Package ‘rStrava’

January 12, 2026

Type Package

Title Access the 'Strava' API

Version 1.3.4

Date 2026-01-05

Description
Functions to access data from the 'Strava v3 API' <https://developers.strava.com/>.

BugReports https://github.com/fawdal23/rStrava/issues

License CCO

Imports dplyr, geosphere, ggplot2, ggspatial, googleway, httr,
jsonlite, magrittr, maptiles, rvest, tidyr, tidyterra, XML,
xml2, purrr, tibble

Depends R (>=3.5.0)

RoxygenNote 7.3.3

Encoding UTF-8

NeedsCompilation no

Author Marcus W. Beck [cre],
Pedro Villarroel [aut],
Daniel Padfield [aut],
Lorenzo Gaborini [aut],
Niklas von Maltzahn [aut]

Maintainer Marcus W. Beck <mbafs2012@gmail.com>
Repository CRAN
Date/Publication 2026-01-12 17:10:09 UTC

Contents

athlind_fun e
athl_fun s
chk_nopolyline
compile_activities e e

https://developers.strava.com/
https://github.com/fawda123/rStrava/issues

Index

Contents

compile_activity e e e e e e e 6
compile_activity_streams e 7
compile_club_activities e 8
compile_segment e e e e e e 9
compile_seg_effort 10
compile_seg_efforts L 11
filteraactframe e e 12
follow_fun. e 13
get_activity e 13
get_activity_list L e e 14
et_actiVIty_Streams e e e e e e 15
get_athlete e 17
et DASIC e e e 18
get_club 19
get_dists e 20
get_efforts_list L 21
get_elev_prof 22
et exXploTe e e e 24
GELLZCAT . . . v i i e e e e e e e e e e e e e e e e e e 25
get_heat_ map 25
get KOMs e 29
get laps e e e 29
get_latlon 30
get_leaderboard oL 31
GEL PAZES + v v e 32
GELLSEZMENT L e e e e e e e e e 33
get_spdsplits 34
get_starred e e e e e e e 35
GEE_SICAMS o v e e e e e e 36
location_fun L e 37
monthly_fun. e 37
mutate.actframe L L e e 38
plot_spdsplits 39
recent_fun L L L e 40
seltime_fun L e 40
strava_oauth e 41
url_activitieS e e e e 42
url_athlete L 43
url_clubs . . . e 44
url_gear L e e e e 44
url_segment oL 45
url_streams e e 46
47

athlind_fun 3

athlind_fun Get data for a single athlete

Description

Get data for a single athlete by web scraping, does not require authentication.

Usage

athlind_fun(athl_num)

Arguments

athl_num numeric athlete id used by Strava, as character string

Value

A list with elements for the athlete’s information.

athl_fun Get data for an athlete

Description

Get data for an athlete by web scraping, does not require authentication.

Usage

athl_fun(athl_num, trace = TRUE)

Arguments
athl_num numeric vector of athlete id(s) used by Strava, as character string
trace logical indicating if output is returned to console

Details

The athlete id is assigned to the user during registration with Strava and this must be known to use
the function. Some users may have privacy settings that prevent public access to account infor-
mation (a message indicating as such will be returned by the function). The function scrapes data
using the following URL with the appended athlete id, e.g., https://www.strava.com/athletes/
2837007. Opening the URL in a web browser can verify if the data can be scraped. Logging in to
the Strava account on the website may also be required before using this function.

https://www.strava.com/athletes/2837007
https://www.strava.com/athletes/2837007

Value

chk_nopolyline

A list for each athlete, where each element is an additional list with elements for the athlete’s

information. The list elements are named using the athlete id numbers.

Examples

single athlete
athl_fun('2837007")

Not run:
multiple athletes
athl_fun(c('2837007', '2527465'))

End(Not run)

chk_nopolyline Remove activities with no geographic data

Description

Remove activities with no geographic data, usually manual entries

Usage

chk_nopolyline(act_data, ...)

S3 method for class 'actframe'

chk_nopolyline(act_data, ...)
Arguments
act_data adata.frame returned by compile_activities

arguments passed to or from other methods

Details

This function is used internally within get_elev_prof and get_heat_map to remove activities that
cannot be plotted because they have no geographic information. This usually applies to activities

that were manually entered.

Value

act_data with rows removed where no polylines were available, the original dataseset is returned
if none were found. A warning is also returned indicating the row numbers that were removed if

applicable.

compile_activities 5

Author(s)
Marcus Beck

Examples

Not run:

get my activities

stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))
my_acts <- get_activity_list(stoken)

act_data <- compile_activities(my_acts)

chk_nopolyline(act_data)

End(Not run)

compile_activities converts a list of activities into a dataframe

Description

converts a list of activities into a dataframe

Usage
compile_activities(actlist, acts = NULL, id = NULL, units = "metric"”)
Arguments
actlist an activities list returned by get_activity_list
acts numeric indicating which activities to compile starting with most recent, defaults
to all
id optional character vector to specify the id(s) of the activity/activities to plot,
acts is ignored if provided
units chr string indicating metric or imperial
Details
each activity has a value for every column present across all activities, with NAs populating empty
values
Value

An activities frame object (actframe that includes a data frame for the data and attributes for the
distance, speed, and elevation units

Author(s)
Daniel Padfield

6 compile_activity

See Also

compile_club_activities for compiling an activities list for club activities

Examples

Not run:
stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))

my_acts <- get_activity_list(stoken)
acts_data <- compile_activities(my_acts)
show attributes

attr(acts_data, 'unit_type')

attr(acts_data, 'unit_vals')

End(Not run)

compile_activity convert a single activity list into a dataframe

Description

convert a single activity list into a dataframe

Usage

compile_activity(x, columns)

Arguments
X a list containing details of a single Strava activity
columns a character vector of all the columns in the list of Strava activities. Produced
automatically in compile_activities. Leave blank if running for a single ac-
tivity list.
Details

used internally in compile_activities

Value
dataframe where every column is an item from a list. Any missing columns rom the total number
of columns

Author(s)
Daniel Padfield

compile_activity_streams 7

Examples

Not run:
stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))

acts <- get_activity_list(stoken)

compile_activity(acts[1])
End(Not run)

compile_activity_streams
Convert a set of streams of a single activity into a dataframe

Description

Convert a set of streams of a single activity into a dataframe, with the retrieved columns.

Usage

compile_activity_streams(streams, id = NULL)

Arguments
streams a list containing details of the Strava streams of a single activity (output of
get_streams)
id if not missing, the activity id of the stream (will be appended to the data.frame,
if non-empty), as character vector
Details

used internally in get_activity_streams

Value

data frame where every column is the stream data for the retrieved types.

Author(s)

Lorenzo Gaborini

Examples

Not run:
stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))

act_id <- '351217692'
streams <- get_streams(stoken, id = act_id, types = list('distance', 'latlng'))

8 compile_club_activities

compile_activity_streams(streams, id = act_id)

End(Not run)

compile_club_activities
converts a list of club activities into a dataframe

Description

converts a list of club activities into a dataframe

Usage

compile_club_activities(actlist)

Arguments

actlist a club activities list returned by get_activity_list

Details

each activity has a value for every column present across all activities, with NAs populating empty
values

Value

An data. frame of the compiled activities from actlist

Author(s)

Marcus Beck

Examples

Not run:
stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))

club_acts <- get_activity_list(stoken, id = 13502, club = TRUE)

acts_data <- compile_club_activities(club_acts)

End(Not run)

compile_segment

compile_segment Compile information on a segment

Description

Compile generation information on a segment

Usage

compile_segment(seglist)

Arguments

seglist a Strava segment list returned by get_segment

Details

compiles information for a segment

Value

dataframe of all information given in a call from get_segment

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

compile segment info
get_segment(stoken, id = '229781') %>% compile_segment

compile top ten leaderboard for the segment
get_segment(stoken, id = '229781', request = "leaderboard") %>% compile_segment

compile all efforts for the authenticated user on the segment
get_segment(stoken, id = '4483903', request = 'all_efforts') %>% compile_segment

compile the starred segments for the user
get_segment(stoken, request = 'starred') %>% compile_segment

End(Not run)

10 compile_seg_effort

compile_seg_effort Compile the efforts of a segment

Description

Cleans up the output of get_efforts_list() into a dataframe

Usage

compile_seg_effort(x)

Arguments

X A list object produced by get_efforts_list

Details

Used internally in compile_seg_efforts. Can be used on the output of get_efforts_list to
compile the segment efforts of a single segment. Each call to get_efforts_list returns a large
list. This function returns a subset of this information.

Value
A dataframe containing all of the efforts of a specific segment. The columns returned are athlete.id,
distance, elapsed_time, moving_time, name, start_date and start_date_local.

Author(s)
Daniel Padfield

Examples

Not run:
set token
stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))

segments to get efforts from - use some parkruns
segment <- 2269028

get segment efforts
efforts <- get_efforts_list(stoken, segment)

compile efforts
efforts <- compile_seg_effort(efforts)

End(Not run)

compile_seg_efforts 11

compile_seg_efforts Compile the efforts of multiple segments

Description

Compiles the information of athletes from multiple segments

Usage

compile_seg_efforts(segment_ids, stoken)

Arguments
segment_ids A vector of segment ids from which to compile efforts
stoken A config object created using the strava_oauth function
Details

Uses get_elev_prof and compile_seg_effort internally to compile efforts of multiple segments

Value

A dataframe of the details of each segment effort

Author(s)

Daniel Padfield

Examples

Not run:
set token
stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))

segments to get efforts from - use some parkruns
segments <- c(2269028, 5954625)

compile segment efforts
segments %>% purrr::map_df(., .f = compile_seg_efforts, stoken = my_token, .id = 'id')

End(Not run)

12 filter.actframe

filter.actframe Filter

Description

This is a wrapper function to dplyr::filter which can be applied to an actframe object

Usage
S3 method for class 'actframe'
filter(.data, ...)

Arguments
.data an actframe object

Logical predicates defined in terms of the variables in .data

Value

an actframe object

Examples

Not run:
library(dplyr)

get actframe, all activities
stoken <- httr::config(
token = strava_oauth(
app_name,
app_client_id,
app_secret,
app_scope="activity:read_all"
)
)

my_acts <- get_activity_list(stoken)
act_data <- compile_activities(my_acts)

mutate
act_data %>% filter(name %in% 'Morning Ride')

End(Not run)

follow_fun 13

follow_fun Get athlete follow data

Description

Get athlete follow data, used internally in athl_fun

Usage
follow_fun(prsd)

Arguments

prsd parsed input list

Value

A data frame of counts of followers and following for the athlete. An empty list is returned if none
found.

get_activity Get detailed data of an activity

Description

Get detailed data of an activity, including segment efforts

Usage

get_activity(id, stoken)

Arguments

id character vector for id of the activity

stoken A config object created using the strava_oauth function
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

The id for each activity can be viewed using results from get_activity_list.

Value

Data from an API request.

14 get_activity_list

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get_activity('75861631', stoken)

End(Not run)

get_activity_list Get an activities list

Description

Get an activities list of the desired type (club, user)

Usage

get_activity_list(stoken, id = NULL, before = NULL, after = NULL, club = FALSE)

Arguments
stoken A config object created using the strava_oauth function
id character vector for id of the activity or club if club = TRUE, leave blank to
retrieve all activities
before date object for filtering activities before the indicated date
after date object for filtering activities after the indicated date
club logical if you want the activities of a club
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website. If retrieving activities using individual id values, the output list returned con-
tains additional information from the API and the results have not been tested with the func-
tions in this package. It is better practice to retrieve all activities (as in the example below), use
compile_activities, and then filter by individual activities.

If retrieving club activities, the user for the API must be a member of the club.

Value

A list of activities for further processing or plotting.

get_activity_streams 15

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get_activity_list(stoken)

End(Not run)

get_activity_streams Retrieve streams for activities, and convert to a dataframe

Description

Retrieve streams for activities, and convert to a dataframe.

Usage

get_activity_streams(act_data, ...)

S3 method for class 'list'
get_activity_streams(
act_data,
stoken,
acts = NULL,
id = NULL,
types = NULL,
resolution = "high",
series_type = "distance”,

S3 method for class 'actframe'
get_activity_streams(
act_data,
stoken,
types = NULL,
resolution = "high”,
series_type = "distance”,

Arguments

act_data an list object returned by get_activity_list or a data.frame returned by
compile_activities

16 get_activity_streams

arguments passed to or from other methods

stoken A config object created using the strava_oauth function

acts numeric indicating which activities to compile starting with most recent, defaults
to all

id optional character vector to specify the id(s) of the activity/activities to plot,

acts is ignored if provided

types list indicating which streams to get for each activity, defaults to all available, see
details.
resolution chr string for the data resolution to retrieve, can be "low", "medium", "high",

defaults to all

series_type chr string for merging the data if resolution is not equal to "all". Accepted
values are "distance" (default) or "time".

Details

Each activity has a value for every column present across all activities, with NAs populating missing
values.

For the types argument, the default is type = NULL which will retrieve all available stream types.
The available stream types can be any of time, latlng, distance, altitude, velocity_smooth,
heartrate, cadence, watts, temp, moving, or grade_smooth. To retrieve only a subset of the
types, pass a list argument with the appropriate character strings to type, e.g., type = list("time",
"latlng"”, "distance").

Invalid HTTP requests (404 or 400 code) may sometimes occur for activities with incomplete data,
e.g., stationary activities with no distance information. In such cases, changing the ‘series_type‘ and
‘resolution‘ arguments may be needed, e.g., ‘series_type = "time"*

ne

and ‘resolution = "medium"°.

Value

A stream frame object (strframe that includes a data frame for the stream data along with the units

Author(s)

Lorenzo Gaborini

Examples

Not run:
stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))

my_acts <- get_activity_list(stoken)

strms_data <- get_activity_streams(my_acts, stoken, acts = 1:2)

End(Not run)

get_athlete 17

get_athlete Get basic data for an athlete

Description

Get basic athlete data for an athlete using an API request

Usage

get_athlete(stoken, id = NULL)

Arguments
stoken A config object created using the strava_oauth function
id string of athlete

Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

A list of athlete information including athlete name, location, followers, etc. as described here:
https://strava.github.io/api/v3/athlete/.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get_athlete(stoken, id = '2837007')

End(Not run)

https://strava.github.io/api/v3/athlete/

18 get_basic

get_basic Get basic Strava data

Description

Get basic Strava data with requests that don’t require pagination

Usage

get_basic(url_, stoken, queries = NULL)

Arguments
url_ string of url for the request to the API
stoken A config object created using the strava_oauth function
queries list of additional queries or parameters

Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

Data from an API request.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get basic user info
get_basic('https://www.strava.com/api/v3/athlete’, stoken)

End(Not run)

get_club 19

get_club Get club data

Description

Get club data for a given request

Usage

get_club(stoken, id = NULL, request = NULL)

Arguments
stoken A config object created using the strava_oauth function
id character vector for id of the club, defaults to authenticated club of the athlete
request chr string, must be "members", "activities" or NULL for club details

Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

Data from an API request.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get_club(stoken)

End(Not run)

20 get_dists

get_dists Get distance from longitude and latitude points

Description

Get distance from longitude and latitude points

Usage

get_dists(lon, lat)

Arguments

lon chr string indicating name of longitude column in dat_in

lat chr string indicating name of latitude column in dat_in in dat_in
Details

Used internally in get_elev_prof on objects returned by get_latlon

Value

A vector of distances with the length as the number of rows in dat_in

Author(s)
Daniel Padfield

Examples

Not run:

get activity data

stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))
my_acts <- get_activity_list(stoken)

get the latest activity
acts_data <- compile_activities(my_acts)[1, 1]

get lat, lon
polyline <- acts_data$map.summary_polyline

latlon <- get_latlon(polyline, key = mykey)

get distance
get_dists(latlon$lon, latlon$lat)

End(Not run)

get_efforts_list 21

get_efforts_list Get all the efforts in a segment if no queries are specified

Description

Get all the efforts in a segment if no queries are specified

Usage

get_efforts_list(
stoken,
id,
athlete_id = NULL,
start_date_local = NULL,
end_date_local = NULL

)
Arguments
stoken A config object created using the strava_oauth function
id character string for id of the segment
athlete_id character string for the athlete id for filtering the results

start_date_local
the start date for filtering the results

end_date_local the end date for filtering the results

Details
Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

Data from an API request.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get_efforts_list(stoken, id = '229781"')

End(Not run)

22

get_elev_prof

get_elev_prof Create elevation profiles from activity data

Description

Create elevation profiles from activity data

Usage
get_elev_prof(act_data, ...)
S3 method for class 'list'
get_elev_prof(
act_data,
acts = 1,
id = NULL,
key,
total = FALSE,
expand = 10,
units = "metric”,
fill = "darkblue",
)
S3 method for class 'actframe'
get_elev_prof(
act_data,
key,
total = FALSE,
expand = 10,
fill = "darkblue”,
)
S3 method for class 'strframe'’
get_elev_prof(act_data, total = FALSE, expand = 10, fill = "darkblue”, ...)
Arguments
act_data an activities list object returned by get_activity_list or a data.frame re-
turned by compile_activities
arguments passed to or from other methods
acts numeric value indicating which elements of act_data to plot, defaults to most
recent
id optional character vector to specify the id(s) of the activity/activities to plot,

acts is ignored if provided

get_elev_prof 23

key chr string of Google API key for elevation data, passed to google_elevation,
see details

total logical indicating if elevations are plotted as cumulative climbed by distance

expand a numeric multiplier for expanding the number of lat/lon points on straight lines.
This can create a smoother elevation profile. Set expand =1 to suppress this
behavior.

units chr string indicating plot units as either metric or imperial, this has no effect if

input data are already compiled with compile_activities

fill chr string of fill color for profile

Details

The Google API key is easy to obtain, follow instructions here: https://developers.google.com/maps/documentation/elevation,

Value

A ggplot of elevation profiles, facetted by activity id, date

Author(s)

Daniel Padfield, Marcus Beck

See Also

get_dists

Examples

Not run:

get my activities

stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))
my_acts <- get_activity_list(stoken)

your unique key
mykey <- 'Get Google API key'
get_elev_prof(my_acts, acts = 1:2, key = mykey)

compile first, change units
my_acts <- compile_activities(my_acts, acts = c(1:2), units = 'imperial')

get_elev_prof(my_acts, key = mykey)

End(Not run)

24 get_explore

get_explore Explore segments within a bounded area

Description

Explore segments within a bounded area

Usage

get_explore(
stoken,
bounds,
activity_type = "riding",
max_cat = NULL,
min_cat = NULL

)
Arguments
stoken A config object created using the strava_oauth function
bounds chr string representing the comma separated list of bounding box corners ’sw.lat,sw.Ing,ne.lat,ne.lng’

or ’south, west, north, east’, see the example

activity_type chr string indicating activity type, "riding" or "running"

max_cat numeric indicating the maximum climbing category
min_cat numeric indicating the minimum climbing category
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

Data from an API request.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

bnds <- "37.821362, -122.505373, 37.842038, -122.465977"
get_explore(stoken, bnds)

End(Not run)

get_gear 25

get_gear Get gear details from its identifier

Description

Get gear details from its identifier

Usage

get_gear(id, stoken)

Arguments

id string, identifier of the equipment item

stoken A config object created using the strava_oauth function
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

Data from an API request.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get_gear("2275365", stoken)

End(Not run)

get_heat_map Makes a heat map from your activity data

Description

Makes a heat map from your activity data

26

Usage

get_heat_map(act_data, ...)

S3 method for class 'list'
get_heat_map(

)

act_data,

key,

acts = 1,

id = NULL,

alpha = NULL,
add_elev = FALSE,
as_grad = FALSE,
distlab = TRUE,
distval = 0,

size = 0.5,

col = "red",
expand = 10,
maptype = "CartoDB.Positron”,
zoom = 14,

units = "metric”,

S3 method for class 'actframe'
get_heat_map(

)

act_data,

key,

alpha = NULL,
add_elev = FALSE,
as_grad = FALSE,
distlab = TRUE,
distval = 0,

size = 0.5,

col = "red",
expand = 10,
maptype = "CartoDB.Positron”,
zoom = 14,

S3 method for class 'strframe'
get_heat_map(

act_data,

alpha = NULL,

filltype = "elevation”,
distlab = TRUE,

distval = 0,

size = 0.5,

get_heat_map

get_heat_map

col = "red",
expand = 1

27

maptype = "CartoDB.Positron”,

zoom =

Arguments

act_data

key

acts

id

alpha
add_elev

as_grad

distlab

distval

size

col

expand

maptype

zoom

units

filltype

an activities list object returned by get_activity_list, an actframe returned
by compile_activities, or a strfame returned by get_activity_streams

arguments passed to or from other methods

chr string of Google API key for elevation data, passed to google_elevation
for polyline decoding, see details

numeric indicating which activities to plot based on index in the activities list,
defaults to most recent

optional character vector to specify the id(s) of the activity/activities to plot,
acts is ignored if provided

the opacity of the line desired. A single activity should be 1. Defaults to 0.5
logical indicating if elevation is shown by color shading on the activity lines

logical indicating if elevation is plotted as percent gradient, applies only if
add_elev = TRUE

logical if distance labels are plotted along the route

numeric indicating rounding factor for distance labels which has direct control
on label density, see details

numeric indicating width of activity lines

chr string indicating either a single color of the activity lines if add_grad =
FALSE or a color palette passed to scale_fill_distiller if add_grad = TRUE

a numeric multiplier for expanding the number of lat/lon points on straight lines.
This can create a smoother elevation gradient if add_grad = TRUE. Set expand =
1 to suppress this behavior.

chr string indicating the provider for the basemap, see details

numeric indicating zoom factor for map tiles, higher numbers increase resolu-
tion
chr string indicating plot units as either metric or imperial, this has no effect if

input data are already compiled with compile_activities

chr string specifying which stream variable to use for filling line segments, ap-
plies only to strframe objects, acceptable values are "elevation”, "distance”,
"slope”, or "speed”

28 get_heat_map

Details

uses get_latlon to produce a dataframe of latitudes and longitudes to use in the map. Uses ggspa-
tial to produce the map and ggplot2 to plot the route.

A Google API key is needed for the elevation data and must be included with function execution.
The API key can be obtained following the instructions here: https://developers.google.com/maps/documentation/elevation/#:

The distval argument is passed to the digits argument of round. This controls the density of the
distance labels, e.g., 1 will plot all distances in sequence of 0.1, 0 will plot all distances in sequence
of one, -1 will plot all distances in sequence of 10, etc.

The base map type is selected with the maptype argument. The zoom value specifies the reso-

Iution of the map. Use higher values to download map tiles with greater resolution, although

this increases the download time. Acceptable options for maptype include "OpenStreetMap”,

"OpenStreetMap.DE", "OpenStreetMap.France"”, "OpenStreetMap.HOT", "OpenTopoMap”, "Esri.WorldStreetMap”,
"Esri.DeLorme"”, "Esri.WorldTopoMap”, "Esri.WorldImagery”, "Esri.WorldTerrain"”, "Esri.WorldShadedRelief",
"Esri.OceanBasemap”, "Esri.NatGeoWorldMap", "Esri.WorldGrayCanvas”, "CartoDB.Positron”,
"CartoDB.PositronNolLabels"”, "CartoDB.PositronOnlyLabels”, "CartoDB.DarkMatter"”, "CartoDB.DarkMatterNoL:

"CartoDB.DarkMatterOnlylLabels"”, "CartoDB.Voyager", "CartoDB.VoyagerNoLabels", or "CartoDB.VoyagerOnlyLal

Value

A ggplot object showing a map with activity locations.

Author(s)

Daniel Padfield, Marcus Beck

Examples

Not run:

get my activities

stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))
my_acts <- get_activity_list(stoken)

default, requires Google key
mykey <- 'Get Google API key'
get_heat_map(my_acts, acts = 1, alpha = 1, key = mykey)

plot elevation on locations, requires key
get_heat_map(my_acts, acts =1, alpha =1, key = mykey, add_elev = TRUE, col = 'Spectral’, size = 2)

compile first, change units
my_acts <- compile_activities(my_acts, acts = 156, units = 'imperial')
get_heat_map(my_acts, key = mykey, alpha = 1, add_elev = T, col = 'Spectral', size = 2)

End(Not run)

get_KOMs 29

get_KOMs Get KOMs/QOMs/CRs of an athlete

Description

Get KOMs/QOMs/CRs of an athlete

Usage

get_KOMs(id, stoken)

Arguments

id string of athlete id

stoken A config object created using the strava_oauth function
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

Data from an API request.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get_KOMs('2837007', stoken)

End(Not run)

get_laps Retrieve the laps of an activity

Description

Retrieve the laps of an activity

Usage

get_laps(stoken, id)

30 get_latlon

Arguments
stoken A config object created using the strava_oauth function
id character for id of the activity with the laps to request
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

Data from an API request.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get_laps(stoken, id = '351217692"')

End(Not run)

get_latlon get latitude and longitude from Google polyline

Description

get latitude and longitude from Google polyline

Usage
get_latlon(polyline, key)

Arguments

polyline a map polyline returned for an activity from the API

key chr string of Google API key for elevation data, passed to google_elevation
Value

dataframe of latitude and longitudes with a column for the unique identifier

Author(s)
Daniel Padfield, Marcus Beck

get_leaderboard 31

Examples

Not run:
stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))

my_acts <- get_activity_list(stoken)
acts_data <- compile_activities(my_acts)

get lat and lon for a single activity
polyline <- acts_data$map.summary_polyline[[1]]
get_latlon(polyline, key = mykey)

End(Not run)

get_leaderboard Retrieve the leaderboard of a segment

Description

Retrieve the leaderboard of a segment

Usage

get_leaderboard(stoken, id, nleaders = 10, All = FALSE)

Arguments
stoken A config object created using the strava_oauth function
id character for id of the segment
nleaders numeric for number of leaders to retrieve
All logical to retrieve all of the list
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

Data from an API request.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

32 get_pages

get_leaderboard(stoken, id = '229781")

End(Not run)

get_pages Get several pages of one type of request

Description

Get several pages of one type of request to the API

Usage

get_pages(
url_,
stoken,
per_page = 30,
page_id = 1,
page_max = 1,
before = NULL,

after = NULL,
queries = NULL,
All = FALSE
)
Arguments
url_ string of url for the request to the API
stoken A config object created using the strava_oauth function
per_page numeric indicating number of items retrieved per page (maximum 200)
page_id numeric indicating page id
page_max numeric indicating maximum number of pages to return
before date object for filtering activities before the indicated date
after date object for filtering activities after the indicated date
queries list of additional queries to pass to the API
All logical if you want all possible pages
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

Data from an API request.

get_segment 33

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get basic user info

returns 30 activities
get_pages('https://www.strava.com/api/v3/activities', stoken)

End(Not run)

get_segment Retrieve details about a specific segment

Description

Retreive details about a specific segment

Usage

get_segment(stoken, id = NULL, request = NULL)

Arguments
stoken A config object created using the strava_oauth function
id character for id of the segment
request chr string, must be "starred", "leaderboard", "all_efforts", or NULL for segment
details
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website. The authenticated user must have an entry for a segment to return all efforts if
request = "all_efforts"”. For request = "starred”, set id = NULL.

Value

Data from an API request.

See Also

compile_segment for converting the 1ist output to data.frame

34 get_spdsplits

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get segment info
get_segment(stoken, id = '229781")

get top ten leaderboard for the segment
get_segment(stoken, id = '229781', request = "leaderboard")

get all efforts for the authenticated user on the segment
get_segment(stoken, id = '4483903', request = 'all_efforts')

get the starred segments for the user
get_segment(stoken, request = 'starred')

End(Not run)

get_spdsplits Get speed splits in a dataframe

Description

Allows the return of speed splits of multiple rides.

Usage
get_spdsplits(act_id, stoken, units = "metric")
Arguments
act_id a vector of activity IDs. These are easily found in the data. frame returned by
compile_activities
stoken A config object created using the strava_oauth function
units chr string indicating plot units as either metric or imperial
Value

a data frame containing the splits of the activity or activities selected.

Author(s)
Marcus Beck

get_starred 35

Examples

Not run:

get my activities

stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))
my_acts <- get_activity_list(stoken)

compile activities
acts_data <- compile_activities(my_acts)

get spdsplits for all activities
spd_splits <- purrr::map_df(acts_data$id, get_spdsplits, stoken = stoken,

units = 'metric', .id = 'id")

End(Not run)

get_starred Retrieve a summary of the segments starred by an athlete

Description

Retrieve a summary of the segments starred by an athlete

Usage

get_starred(stoken, id = NULL)

Arguments

stoken A config object created using the strava_oauth function

id character for id of the athlete, defaults to authenticated athlete
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website.

Value

Data from an API request.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get_starred(stoken)

36 get_streams

End(Not run)

get_streams Retrieve a Strava data stream for a single activity

Description

Retrieve a Strava data stream for a single activity. Internally called by get_activity_streams.

Usage

get_streams(
stoken,
id,
request = "activities”,
types = NULL,
resolution = NULL,
series_type = NULL

)
Arguments
stoken A config object created using the strava_oauth function
id character for id of the request
request chr string defining the stream type, must be "activities", "segment_efforts", "seg-
ments"
types list of chr strings with any combination of "time" (seconds), "latlng", "distance"
(meters), "altitude" (meters), "velocity_smooth" (meters per second), "heartrate"
(bpm), "cadence" (rpm), "watts", "temp" (degrees Celsius), "moving" (boolean),
or "grade_smooth" (percent)
resolution chr string for the data resolution to retrieve, can be "low", "medium", "high",
defaults to all
series_type chr string for merging the data if resolution is not equal to "all". Accepted
values are "distance" or "time". If omitted, no merging is performed.
Details

Requires authentication stoken using the strava_oauth function and a user-created API on the
strava website. From the API documentation, ’streams’ is the Strava term for the raw data associated
with an activity.

Value

Data from an API request.

location_tun 37

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

get_streams(stoken, id = '351217692', types = list('distance', 'latlng'))

End(Not run)

location_fun Get athlete location

Description

Get athlete location, used internally in athl_fun

Usage

location_fun(prsd)

Arguments

prsd parsed input list

Value

A character string of the athlete location

monthly_fun Get distance and time for current month

Description

Get distance and time for current month, used internally in athl_fun

Usage
monthly_fun(prsd)

Arguments

prsd parsed input list

Value

A data frame of the current monthly distance and time for the athlete. An empty list is returned if
none found.

38 mutate.actframe

mutate.actframe Mutate

Description

This is a wrapper function to dplyr::mutate which can be applied to an actframe object

Usage
S3 method for class 'actframe'
mutate(.data, ...)

Arguments
.data an actframe object

Name-value pairs of expressions. Use NULL to drop a variable.

Value

an actframe object

Examples

Not run:
library(dplyr)

get actframe, all activities
stoken <- httr::config(
token = strava_oauth(
app_name,
app_client_id,
app_secret,
app_scope="activity:read_all"
)
)

my_acts <- get_activity_list(stoken)
act_data <- compile_activities(my_acts)

mutate
act_data %>% mutate(is_run=type=='Run')

End(Not run)

plot_spdsplits 39

plot_spdsplits Plot speed by splits

Description

Plot average speed by splits for a single activity

Usage

plot_spdsplits(act_data, ...)

S3 method for class 'list'
plot_spdsplits(

act_data,

stoken,

acts = 1,

id = NULL,

units = "metric”,

fill = "darkblue”,

)

Default S3 method:

plot_spdsplits(act_data, stoken, units = "metric”, fill = "darkblue”, ...)
Arguments

act_data an activities list object returned by get_activity_list or a data.frame re-

turned by compile_activities

arguments passed to other methods

stoken A config object created using the strava_oauth function

acts numeric indicating which activity to plot based on index in the activities list,
defaults to most recent

id optional character vector to specify the id(s) of the activity/activities to plot,
acts is ignored if provided

units chr string indicating plot units as either metric or imperial

fill chr string of fill color for profile

Details

The average speed per split is plotted, including a dashed line for the overall average. The final split
is typically not a complete km or mile.

Value

plot of average distance for each split value in the activity

40 seltime_fun

Author(s)

Marcus Beck

Examples

Not run:

get my activities

stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, cache = TRUE))
my_acts <- get_activity_list(stoken)

default
plot_spdsplits(my_acts, stoken, acts = 1)

End(Not run)

recent_fun Get last three recent activities

Description

Get last three recent activities, used internally in athl_fun

Usage

recent_fun(prsd)

Arguments

prsd parsed input list

Value

A data frame of recent activities for the athlete. An empty list is returned if none found.

seltime_fun Format before and after arguments for API query

Description

Format before and after arguments for API query

Usage

seltime_fun(dtin, before = TRUE)

strava_oauth 41

Arguments
dtin Date object for before or after inputs
before logical indicattng if input is before
Value

A numeric object as an epoch timestamp

Examples

convert to epoch timestamp
seltime_fun(Sys.Date())

back to original
as.POSIXct(seltime_fun(Sys.Date(), before = FALSE), tz = Sys.timezone(), origin = '1970-01-01")

strava_oauth Generata Strava API authentication token

Description

Generate a token for the user and the desired scope. The user is sent to the strava authentication
page if he/she hasn’t given permission to the app yet, else, is sent to the app webpage.

Usage

strava_oauth(
app_name,
app_client_id,
app_secret,
app_scope = c("public”, "read”, "read_all”, "profile:read_all”, "profile:write”,
"activity:read”, "activity:read_all"”, "activity:write"),
cache = TRUE

Arguments

app_name chr string for name of the app

app_client_id chr string for ID received when the app was registered

app_secret chr string for secret received when the app was registered

app_scope chr string for scope of authentication, Must be one of "public", "read" , "read_all",
"profile:read_all", "profile:write", "activity:read", "activity:read_all" or "activ-
ity:write"

cache logical to cache the token, default is set

42 url_activities

Details

The app_name, app_client_id, and app_secret are specific to the user and can be obtained by
registering an app on the Strava API authentication page: http://strava.github.io/api/v3/
oauth/. This requires a personal Strava account.

Value

A Token2.0 object returned by oauth2.0_token to be used with API function calls

Examples

Not run:

app_name <- 'myappname' # chosen by user

app_client_id <- 'myid' # an integer, assigned by Strava

app_secret <- 'xxxxxxxx' # an alphanumeric secret, assigned by Strava

create the authentication token
stoken <- httr::config(
token = strava_oauth(
app_name,
app_client_id,
app_secret,
app_scope="activity:read_all”
)
)

use authentication token
get_athlete(stoken, id = '2837007')

End(Not run)

url_activities Set the url of activities for different activity lists

Description

Set the url of activities for different activity lists

Usage

url_activities(id = NULL, club = FALSE)

Arguments

id string for id of the activity or club if club = TRUE

club logical if you want the activities of a club

http://strava.github.io/api/v3/oauth/
http://strava.github.io/api/v3/oauth/

url_athlete 43

Details

This function concatenates appropriate strings so no authentication token is required. This is used
internally by other functions.

Value

The set url.

Examples

Not run:

create authentication token

requires user created app name, id, and secret from Strava website
stoken <- httr::config(token = strava_oauth(app_name, app_client_id,
app_secret, cache = TRUE))

url_activities('2837007")

End(Not run)

url_athlete Set the url of the athlete to get data

Description

Set the url of the athlete to get data using an ID

Usage
url_athlete(id = NULL)

Arguments
id character of athlete id assigned by Strava, NULL will set the authenticated user
URL
Details

used by other functions

Value

A character string of the athlete URL used for API requests

44 url_gear

url_clubs Set the url of the clubs for the different requests

Description

Set the url of the clubs for the different requests

Usage

url_clubs(id = NULL, request = NULL)

Arguments
id character for id of the club, defaults to authenticated club of the athlete
request chr string, must be "members", "activities" or NULL for club details
Details

Function is used internally within get_club

Value

A url string.

Examples

url_clubs()

url_clubs('123', request = 'members')
url_gear Set the url of the equipment item to get data
Description

Set the url of the equipment item to get data using an ID

Usage
url_gear(id)

Arguments

id string of gear id assigned by Strava

url_segment 45

Details

used by other functions

Value

A character string of the gear URL used for API requests

url_segment Set the url for the different segment requests

Description

Set the url for the different segment requests

Usage

url_segment(id = NULL, request = NULL)

Arguments
id character for id of the segment if request = "all_efforts" or "leaderboard”,
or id of the athlete if request = "starred”, or NULL if using request = "explore”
or "starred” of the athenticated user
request chr string, must be "starred", "all_efforts", "leaderboard", "explore" or NULL
for segment details
Details

Function is used internally within get_segment, get_starred, get_leaderboard, get_efforts_list,
and get_explore

Value

A url string.

Examples

url_segment ()

url_segment(id = '123', request = 'leaderboard')

46 url_streams

url_streams Set the url for stream requests

Description

Set the url for stream requests

Usage
url_streams(id, request = "activities"”, types = list("latlng"))
Arguments
id character for id of the request
request chr string defining the stream type, must be "activities", "segment_efforts", "seg-
ments"
types list of chr strings with any combination of "time", "latlng", "distance", "alti-
tude", "velocity_smooth", "heartrate", "cadence", "watts", "temp", "moving", or
"grade_smooth"
Details

Function is used internally within get_streams. From the API documentation, ’streams’ is the
Strava term for the raw data associated with an activity.

Value

A url string.

Examples

url_streams('123")

Index

* notoken url_activities, 42
athl_fun, 3 url_clubs, 44
athlind_fun, 3 url_segment, 45
compile_seg_effort, 10 url_streams, 46
follow_fun, 13
get_dists, 20 athl_fun, 3, 13, 37,40
location_fun, 37 athlind_fun, 3

monthly_fun, 37
recent_fun, 40

* token
chk_nopolyline, 4
compile_activities, 5
compile_activity, 6
compile_activity_streams, 7
compile_club_activities, 8
compile_seg_efforts, 11
compile_segment, 9
get_activity, 13
get_activity_list, 14
get_activity_streams, 15
get_athlete, 17
get_basic, 18

chk_nopolyline, 4

compile_activities, 4,5,6, 14, 15, 22, 23,
27,34, 39

compile_activity, 6

compile_activity_streams, 7

compile_club_activities, 6, 8

compile_seg_effort, 10, 11

compile_seg_efforts, 10, 11

compile_segment, 9, 33

config, 11,13, 14,16-19, 21, 24, 25, 29-36,
39

filter.actframe, 12
follow_fun, 13

get_club, 19 get_activity, 13
get_efforts_list, 21 get_activity_list, 5, 8, 13, 14, 15, 22, 27,
get_elev_prof, 22 39

get_explore, 24 get_activity_streams, 7, 15, 27, 36
get_gear, 25 get_athlete, 17

get_heat_map, 25 get_basic, 18

get_KOMs, 29 get_club, 19, 44

get_laps, 29 get_dists, 20, 23

get_latlon, 30 get_efforts_list, 10, 21, 45
get_leaderboard, 31 get_elev_prof, 4, 11, 20,22
get_pages, 32 get_explore, 24,45

get_segment, 33 get_gear, 25

get_spdsplits, 34 get_heat_map, 4, 25

get_starred, 35 get_KOMs, 29

get_streams, 36 get_laps, 29

plot_spdsplits, 39 get_latlon, 20, 28, 30
strava_oauth, 41 get_leaderboard, 31, 45

47

48 INDEX

get_pages, 32
get_segment, 9, 33, 45
get_spdsplits, 34
get_starred, 35, 45
get_streams, 7, 36, 46
ggplot, 28
google_elevation, 23, 27, 30

location_fun, 37

monthly_fun, 37
mutate.actframe, 38

oauth2.0_token, 42
plot_spdsplits, 39
recent_fun, 40

scale_fill_distiller, 27

seltime_fun, 40

strava_oauth, 11, 13, 14, 1619, 21, 24, 25,
29-36, 39, 41

url_activities, 42
url_athlete, 43
url_clubs, 44
url_gear, 44
url_segment, 45
url_streams, 46

	athlind_fun
	athl_fun
	chk_nopolyline
	compile_activities
	compile_activity
	compile_activity_streams
	compile_club_activities
	compile_segment
	compile_seg_effort
	compile_seg_efforts
	filter.actframe
	follow_fun
	get_activity
	get_activity_list
	get_activity_streams
	get_athlete
	get_basic
	get_club
	get_dists
	get_efforts_list
	get_elev_prof
	get_explore
	get_gear
	get_heat_map
	get_KOMs
	get_laps
	get_latlon
	get_leaderboard
	get_pages
	get_segment
	get_spdsplits
	get_starred
	get_streams
	location_fun
	monthly_fun
	mutate.actframe
	plot_spdsplits
	recent_fun
	seltime_fun
	strava_oauth
	url_activities
	url_athlete
	url_clubs
	url_gear
	url_segment
	url_streams
	Index

