), step_nzv(),
step_rm(), step_select()

Examples

data(biomass, package = "modeldata")

biomass$one_value <- 1

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen +
nitrogen + sulfur + one_value,

data = biomass_tr
)

zv_filter <- rec %>%
step_zv(all_predictors())

filter_obj <- prep(zv_filter, training = biomass_tr)

filtered_te <- bake(filter_obj, biomass_te)
any(names(filtered_te) == "one_value")

tidy(zv_filter, number = 1)
tidy(filter_obj, number = 1)

summary.recipe 261

summary.recipe Summarize a recipe

Description

This function prints the current set of variables/features and some of their characteristics.

Usage

S3 method for class 'recipe'
summary(object, original = FALSE, ...)

Arguments

object A recipe object

original A logical: show the current set of variables or the original set when the recipe
was defined.

... further arguments passed to or from other methods (not currently used).

Details

Note that, until the recipe has been trained, the current and original variables are the same.

It is possible for variables to have multiple roles by adding them with add_role(). If a variable has
multiple roles, it will have more than one row in the summary tibble.

Value

A tibble with columns variable, type, role, and source. When original = TRUE, an additional
column is included named required_to_bake (based on the results of update_role_requirements()).

See Also

recipe() prep()

Examples

rec <- recipe(~., data = USArrests)
summary(rec)
rec <- step_pca(rec, all_numeric(), num_comp = 3)
summary(rec) # still the same since not yet trained
rec <- prep(rec, training = USArrests)
summary(rec)

262 tidy.step_BoxCox

tidy.step_BoxCox Tidy the result of a recipe

Description

tidy will return a data frame that contains information regarding a recipe or operation within the
recipe (when a tidy method for the operation exists).

Usage

S3 method for class 'step_BoxCox'
tidy(x, ...)

S3 method for class 'step_YeoJohnson'
tidy(x, ...)

S3 method for class 'step_arrange'
tidy(x, ...)

S3 method for class 'step_bin2factor'
tidy(x, ...)

S3 method for class 'step_bs'
tidy(x, ...)

S3 method for class 'step_center'
tidy(x, ...)

S3 method for class 'check_class'
tidy(x, ...)

S3 method for class 'step_classdist'
tidy(x, ...)

S3 method for class 'step_classdist_shrunken'
tidy(x, ...)

S3 method for class 'check_cols'
tidy(x, ...)

S3 method for class 'step_corr'
tidy(x, ...)

S3 method for class 'step_count'
tidy(x, ...)

S3 method for class 'step_cut'

tidy.step_BoxCox 263

tidy(x, ...)

S3 method for class 'step_date'
tidy(x, ...)

S3 method for class 'step_depth'
tidy(x, ...)

S3 method for class 'step_discretize'
tidy(x, ...)

S3 method for class 'step_dummy'
tidy(x, ...)

S3 method for class 'step_dummy_extract'
tidy(x, ...)

S3 method for class 'step_dummy_multi_choice'
tidy(x, ...)

S3 method for class 'step_factor2string'
tidy(x, ...)

S3 method for class 'step_filter'
tidy(x, ...)

S3 method for class 'step_filter_missing'
tidy(x, ...)

S3 method for class 'step_geodist'
tidy(x, ...)

S3 method for class 'step_harmonic'
tidy(x, ...)

S3 method for class 'step_holiday'
tidy(x, ...)

S3 method for class 'step_hyperbolic'
tidy(x, ...)

S3 method for class 'step_ica'
tidy(x, ...)

S3 method for class 'step_impute_bag'
tidy(x, ...)

S3 method for class 'step_impute_knn'

264 tidy.step_BoxCox

tidy(x, ...)

S3 method for class 'step_impute_linear'
tidy(x, ...)

S3 method for class 'step_impute_lower'
tidy(x, ...)

S3 method for class 'step_impute_mean'
tidy(x, ...)

S3 method for class 'step_impute_median'
tidy(x, ...)

S3 method for class 'step_impute_mode'
tidy(x, ...)

S3 method for class 'step_impute_roll'
tidy(x, ...)

S3 method for class 'step_indicate_na'
tidy(x, ...)

S3 method for class 'step_integer'
tidy(x, ...)

S3 method for class 'step_interact'
tidy(x, ...)

S3 method for class 'step_intercept'
tidy(x, ...)

S3 method for class 'step_inverse'
tidy(x, ...)

S3 method for class 'step_invlogit'
tidy(x, ...)

S3 method for class 'step_isomap'
tidy(x, ...)

S3 method for class 'step_kpca'
tidy(x, ...)

S3 method for class 'step_kpca_poly'
tidy(x, ...)

S3 method for class 'step_kpca_rbf'

tidy.step_BoxCox 265

tidy(x, ...)

S3 method for class 'step_lag'
tidy(x, ...)

S3 method for class 'step_lincomb'
tidy(x, ...)

S3 method for class 'step_log'
tidy(x, ...)

S3 method for class 'step_logit'
tidy(x, ...)

S3 method for class 'check_missing'
tidy(x, ...)

S3 method for class 'step_mutate'
tidy(x, ...)

S3 method for class 'step_mutate_at'
tidy(x, ...)

S3 method for class 'step_naomit'
tidy(x, ...)

S3 method for class 'check_new_values'
tidy(x, ...)

S3 method for class 'step_nnmf'
tidy(x, ...)

S3 method for class 'step_nnmf_sparse'
tidy(x, ...)

S3 method for class 'step_normalize'
tidy(x, ...)

S3 method for class 'step_novel'
tidy(x, ...)

S3 method for class 'step_ns'
tidy(x, ...)

S3 method for class 'step_num2factor'
tidy(x, ...)

S3 method for class 'step_nzv'

266 tidy.step_BoxCox

tidy(x, ...)

S3 method for class 'step_ordinalscore'
tidy(x, ...)

S3 method for class 'step_other'
tidy(x, ...)

S3 method for class 'step_pca'
tidy(x, type = "coef", ...)

S3 method for class 'step_percentile'
tidy(x, ...)

S3 method for class 'step_pls'
tidy(x, ...)

S3 method for class 'step_poly'
tidy(x, ...)

S3 method for class 'step_poly_bernstein'
tidy(x, ...)

S3 method for class 'step_profile'
tidy(x, ...)

S3 method for class 'step_range'
tidy(x, ...)

S3 method for class 'check_range'
tidy(x, ...)

S3 method for class 'step_ratio'
tidy(x, ...)

S3 method for class 'step_regex'
tidy(x, ...)

S3 method for class 'step_relevel'
tidy(x, ...)

S3 method for class 'step_relu'
tidy(x, ...)

S3 method for class 'step_rename'
tidy(x, ...)

S3 method for class 'step_rename_at'

tidy.step_BoxCox 267

tidy(x, ...)

S3 method for class 'step_rm'
tidy(x, ...)

S3 method for class 'step_sample'
tidy(x, ...)

S3 method for class 'step_scale'
tidy(x, ...)

S3 method for class 'step_select'
tidy(x, ...)

S3 method for class 'step_shuffle'
tidy(x, ...)

S3 method for class 'step_slice'
tidy(x, ...)

S3 method for class 'step_spatialsign'
tidy(x, ...)

S3 method for class 'step_spline_b'
tidy(x, ...)

S3 method for class 'step_spline_convex'
tidy(x, ...)

S3 method for class 'step_spline_monotone'
tidy(x, ...)

S3 method for class 'step_spline_natural'
tidy(x, ...)

S3 method for class 'step_spline_nonnegative'
tidy(x, ...)

S3 method for class 'step_sqrt'
tidy(x, ...)

S3 method for class 'step_string2factor'
tidy(x, ...)

S3 method for class 'recipe'
tidy(x, number = NA, id = NA, ...)

S3 method for class 'step'

268 tidy.step_BoxCox

tidy(x, ...)

S3 method for class 'check'
tidy(x, ...)

S3 method for class 'step_time'
tidy(x, ...)

S3 method for class 'step_unknown'
tidy(x, ...)

S3 method for class 'step_unorder'
tidy(x, ...)

S3 method for class 'step_window'
tidy(x, ...)

S3 method for class 'step_zv'
tidy(x, ...)

Arguments

x A recipe object, step, or check (trained or otherwise).

... Not currently used.

type For step_pca, either "coef" (for the variable loadings per component) or "variance"
(how much variance does each component account for).

number An integer or NA. If missing, and id is not provided, the return value is a list of
the operations in the recipe. If a number is given, a tidy method is executed for
that operation in the recipe (if it exists). number must not be provided if id is.

id A character string or NA. If missing and number is not provided, the return value
is a list of the operations in the recipe. If a character string is given, a tidy
method is executed for that operation in the recipe (if it exists). id must not be
provided if number is.

Value

A tibble with columns that vary depending on what tidy method is executed. When number, and id
are NA, a tibble with columns number (the operation iteration), operation (either "step" or "check"),
type (the method, e.g. "nzv", "center"), a logical column called trained for whether the operation
has been estimated using prep, a logical for skip, and a character column id.

Examples

data(Sacramento, package = "modeldata")

Sacramento_rec <- recipe(~., data = Sacramento) %>%
step_other(all_nominal(), threshold = 0.05, other = "another") %>%

update.step 269

step_center(all_numeric()) %>%
step_dummy(all_nominal()) %>%
check_cols(ends_with("ude"), sqft, price)

tidy(Sacramento_rec)

tidy(Sacramento_rec, number = 2)
tidy(Sacramento_rec, number = 3)

Sacramento_rec_trained <- prep(Sacramento_rec, training = Sacramento)

tidy(Sacramento_rec_trained)
tidy(Sacramento_rec_trained, number = 3)
tidy(Sacramento_rec_trained, number = 4)

update.step Update a recipe step

Description

This step method for update() takes named arguments as ... who’s values will replace the ele-
ments of the same name in the actual step.

Usage

S3 method for class 'step'
update(object, ...)

Arguments

object A recipe step.

... Key-value pairs where the keys match up with names of elements in the step,
and the values are the new values to update the step with.

Details

For a step to be updated, it must not already have been trained. Otherwise, conflicting information
can arise between the data returned from bake(object, new_data = NULL) and the information in
the step.

Examples

data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

270 update_role_requirements

Create a recipe using step_bs() with degree = 3
rec <- recipe(

HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr

) %>%
step_bs(carbon, hydrogen, degree = 3)

Update the step to use degree = 4
rec2 <- rec
rec2$steps[[1]] <- update(rec2$steps[[1]], degree = 4)

Prep both recipes
rec_prepped <- prep(rec, training = biomass_tr)
rec2_prepped <- prep(rec2, training = biomass_tr)

To see what changed
bake(rec_prepped, new_data = NULL)
bake(rec2_prepped, new_data = NULL)

Cannot update a recipe step that has been trained!
Not run:
update(rec_prepped$steps[[1]], degree = 4)

End(Not run)

update_role_requirements

Update role specific requirements

Description

update_role_requirements() allows you to fine tune requirements of the various roles you might
come across in recipes (see update_role() for general information about roles). Role requirements
can only be altered for roles that exist in the original data supplied to recipe(), they are not applied
to columns computed by steps.

Like update_role(), update_role_requirements() is applied to the recipe immediately, unlike
the step_*() functions which do most of their work at prep() time.

Usage

update_role_requirements(recipe, role, ..., bake = NULL)

Arguments

recipe A recipe.

role A string representing the role that you’d like to modify the requirements of. This
must be a role that already exists in the recipe.

update_role_requirements 271

... These dots are for future extensions and must be empty.

bake At bake() time, should a check be done to ensure that all columns of this role
that were supplied to recipe() also be present in the new_data supplied to
bake()?
Must be a single TRUE or FALSE. The default, NULL, won’t modify this require-
ment.
The following represents the default bake time requirements of specific types of
roles:

• "outcome": Not required at bake time. Can’t be changed.
• "predictor": Required at bake time. Can’t be changed.
• "case_weights": Not required at bake time by default.
• NA: Required at bake time by default.
• Custom roles: Required at bake time by default.

Examples

df <- tibble(y = c(1, 2, 3), x = c(4, 5, 6), var = c("a", "b", "c"))

Let's assume that you have a `var` column that isn't used in the recipe.
We typically recommend that you remove this column before passing the
`data` to `recipe()`, but for now let's pass it through and assign it an
`"id"` role.
rec <- recipe(y ~ ., df) %>%
update_role(var, new_role = "id") %>%
step_center(x)

prepped <- prep(rec, df)

Now assume you have some "new data" and you are ready to `bake()` it
to prepare it for prediction purposes. Here, you might not have `var`
available as a column because it isn't important to your model.
new_data <- df[c("y", "x")]

By default `var` is required at `bake()` time because we don't know if
you actually use it in the recipe or not
try(bake(prepped, new_data))

You can turn off this check by using `update_role_requirements()` and
setting `bake = FALSE` for the `"id"` role. We recommend doing this on
the original unprepped recipe, but it will also work on a prepped recipe.
rec <- update_role_requirements(rec, "id", bake = FALSE)
prepped <- prep(rec, df)

Now you can `bake()` on `new_data` even though `var` is missing
bake(prepped, new_data)

Index

∗ checks
check_class, 11
check_cols, 13
check_missing, 15
check_new_values, 16
check_range, 18

∗ discretization steps
step_cut, 70
step_discretize, 77

∗ dplyr steps
step_arrange, 49
step_filter, 90
step_mutate, 159
step_mutate_at, 161
step_rename, 214
step_rename_at, 215
step_sample, 219
step_select, 223
step_slice, 227

∗ dummy variable and encoding steps
step_bin2factor, 51
step_count, 68
step_date, 72
step_dummy, 79
step_dummy_extract, 82
step_dummy_multi_choice, 85
step_factor2string, 88
step_holiday, 100
step_indicate_na, 128
step_integer, 130
step_novel, 172
step_num2factor, 177
step_ordinalscore, 182
step_other, 184
step_regex, 207
step_relevel, 209
step_string2factor, 245
step_time, 248
step_unknown, 250

step_unorder, 252
∗ imputation steps

step_impute_bag, 107
step_impute_knn, 110
step_impute_linear, 113
step_impute_lower, 116
step_impute_mean, 118
step_impute_median, 121
step_impute_mode, 123
step_impute_roll, 125

∗ individual transformation steps
step_BoxCox, 53
step_bs, 55
step_harmonic, 96
step_hyperbolic, 102
step_inverse, 136
step_invlogit, 137
step_log, 155
step_logit, 157
step_mutate, 159
step_ns, 175
step_percentile, 190
step_poly, 195
step_relu, 211
step_sqrt, 244
step_YeoJohnson, 256

∗ multivariate transformation steps
step_classdist, 59
step_classdist_shrunken, 62
step_depth, 74
step_geodist, 94
step_ica, 104
step_isomap, 139
step_kpca, 142
step_kpca_poly, 145
step_kpca_rbf, 148
step_mutate_at, 161
step_nnmf, 165
step_nnmf_sparse, 168

272

INDEX 273

step_pca, 187
step_pls, 192
step_ratio, 205
step_spatialsign, 229

∗ normalization steps
step_center, 57
step_normalize, 170
step_range, 203
step_scale, 221

∗ row operation steps
step_arrange, 49
step_filter, 90
step_impute_roll, 125
step_lag, 151
step_naomit, 163
step_sample, 219
step_shuffle, 225
step_slice, 227

∗ variable filter steps
step_corr, 65
step_filter_missing, 92
step_lincomb, 153
step_nzv, 179
step_rm, 217
step_select, 223
step_zv, 259

.get_data_types, 4

.get_data_types(), 22, 23

abort(), 9
add_check (add_step), 6
add_check(), 21
add_role (roles), 43
add_role(), 41, 261
add_step, 6
add_step(), 21
all_date (has_role), 27
all_date_predictors (has_role), 27
all_datetime (has_role), 27
all_datetime_predictors (has_role), 27
all_double (has_role), 27
all_double_predictors (has_role), 27
all_factor (has_role), 27
all_factor_predictors (has_role), 27
all_integer (has_role), 27
all_integer(), 6
all_integer_predictors (has_role), 27
all_logical (has_role), 27
all_logical_predictors (has_role), 27

all_nominal (has_role), 27
all_nominal(), 6, 47
all_nominal_predictors (has_role), 27
all_nominal_predictors(), 47
all_numeric (has_role), 27
all_numeric(), 47
all_numeric_predictors (has_role), 27
all_numeric_predictors(), 40, 47
all_ordered (has_role), 27
all_ordered_predictors (has_role), 27
all_outcomes (has_role), 27
all_outcomes(), 47
all_predictors (has_role), 27
all_predictors(), 47
all_string (has_role), 27
all_string(), 6
all_string_predictors (has_role), 27
all_unordered (has_role), 27
all_unordered_predictors (has_role), 27
are_weights_used (case-weight-helpers),

9
are_weights_used(), 23
averages (case-weight-helpers), 9

bake, 7
bake(), 8, 12, 14, 15, 17, 19, 29, 30, 39, 50,

52, 54, 56, 58, 60, 63, 66, 69, 70, 73,
75, 78, 80, 83, 86, 88, 90, 91, 93, 95,
97, 101, 103, 105, 108, 111, 114,
117, 119, 121, 124, 126, 129, 130,
133, 135, 136, 138, 140, 143, 146,
149, 152, 154, 156, 158, 160, 162,
164, 166, 169, 171, 173, 175, 177,
178, 180, 183, 185, 188, 191, 193,
196, 199, 201, 204, 206, 208, 210,
212, 214, 216, 217, 219, 220, 222,
223, 226–228, 230, 232, 235, 237,
240, 242, 244, 246, 248, 250, 252,
254, 257, 259

bake.recipe, 171
bake.recipe(), 41
base::as.integer(), 177
base::make.names(), 31

case-weight-helpers, 9
case_weights, 10, 59, 61, 64, 67, 84, 93, 115,

120, 122, 124, 172, 181, 186, 189,
191, 220, 222, 230

check(), 22

274 INDEX

check_class, 11, 14, 16, 18, 20
check_cols, 12, 13, 16, 18, 20
check_missing, 12, 14, 15, 18, 20
check_name(), 23
check_new_data(), 22
check_new_values, 12, 14, 16, 16, 20
check_range, 12, 14, 16, 18, 18
check_type(), 22
class(), 6
clock::clock_labels(), 73
contr.treatment(), 209
cor(), 9
correlations (case-weight-helpers), 9
correlations(), 9
cov(), 9
covariances (case-weight-helpers), 9
covariances(), 9
current_info (has_role), 27

Date(), 27
ddalpha::depth.halfspace(), 75
ddalpha::depth.Mahalanobis(), 75
ddalpha::depth.potential(), 75
ddalpha::depth.projection(), 75
ddalpha::depth.simplicial(), 75
ddalpha::depth.simplicialVolume(), 75
ddalpha::depth.spatial(), 75
ddalpha::depth.zonoid(), 75
denom_vars (step_ratio), 205
detect_step, 20
detect_step(), 23
developer_functions, 6, 7, 10, 21, 21, 26,

31, 41, 43
dimRed::Isomap(), 140
discretize, 24
discretize(), 78
dplyr::all_of(), 48
dplyr::any_of(), 48
dplyr::arrange(), 49
dplyr::filter(), 90
dplyr::mutate(), 159
dplyr::mutate_at(), 162
dplyr::rename(), 214
dplyr::rename_at(), 215, 216
dplyr::sample_frac(), 219
dplyr::sample_n(), 219
dplyr::select(), 223
dplyr::slice(), 227
dplyr::vars(), 193, 201, 259

dummy_extract_names (names0), 30
dummy_extract_names(), 84
dummy_names (names0), 30
dummy_names(), 80, 81, 83, 86, 174, 186, 251

everything(), 7, 30

fastICA::fastICA(), 105
fit(), 37
formula.recipe, 25
frequency_weights(), 11
fully_trained, 26
fully_trained(), 23

get_case_weights (case-weight-helpers),
9

get_case_weights(), 10, 23
get_keep_original_cols(), 23
gower::gower_topn(), 111
gregexpr(), 68, 83
grepl(), 208

hardhat::default_recipe_blueprint(),
173

hardhat::frequency_weights(), 10
hardhat::importance_weights(), 10
has_role, 27
has_role(), 44, 47
has_type (has_role), 27
has_type(), 47
head(), 36

imp_vars (step_impute_bag), 107
importance_weights(), 11
ipred::ipredbagg(), 108
is_trained(), 23

juice, 29
juice(), 41

kernlab::kpca(), 143, 146, 149

lm(), 114
locales, 73

make.names(), 81
medians (case-weight-helpers), 9

names0, 30
names0(), 23

INDEX 275

pca_wts (case-weight-helpers), 9
POSIXct(), 27
predict(), 37, 39
predict.discretize (discretize), 24
prep, 31
prep(), 7, 8, 11, 12, 14, 15, 17, 19, 30, 32, 36,

38, 41, 50, 52, 54, 56, 58, 60, 63, 66,
69, 70, 73, 75, 78, 80, 83, 86, 88, 90,
92, 93, 95, 97, 101, 103, 105, 108,
111, 114, 117, 119, 121, 124, 126,
128–130, 133, 135, 136, 138, 140,
143, 146, 149, 152, 154, 156, 158,
160, 162, 164, 166, 169, 171, 173,
175, 177, 178, 180, 182, 183, 185,
188, 191, 193, 196, 199, 201, 204,
206, 208, 210, 212, 214, 216, 217,
219, 221–223, 225–227, 230, 232,
235, 237, 240, 242, 244, 246, 248,
250, 252, 254, 257, 259, 261, 270

prepper, 33
print.recipe, 34
print_step(), 23
printer(), 23

rand_id(), 22
recipe, 34
recipe(), 7, 8, 30, 32, 36, 43, 91, 164, 220,

228, 261, 270
recipes_eval_select, 40
recipes_eval_select(), 22
recipes_extension_check, 42
recipes_extension_check(), 23
recipes_pkg_check(), 22
recipes_remove_cols(), 23
regmatches(), 83
remove_original_cols(), 23
remove_role (roles), 43
required_pkgs(), 22
rlang::abort(), 41
rlang::enquos(), 41
roles, 43

sel2char(), 23
selection (selections), 46
selections, 4, 23, 27, 40, 46, 66, 93, 154,

180, 218, 224, 259
selections(), 7, 11, 14, 15, 17, 19, 30, 43,

52, 53, 56, 58, 60, 63, 66, 68, 70, 72,
75, 77, 80, 83, 86, 88, 92, 94, 97,

101, 103, 105, 108, 111, 114, 116,
119, 121, 123, 126, 128, 130, 132,
136, 138, 140, 143, 146, 149, 152,
153, 156, 158, 162, 164, 166, 168,
171, 173, 175, 177, 180, 182, 185,
188, 191, 193, 196, 198, 201, 203,
206, 208, 210, 212, 216, 217, 221,
223, 225, 229, 232, 234, 237, 239,
242, 244, 246, 248, 250, 252, 254,
257, 259

splines2::bernsteinPoly(), 199, 200
splines2::bSpline(), 232, 233
splines2::cSpline(), 234, 235
splines2::iSpline(), 237, 238
splines2::mSpline(), 242, 243
splines2::naturalSpline(), 239, 240
splines::bs(), 56
splines::ns(), 175, 176
stats::cor(), 10, 66
stats::poly(), 196, 197
stats::prcomp(), 188
stats::prcomp.default(), 188
stats::quantile(), 24, 191
step(), 22
step_arrange, 49, 91, 127, 152, 160, 163,

165, 215, 217, 220, 224, 226, 228
step_bagimpute (step_impute_bag), 107
step_bin2factor, 51, 69, 74, 81, 84, 87, 89,

102, 129, 131, 174, 178, 183, 186,
209, 211, 247, 249, 251, 253

step_BoxCox, 53, 57, 99, 103, 137, 139, 156,
158, 160, 176, 191, 197, 213, 245,
258

step_bs, 55, 55, 99, 103, 137, 139, 156, 158,
160, 176, 191, 197, 213, 245, 258

step_center, 57, 172, 204, 222
step_center(), 188
step_classdist, 59, 64, 76, 96, 106, 141,

144, 147, 150, 163, 167, 170, 189,
194, 207, 230

step_classdist_shrunken, 61, 62, 76, 96,
106, 141, 144, 147, 150, 163, 167,
170, 189, 194, 207, 230

step_corr, 65, 93, 154, 181, 218, 224, 260
step_count, 52, 68, 74, 81, 84, 87, 89, 102,

129, 131, 174, 178, 183, 186, 209,
211, 247, 249, 251, 253

step_cut, 70, 78

276 INDEX

step_date, 52, 69, 72, 81, 84, 87, 89, 102,
129, 131, 174, 178, 183, 186, 209,
211, 247, 249, 251, 253

step_date(), 249
step_depth, 61, 64, 74, 96, 106, 141, 144,

147, 150, 163, 167, 170, 189, 194,
207, 230

step_discretize, 71, 77
step_dummy, 52, 69, 74, 79, 84, 87, 89, 102,

129, 131, 174, 178, 183, 186, 209,
211, 247, 249, 251, 253

step_dummy(), 30, 31, 36, 48, 133
step_dummy_extract, 52, 69, 74, 81, 82, 87,

89, 102, 129, 131, 174, 178, 183,
186, 209, 211, 247, 249, 251, 253

step_dummy_multi_choice, 52, 69, 74, 81,
84, 85, 89, 102, 129, 131, 174, 178,
183, 186, 209, 211, 247, 249, 251,
253

step_factor2string, 52, 69, 74, 81, 84, 87,
88, 102, 129, 131, 174, 178, 183,
186, 209, 211, 247, 249, 251, 253

step_filter, 50, 90, 127, 152, 160, 163, 165,
215, 217, 220, 224, 226, 228

step_filter_missing, 67, 92, 154, 181, 218,
224, 260

step_geodist, 61, 64, 76, 94, 106, 141, 144,
147, 150, 163, 167, 170, 189, 194,
207, 230

step_harmonic, 55, 57, 96, 103, 137, 139,
156, 158, 160, 176, 191, 197, 213,
245, 258

step_holiday, 52, 69, 74, 81, 84, 87, 89, 100,
129, 131, 174, 178, 183, 186, 209,
211, 247, 249, 251, 253

step_hyperbolic, 55, 57, 99, 102, 137, 139,
156, 158, 160, 176, 191, 197, 213,
245, 258

step_ica, 61, 64, 76, 96, 104, 141, 144, 147,
150, 163, 167, 170, 189, 194, 207,
230

step_impute_bag, 107, 112, 115, 117, 120,
122, 124, 127

step_impute_knn, 109, 110, 115, 117, 120,
122, 124, 127

step_impute_linear, 109, 112, 113, 117,
120, 122, 124, 127

step_impute_lower, 109, 112, 115, 116, 120,

122, 124, 127
step_impute_mean, 109, 112, 115, 117, 118,

122, 124, 127
step_impute_median, 109, 112, 115, 117,

120, 121, 124, 127
step_impute_mode, 109, 112, 115, 117, 120,

122, 123, 127
step_impute_roll, 50, 91, 109, 112, 115,

117, 120, 122, 124, 125, 152, 165,
220, 226, 228

step_indicate_na, 52, 69, 74, 81, 84, 87, 89,
102, 128, 131, 174, 178, 183, 186,
209, 211, 247, 249, 251, 253

step_integer, 52, 69, 74, 81, 84, 87, 89, 102,
129, 130, 174, 178, 183, 186, 209,
211, 247, 249, 251, 253

step_interact, 132
step_interact(), 48
step_intercept, 134
step_inverse, 55, 57, 99, 103, 136, 139, 156,

158, 160, 176, 191, 197, 213, 245,
258

step_invlogit, 55, 57, 99, 103, 137, 137,
156, 158, 160, 176, 191, 197, 213,
245, 258

step_isomap, 61, 64, 76, 96, 106, 139, 144,
147, 150, 163, 167, 170, 189, 194,
207, 230

step_knnimpute (step_impute_knn), 110
step_kpca, 61, 64, 76, 96, 106, 141, 142, 147,

150, 163, 167, 170, 189, 194, 207,
230

step_kpca_poly, 61, 64, 76, 96, 106, 141,
144, 145, 150, 163, 167, 170, 189,
194, 207, 230

step_kpca_poly(), 143
step_kpca_rbf, 61, 64, 76, 96, 106, 141, 144,

147, 148, 163, 167, 170, 189, 194,
207, 230

step_kpca_rbf(), 143
step_lag, 50, 91, 127, 151, 165, 220, 226, 228
step_lincomb, 67, 93, 153, 181, 218, 224, 260
step_log, 55, 57, 99, 103, 137, 139, 155, 158,

160, 176, 191, 197, 213, 245, 258
step_logit, 55, 57, 99, 103, 137, 139, 156,

157, 160, 176, 191, 197, 213, 245,
258

step_lowerimpute (step_impute_lower),

INDEX 277

116
step_meanimpute (step_impute_mean), 118
step_medianimpute (step_impute_median),

121
step_modeimpute (step_impute_mode), 123
step_mutate, 50, 55, 57, 91, 99, 103, 137,

139, 156, 158, 159, 163, 176, 191,
197, 213, 215, 217, 220, 224, 228,
245, 258

step_mutate_at, 50, 61, 64, 76, 91, 96, 106,
141, 144, 147, 150, 160, 161, 167,
170, 189, 194, 207, 215, 217, 220,
224, 228, 230

step_naomit, 50, 91, 127, 152, 163, 220, 226,
228

step_naomit(), 151
step_nnmf, 61, 64, 76, 96, 106, 141, 144, 147,

150, 163, 165, 170, 189, 194, 207,
230

step_nnmf_sparse, 61, 64, 76, 96, 106, 141,
144, 147, 150, 163, 167, 168, 189,
194, 207, 230

step_nnmf_sparse(), 165
step_normalize, 59, 170, 204, 222
step_normalize(), 36, 144, 146, 149
step_novel, 52, 69, 74, 81, 84, 87, 89, 102,

129, 131, 172, 178, 183, 186, 209,
211, 247, 249, 251, 253

step_ns, 55, 57, 99, 103, 137, 139, 156, 158,
160, 175, 191, 197, 213, 245, 258

step_num2factor, 52, 69, 74, 81, 84, 87, 89,
102, 129, 131, 174, 177, 183, 186,
209, 211, 247, 249, 251, 253

step_nzv, 67, 93, 154, 179, 218, 224, 260
step_ordinalscore, 52, 69, 74, 81, 84, 87,

89, 102, 129, 131, 174, 178, 182,
186, 209, 211, 247, 249, 251, 253

step_other, 52, 69, 74, 81, 84, 87, 89, 102,
129, 131, 174, 178, 183, 184, 209,
211, 247, 249, 251, 253

step_other(), 80
step_pca, 61, 64, 76, 96, 106, 141, 144, 147,

150, 163, 167, 170, 187, 194, 207,
230

step_pca(), 47
step_percentile, 55, 57, 99, 103, 137, 139,

156, 158, 160, 176, 190, 197, 213,
245, 258

step_pls, 61, 64, 76, 96, 106, 141, 144, 147,
150, 163, 167, 170, 189, 192, 207,
230

step_poly, 55, 57, 99, 103, 137, 139, 156,
158, 160, 176, 191, 195, 213, 245,
258

step_poly_bernstein, 198
step_profile, 200
step_range, 59, 172, 203, 222
step_ratio, 61, 64, 76, 96, 106, 141, 144,

147, 150, 163, 167, 170, 189, 194,
205, 230

step_regex, 52, 69, 74, 81, 84, 87, 89, 102,
129, 131, 174, 178, 183, 186, 207,
211, 247, 249, 251, 253

step_relevel, 52, 69, 74, 81, 84, 87, 89, 102,
129, 131, 174, 178, 183, 186, 209,
209, 247, 249, 251, 253

step_relu, 55, 57, 99, 103, 137, 139, 156,
158, 160, 176, 191, 197, 211, 245,
258

step_rename, 50, 91, 160, 163, 214, 217, 220,
224, 228

step_rename_at, 50, 91, 160, 163, 215, 215,
220, 224, 228

step_rm, 67, 93, 154, 181, 217, 224, 260
step_rollimpute (step_impute_roll), 125
step_sample, 50, 91, 127, 152, 160, 163, 165,

215, 217, 219, 224, 226, 228
step_scale, 59, 172, 204, 221
step_scale(), 188
step_select, 50, 67, 91, 93, 154, 160, 163,

181, 215, 217, 218, 220, 223, 228,
260

step_select(), 41
step_shuffle, 50, 91, 127, 152, 165, 220,

225, 228
step_slice, 50, 91, 127, 152, 160, 163, 165,

215, 217, 220, 224, 226, 227
step_spatialsign, 61, 64, 76, 96, 106, 141,

144, 147, 150, 163, 167, 170, 189,
194, 207, 229

step_spline_b, 231
step_spline_convex, 234
step_spline_monotone, 236
step_spline_natural, 239
step_spline_nonnegative, 241
step_sqrt, 55, 57, 99, 103, 137, 139, 156,

278 INDEX

158, 160, 176, 191, 197, 213, 244,
258

step_string2factor, 52, 69, 74, 81, 84, 87,
89, 102, 129, 131, 174, 178, 183,
186, 209, 211, 245, 249, 251, 253

step_time, 52, 69, 74, 81, 84, 87, 89, 102,
129, 131, 174, 178, 183, 186, 209,
211, 247, 248, 251, 253

step_time(), 73
step_unknown, 52, 69, 74, 81, 84, 87, 89, 102,

129, 131, 174, 178, 183, 186, 209,
211, 247, 249, 250, 253

step_unknown(), 80
step_unorder, 52, 69, 74, 81, 84, 87, 89, 102,

129, 131, 174, 178, 183, 186, 209,
211, 247, 249, 251, 252

step_window, 253
step_YeoJohnson, 55, 57, 99, 103, 137, 139,

156, 158, 160, 176, 191, 197, 213,
245, 256

step_zv, 67, 93, 154, 181, 218, 224, 259
strsplit(), 83
summary.recipe, 261

tidy(), 12, 14, 16, 17, 20, 36, 39, 50, 52, 54,
56, 58, 61, 64, 66, 69, 71, 73, 76, 78,
81, 84, 87, 89, 91, 93, 95, 98, 102,
103, 106, 109, 112, 115, 117, 119,
122, 124, 127, 129, 131, 133, 135,
137, 138, 141, 144, 147, 150, 152,
154, 156, 158, 160, 163, 164, 167,
169, 171, 174, 176, 178, 181, 183,
186, 189, 191, 194, 197, 199, 202,
204, 206, 208, 210, 213, 215, 216,
218, 220, 222, 224, 226, 228, 230,
233, 235, 238, 240, 243, 245, 247,
249, 251, 253, 255, 258, 260

tidy.check (tidy.step_BoxCox), 262
tidy.check_class (tidy.step_BoxCox), 262
tidy.check_cols (tidy.step_BoxCox), 262
tidy.check_missing (tidy.step_BoxCox),

262
tidy.check_new_values

(tidy.step_BoxCox), 262
tidy.check_range (tidy.step_BoxCox), 262
tidy.recipe (tidy.step_BoxCox), 262
tidy.recipe(), 38
tidy.step (tidy.step_BoxCox), 262

tidy.step_arrange (tidy.step_BoxCox),
262

tidy.step_bin2factor
(tidy.step_BoxCox), 262

tidy.step_BoxCox, 262
tidy.step_bs (tidy.step_BoxCox), 262
tidy.step_center (tidy.step_BoxCox), 262
tidy.step_classdist (tidy.step_BoxCox),

262
tidy.step_classdist_shrunken

(tidy.step_BoxCox), 262
tidy.step_corr (tidy.step_BoxCox), 262
tidy.step_count (tidy.step_BoxCox), 262
tidy.step_cut (tidy.step_BoxCox), 262
tidy.step_date (tidy.step_BoxCox), 262
tidy.step_depth (tidy.step_BoxCox), 262
tidy.step_discretize

(tidy.step_BoxCox), 262
tidy.step_dummy (tidy.step_BoxCox), 262
tidy.step_dummy_extract

(tidy.step_BoxCox), 262
tidy.step_dummy_multi_choice

(tidy.step_BoxCox), 262
tidy.step_factor2string

(tidy.step_BoxCox), 262
tidy.step_filter (tidy.step_BoxCox), 262
tidy.step_filter_missing

(tidy.step_BoxCox), 262
tidy.step_geodist (tidy.step_BoxCox),

262
tidy.step_harmonic (tidy.step_BoxCox),

262
tidy.step_holiday (tidy.step_BoxCox),

262
tidy.step_hyperbolic

(tidy.step_BoxCox), 262
tidy.step_ica (tidy.step_BoxCox), 262
tidy.step_impute_bag

(tidy.step_BoxCox), 262
tidy.step_impute_knn

(tidy.step_BoxCox), 262
tidy.step_impute_linear

(tidy.step_BoxCox), 262
tidy.step_impute_lower

(tidy.step_BoxCox), 262
tidy.step_impute_mean

(tidy.step_BoxCox), 262
tidy.step_impute_median

INDEX 279

(tidy.step_BoxCox), 262
tidy.step_impute_mode

(tidy.step_BoxCox), 262
tidy.step_impute_roll

(tidy.step_BoxCox), 262
tidy.step_indicate_na

(tidy.step_BoxCox), 262
tidy.step_integer (tidy.step_BoxCox),

262
tidy.step_interact (tidy.step_BoxCox),

262
tidy.step_intercept (tidy.step_BoxCox),

262
tidy.step_inverse (tidy.step_BoxCox),

262
tidy.step_invlogit (tidy.step_BoxCox),

262
tidy.step_isomap (tidy.step_BoxCox), 262
tidy.step_kpca (tidy.step_BoxCox), 262
tidy.step_kpca_poly (tidy.step_BoxCox),

262
tidy.step_kpca_rbf (tidy.step_BoxCox),

262
tidy.step_lag (tidy.step_BoxCox), 262
tidy.step_lincomb (tidy.step_BoxCox),

262
tidy.step_log (tidy.step_BoxCox), 262
tidy.step_logit (tidy.step_BoxCox), 262
tidy.step_mutate (tidy.step_BoxCox), 262
tidy.step_mutate_at (tidy.step_BoxCox),

262
tidy.step_naomit (tidy.step_BoxCox), 262
tidy.step_nnmf (tidy.step_BoxCox), 262
tidy.step_nnmf_sparse

(tidy.step_BoxCox), 262
tidy.step_normalize (tidy.step_BoxCox),

262
tidy.step_novel (tidy.step_BoxCox), 262
tidy.step_ns (tidy.step_BoxCox), 262
tidy.step_num2factor

(tidy.step_BoxCox), 262
tidy.step_nzv (tidy.step_BoxCox), 262
tidy.step_ordinalscore

(tidy.step_BoxCox), 262
tidy.step_other (tidy.step_BoxCox), 262
tidy.step_pca (tidy.step_BoxCox), 262
tidy.step_percentile

(tidy.step_BoxCox), 262

tidy.step_pls (tidy.step_BoxCox), 262
tidy.step_poly (tidy.step_BoxCox), 262
tidy.step_poly_bernstein

(tidy.step_BoxCox), 262
tidy.step_profile (tidy.step_BoxCox),

262
tidy.step_range (tidy.step_BoxCox), 262
tidy.step_ratio (tidy.step_BoxCox), 262
tidy.step_regex (tidy.step_BoxCox), 262
tidy.step_relevel (tidy.step_BoxCox),

262
tidy.step_relu (tidy.step_BoxCox), 262
tidy.step_rename (tidy.step_BoxCox), 262
tidy.step_rename_at (tidy.step_BoxCox),

262
tidy.step_rm (tidy.step_BoxCox), 262
tidy.step_sample (tidy.step_BoxCox), 262
tidy.step_scale (tidy.step_BoxCox), 262
tidy.step_select (tidy.step_BoxCox), 262
tidy.step_shuffle (tidy.step_BoxCox),

262
tidy.step_slice (tidy.step_BoxCox), 262
tidy.step_spatialsign

(tidy.step_BoxCox), 262
tidy.step_spline_b (tidy.step_BoxCox),

262
tidy.step_spline_convex

(tidy.step_BoxCox), 262
tidy.step_spline_monotone

(tidy.step_BoxCox), 262
tidy.step_spline_natural

(tidy.step_BoxCox), 262
tidy.step_spline_nonnegative

(tidy.step_BoxCox), 262
tidy.step_sqrt (tidy.step_BoxCox), 262
tidy.step_string2factor

(tidy.step_BoxCox), 262
tidy.step_time (tidy.step_BoxCox), 262
tidy.step_unknown (tidy.step_BoxCox),

262
tidy.step_unorder (tidy.step_BoxCox),

262
tidy.step_window (tidy.step_BoxCox), 262
tidy.step_YeoJohnson

(tidy.step_BoxCox), 262
tidy.step_zv (tidy.step_BoxCox), 262
tidyselect::all_of(), 47
tidyselect::any_of(), 47

280 INDEX

tidyselect::contains(), 47
tidyselect::ends_with(), 47
tidyselect::eval_select(), 40
tidyselect::everything(), 47
tidyselect::matches(), 47
tidyselect::num_range(), 47
tidyselect::one_of(), 47
tidyselect::starts_with(), 47, 132
timeDate::listHolidays(), 101, 102

update.step, 269
update_role (roles), 43
update_role(), 41, 270
update_role_requirements, 270
update_role_requirements(), 230, 261

variances (case-weight-helpers), 9

workflows::add_recipe(), 173

	.get_data_types
	add_step
	bake
	case-weight-helpers
	case_weights
	check_class
	check_cols
	check_missing
	check_new_values
	check_range
	detect_step
	developer_functions
	discretize
	formula.recipe
	fully_trained
	has_role
	juice
	names0
	prep
	prepper
	print.recipe
	recipe
	recipes_eval_select
	recipes_extension_check
	roles
	selections
	step_arrange
	step_bin2factor
	step_BoxCox
	step_bs
	step_center
	step_classdist
	step_classdist_shrunken
	step_corr
	step_count
	step_cut
	step_date
	step_depth
	step_discretize
	step_dummy
	step_dummy_extract
	step_dummy_multi_choice
	step_factor2string
	step_filter
	step_filter_missing
	step_geodist
	step_harmonic
	step_holiday
	step_hyperbolic
	step_ica
	step_impute_bag
	step_impute_knn
	step_impute_linear
	step_impute_lower
	step_impute_mean
	step_impute_median
	step_impute_mode
	step_impute_roll
	step_indicate_na
	step_integer
	step_interact
	step_intercept
	step_inverse
	step_invlogit
	step_isomap
	step_kpca
	step_kpca_poly
	step_kpca_rbf
	step_lag
	step_lincomb
	step_log
	step_logit
	step_mutate
	step_mutate_at
	step_naomit
	step_nnmf
	step_nnmf_sparse
	step_normalize
	step_novel
	step_ns
	step_num2factor
	step_nzv
	step_ordinalscore
	step_other
	step_pca
	step_percentile
	step_pls
	step_poly
	step_poly_bernstein
	step_profile
	step_range
	step_ratio
	step_regex
	step_relevel
	step_relu
	step_rename
	step_rename_at
	step_rm
	step_sample
	step_scale
	step_select
	step_shuffle
	step_slice
	step_spatialsign
	step_spline_b
	step_spline_convex
	step_spline_monotone
	step_spline_natural
	step_spline_nonnegative
	step_sqrt
	step_string2factor
	step_time
	step_unknown
	step_unorder
	step_window
	step_YeoJohnson
	step_zv
	summary.recipe
	tidy.step_BoxCox
	update.step
	update_role_requirements
	Index

