
Package ‘permute’
October 14, 2022

Title Functions for Generating Restricted Permutations of Data

Version 0.9-7

Date 2022-01-27

Depends R (>= 2.14.0)

Imports stats

Suggests vegan (>= 2.0-0), testthat (>= 0.5), parallel, knitr,
rmarkdown, bookdown, sessioninfo

Description A set of restricted permutation designs for freely exchangeable, line transects (time se-
ries), and spatial grid designs plus permutation of blocks (groups of samples) is provided. 'per-
mute' also allows split-plot designs, in which the whole-plots or split-plots or both can be freely-
exchangeable or one of the restricted designs. The 'permute' package is modelled after the per-
mutation schemes of 'Canoco 3.1' (and later) by Cajo ter Braak.

License GPL-2

ByteCompile true

URL https://github.com/gavinsimpson/permute

BugReports https://github.com/gavinsimpson/permute/issues

Copyright see file COPYRIGHTS

VignetteBuilder knitr

NeedsCompilation no

Author Gavin L. Simpson [aut, cph, cre]
(<https://orcid.org/0000-0002-9084-8413>),

R Core Team [cph],
Douglas M. Bates [ctb],
Jari Oksanen [ctb]

Maintainer Gavin L. Simpson <ucfagls@gmail.com>

Repository CRAN

Date/Publication 2022-01-27 11:50:02 UTC

1

https://github.com/gavinsimpson/permute
https://github.com/gavinsimpson/permute/issues
https://orcid.org/0000-0002-9084-8413

2 allPerms

R topics documented:
allPerms . 2
allUtils . 4
check . 5
get-methods . 8
how . 11
jackal . 13
nobs-methods . 14
numPerms . 16
set-methods . 18
shuffle . 19
shuffle-utils . 23
shuffleSet . 25

Index 28

allPerms Complete enumeration of all possible permutations

Description

allPerms is a utility function to return the set of permutations for a given R object and a specified
permutation design.

Usage

allPerms(n, control = how(), check = TRUE)

S3 method for class 'allPerms'
summary(object, ...)

S3 method for class 'allPerms'
as.matrix(x, ...)

as.allPerms(object, control)

Arguments

n the number of observations or an ’object’ from which the number of observa-
tions can be determined via getNumObs.

control a list of control values describing properties of the permutation design, as re-
turned by a call to how.

check logical; should allPerms check the design? The default is to check, but this can
be skipped, for example if a function checked the design earlier.

object for summary.allPerms, an object of class "allPerms". For as.allPerms a
matrix or something that can be coerced to a matrix by as.matrix.

allPerms 3

... arguments to other methods.

x an object of class "allPerms", as returned by allPerms.

Details

Function allPerms enumerates all possible permutations for the number of observations and the
selected permutation scheme. It has print and summary methods. allPerms returns a matrix con-
taining all possible permutations, possibly containing the observed ordering (if argument observed
is TRUE). The rows of this matrix are the various permutations and the columns reflect the number
of samples.

With free permutation designs, and restricted permutation schemes with large numbers of obser-
vations, there are a potentially huge number of possible permutations of the samples. It would be
inefficient, not to mention incredibly time consuming, to enumerate them all. Storing all possible
permutations would also become problematic in such cases. To control this and guard against trying
to evaluate too large a number of permutations, if the number of possible permutations is larger than
getMaxperm(control), allPerms exits with an error.

The as.matrix method sets the control and seed attributes to NULL and removes the "permutationMatrix"
class, resulting in a standard matrix object.

Value

For allPerms, and object of class "allPerms", a matrix whose rows are the set of all possible
permutations for the supplies number of observations and permutation scheme selected. The matrix
has two additional attributes control and observed. Attribute control contains the argument
control (possibly updated via check). Attribute observed contains argument observed.

Warning

If permuting the strata themselves, a balanced design is required (the same number of observations
in each level of strata. This is common to all functions in the package.

Author(s)

Gavin Simpson

Examples

allPerms can work with a vector
vec <- c(3,4,5)
allPerms(vec) ## free permutation

enumerate all possible permutations for a more complicated
design
fac <- gl(2,6)
ctrl <- how(within = Within(type = "grid", mirror = FALSE,

constant = TRUE, nrow = 3, ncol = 2),
plots = Plots(strata = fac))

Nobs <- length(fac)
numPerms(seq_len(Nobs), control = ctrl) ## 6
(tmp <- allPerms(Nobs, control = update(ctrl, observed = TRUE)))

4 allUtils

(tmp2 <- allPerms(Nobs, control = ctrl))

turn on mirroring
##ctrl$within$mirror <- TRUE
ctrl <- update(ctrl, within = update(getWithin(ctrl), mirror = TRUE))
numPerms(seq_len(Nobs), control = ctrl)
(tmp3 <- allPerms(Nobs, control = update(ctrl, observed = TRUE)))
(tmp4 <- allPerms(Nobs, control = ctrl))

prints out details of the permutation scheme as
well as the matrix of permutations
summary(tmp3)
summary(tmp4)

allUtils Utility functions for complete enumeration of all possible permuta-
tions

Description

Utility functions to return the set of all permutations under different designs. For most practical
applications, i.e. to combine designs permuting blocks and/or within blocks function allPerms
will be required.

Usage

allFree(n, v = seq_len(n))

allSeries(n, nperms, mirror = FALSE)

allGrid(n, nperms, nr, nc, mirror, constant)

allStrata(n, control)

Arguments

n the number of observations.

v numeric; vector of indices. Default is 1:n.

nperms numeric; number of possible permutations.

mirror logical; mirroring of permutations allowed?

nr,nc integer; number of rows and columns of grid designs.

constant logical; same permutation within each block?

control a list of control values describing properties of the permutation design, as re-
turned by a call to how.

check 5

Details

These are utility functions and aren’t designed for casual use. allPerms should be used instead.

Details on usage of these functions can be found in allPerms.

Value

A matrix of all possible permutations of n observations or of v, given the provided options.

Author(s)

Gavin Simpson

check Utility functions for permutation schemes

Description

check provides checking of permutation schemes for validity. permuplot produces a graphical
representation of the selected permutation design.

Usage

check(object, control = how(), quietly = FALSE)

S3 method for class 'check'
summary(object, ...)

Arguments

object an R object. See Details for a complete description, especially for numPerms.
For summary.check an object of class "check".

control a list of control values describing properties of the permutation design, as re-
turned by a call to how.

quietly logical; should messages by suppressed?

... arguments to other methods.

Details

check is a utility functions for working with the new permutation schemes available in shuffle.

check is used to check the current permutation schemes against the object to which it will be ap-
plied. It calculates the maximum number of possible permutations for the number of observations
in object and the permutation scheme described by control. The returned object contains com-
ponent control, an object of class "how" suitably modified if check identifies a problem.

The main problem is requesting more permutations than is possible with the number of observa-
tions and the permutation design. In such cases, nperm is reduced to equal the number of possible

6 check

permutations, and complete enumeration of all permutations is turned on (control$complete is
set to TRUE).

Alternatively, if the number of possible permutations is low, and less than control$minperm, it is
better to enumerate all possible permutations, and as such complete enumeration of all permutations
is turned on (control$complete is set to TRUE). This guarantees that permutations are all unique
and there are no duplicates.

Value

For check a list containing the maximum number of permutations possible and an object of class
"how".

Author(s)

Gavin L. Simpson

See Also

shuffle and how.

Examples

only run this example if vegan is available
if (suppressPackageStartupMessages(require("vegan"))) {

use example data from ?pyrifos in package vegan
example(pyrifos)

Demonstrate the maximum number of permutations for the pyrifos data
under a series of permutation schemes

no restrictions - lots of perms
CONTROL <- how(within = Within(type = "free"))
(check1 <- check(pyrifos, CONTROL))
summary(check1)

no strata but data are series with no mirroring, so 132 permutations
CONTROL <- how(within = Within(type = "series", mirror = FALSE))
check(pyrifos, CONTROL)

no strata but data are series with mirroring, so 264 permutations
CONTROL <- how(within = Within(type = "series", mirror = TRUE))
check(pyrifos, control = CONTROL)

unrestricted within strata
check(pyrifos, control = how(plots = Plots(strata = ditch),

within = Within(type = "free")))

time series within strata, no mirroring
check(pyrifos,

control = how(plots = Plots(strata = ditch),
within = Within(type = "series", mirror = FALSE)))

check 7

time series within strata, with mirroring
check(pyrifos,

control = how(plots = Plots(strata = ditch),
within = Within(type = "series", mirror = TRUE)))

time series within strata, no mirroring, same permutation
within strata
check(pyrifos,

control = how(plots = Plots(strata = ditch),
within = Within(type = "series", constant = TRUE)))

time series within strata, with mirroring, same permutation
within strata
check(pyrifos,

control = how(plots = Plots(strata = ditch),
within = Within(type = "series", mirror = TRUE,
constant = TRUE)))

permute strata
check(pyrifos, how(plots = Plots(strata = ditch, type = "free"),

within = Within(type = "none")))
}

this should also also for arbitrary vectors
vec1 <- check(1:100)
vec2 <- check(1:100, how())
all.equal(vec1, vec2)
vec3 <- check(1:100, how(within = Within(type = "series")))
all.equal(100, vec3$n)
vec4 <- check(1:100, how(within = Within(type= "series", mirror = TRUE)))
all.equal(vec4$n, 200)

enumerate all possible permutations
fac <- gl(2,6)
ctrl <- how(plots = Plots(strata = fac),

within = Within(type = "grid", mirror = FALSE,
constant = TRUE, nrow = 3, ncol = 2))

check(1:12, ctrl)

numPerms(1:12, control = ctrl)
(tmp <- allPerms(12, control = update(ctrl, observed = TRUE)))
(tmp2 <- allPerms(12, control = ctrl))

turn on mirroring
ctrl <- update(ctrl, within = update(getWithin(ctrl), mirror = TRUE))
numPerms(1:12, control = ctrl)
(tmp3 <- allPerms(12, control = update(ctrl, observed = TRUE)))
(tmp4 <- allPerms(12, control = ctrl))
prints out details of the permutation scheme as
well as the matrix of permutations
summary(tmp)
summary(tmp2)

different numbers of observations per level of strata

8 get-methods

fac <- factor(rep(1:3, times = c(3,2,2)))
free permutations in levels of strata
numPerms(7, how(within = Within(type = "free"),

plots = Plots(strata = fac, type = "none")))
allPerms(7, how(within = Within(type = "free"),

plots = Plots(strata = fac)))
series permutations in levels of strata
ctrl <- how(within = Within(type = "series"), plots = Plots(strata = fac))
numPerms(7, control = ctrl)
allPerms(7, control = ctrl)

get-methods Extractor functions to access components of a permutation design

Description

Simple functions to allow abstracted access to components of a permutation design, for example
as returned by how. Whilst many of these are very simple index opertations on a list, using these
rather than directly accessing that list allows the internal representation of the permutation design
to change without breaking code.

Usage

getAllperms(object, ...)
getBlocks(object, ...)
getComplete(object, ...)
getConstant(object, ...)
getCol(object, ...)
getDim(object, ...)
getMake(object, ...)
getMaxperm(object, ...)
getMinperm(object, ...)
getMirror(object, ...)
getNperm(object, ...)
getObserved(object, ...)
getPlots(object, ...)
getRow(object, ...)
getStrata(object, ...)
getType(object, ...)
getWithin(object, ...)
getControl(object, ...)
getHow(object, ...)

S3 method for class 'how'
getAllperms(object, ...)

S3 method for class 'how'

get-methods 9

getBlocks(object, ...)

S3 method for class 'how'
getCol(object, which = c("plots", "within"), ...)
S3 method for class 'Plots'
getCol(object, ...)
S3 method for class 'Within'
getCol(object, ...)

S3 method for class 'how'
getComplete(object, ...)

S3 method for class 'how'
getConstant(object, ...)
S3 method for class 'Within'
getConstant(object, ...)

S3 method for class 'how'
getDim(object, which = c("plots", "within"), ...)
S3 method for class 'Plots'
getDim(object, ...)
S3 method for class 'Within'
getDim(object, ...)

S3 method for class 'how'
getMake(object, ...)

S3 method for class 'how'
getMaxperm(object, ...)

S3 method for class 'how'
getMinperm(object, ...)

S3 method for class 'how'
getMirror(object, which = c("plots", "within"), ...)
S3 method for class 'Plots'
getMirror(object, ...)
S3 method for class 'Within'
getMirror(object, ...)

S3 method for class 'how'
getNperm(object, ...)

S3 method for class 'how'
getObserved(object, ...)

S3 method for class 'how'
getPlots(object, ...)

10 get-methods

S3 method for class 'how'
getRow(object, which = c("plots", "within"), ...)
S3 method for class 'Plots'
getRow(object, ...)
S3 method for class 'Within'
getRow(object, ...)

S3 method for class 'how'
getStrata(object, which = c("plots", "blocks"),

drop = TRUE, ...)
S3 method for class 'Plots'
getStrata(object, drop = TRUE, ...)

S3 method for class 'how'
getType(object, which = c("plots", "within"), ...)
S3 method for class 'Plots'
getType(object, ...)
S3 method for class 'Within'
getType(object, ...)

S3 method for class 'how'
getWithin(object, ...)

S3 method for class 'allPerms'
getControl(object, ...)

Arguments

object An R object to dispatch on.

which character; which level of restriction to extract information for.

drop logical; should un-used factor levels be dropped?

... Arguments passed on to other methods.

Details

These are extractor functions for working with permutation design objects created by how. They
should be used in preference to directly subsetting the permutation design in case the internal struc-
ture of object changes as permute is developed.

getHow is an alias for getControl; specific methods are implemented for getControl if you are
debugging.

Value

These are simple extractor functions and return the contents of the corresponding components of
object.

how 11

Author(s)

Gavin Simpson

See Also

check, a utility function for checking permutation scheme described by how.

Examples

extract components from a "how" object
hh <- how()
getWithin(hh)
getNperm(hh)

how How to define a permutation design?

Description

Utility functions to describe unrestricted and restricted permutation designs for time series, line
transects, spatial grids and blocking factors.

Usage

how(within = Within(), plots = Plots(), blocks = NULL,
nperm = 199, complete = FALSE, maxperm = 9999,
minperm = 5040, all.perms = NULL, make = TRUE,
observed = FALSE)

Within(type = c("free","series","grid","none"),
constant = FALSE, mirror = FALSE,
ncol = NULL, nrow = NULL)

Plots(strata = NULL, type = c("none","free","series","grid"),
mirror = FALSE, ncol = NULL, nrow = NULL)

Arguments

within, plots, blocks

Permutation designs for samples within the levels of plots (within), permu-
tation of plots themselves, or for the definition of blocking structures which
further restrict permutations (blocks). within and plots each require a named
list as produced by Within and Plots respectively. blocks takes a factor (or
an object coercible to a factor via as.factor), the levels of which define the
blocking structure.

nperm numeric; the number of permutations.

complete logical; should complete enumeration of all permutations be performed?

12 how

type character; the type of permutations required. One of "free", "series", "grid"
or "none". See Details.

maxperm numeric; the maximum number of permutations to perform. Currently unused.

minperm numeric; the lower limit to the number of possible permutations at which com-
plete enumeration is performed. When nperm is lower than minperm, sampling
is performed from the set of complete permutations to avoid duplicate permuta-
tions. See argument complete and Details, below.

all.perms an object of class allPerms, the result of a call to allPerms.

make logical; should check generate all possible permutations? Useful if want to
check permutation design but not produce the matrix of all permutations, or to
circumvent the heuristics governing when complete enumeration is activated.

observed logical; should the observed permutation be returned as part of the set of all
permutations? Default is FALSE to facilitate usage in higher level functions.

constant logical; should the same permutation be used within each level of strata? If
FALSE a separate, possibly restricted, permutation is produced for each level of
strata.

mirror logical; should mirroring of sequences be allowed?

ncol, nrow numeric; the number of columns and rows of samples in the spatial grid respec-
tively.

strata A factor, or an object that can be coerced to a factor via as.factor, specifying
the strata for permutation.

Details

shuffle can generate permutations for a wide range of restricted permutation schemes. A small
selection of the available combinations of options is provided in the Examples section below.

Argument type controls how samples are actually permuted; "free" indicates randomization, "series"
indicates permutation via cyclic shifts (suitable for evenly-spaced line transect or time series data),
"grid" indicates permutation via toroidal shifts (suitable for samples on a regular grid), and "none"
indicates no permutation of samples. See the package vignette (browseVignettes("permute"))
for additional information on each of these types of permutation.

Argument mirror determines whether grid or series permutations can be mirrored. Consider the
sequence 1,2,3,4. The relationship between consecutive observations is preserved if we reverse
the sequence to 4,3,2,1. If there is no inherent direction in your experimental design, mirrored
permutations can be considered part of the Null model, and as such increase the number of possible
permutations. The default is to not use mirroring so you must explicitly turn this on using mirror
= TRUE in how.

To permute plots rather than the observations within plots (the levels of strata), use Within(type
= "none") and Plots(type = foo), where foo is how you want the plots to be permuted. However,
note that the number of observations within each plot must be equal!

For some experiments, such as BACI designs, one might wish to use the same permutation within
each plot. This is controlled by argument constant. If constant = TRUE then the same permutation
will be generated for each level of strata. The default is constant = FALSE.

jackal 13

Value

For how a list with components for each of the possible arguments.

Author(s)

Gavin Simpson

References

shuffle() is modelled after the permutation schemes of Canoco 3.1 (ter Braak, 1990); see also
Besag & Clifford (1989).

Besag, J. and Clifford, P. (1989) Generalized Monte Carlo significance tests. Biometrika 76; 633–
642.

ter Braak, C. J. F. (1990). Update notes: CANOCO version 3.1. Wageningen: Agricultural Mathe-
matics Group. (UR).

See Also

shuffle and shuffleSet for permuting from a design, and check, a utility function for checking
permutation design described by how.

Examples

Set up factors for the Plots and Blocks
plts <- gl(4, 10) ## 4 Plots of 10 samples each
blks <- gl(2, 20) ## 2 Blocks of 20 samples each

permutation design
h1 <- how(within = Within(type = "series", mirror = TRUE),

plots = Plots(strata = plts, type = "series"),
blocks = blks)

The design can be updated...
... remove the blocking:
update(h1, blocks = NULL)

... or switch the type of shuffling at a level:
#update(h1, plots = update(getPlots(h1), type = "none"))
plots2 <- update(getPlots(h1), type = "none")
update(h1, plots = plots2)

jackal Mandible lengths of male and female golden jackals

Description

Mandible lengths (in mm) for male and female golden jackals (Canis aureus) from a collection of
specimens in the British Museum of Natural History, London, UK.

14 nobs-methods

Usage

data(jackal)

Format

A data frame with 20 observations on the following 2 variables.

Length a numeric vector

Sex a factor with levels Male Female

Source

The data were manually transcribed from Manly (2007).

References

Higham, C.F.W., Kijngam, A., and Manly, B.F.J. (1980) An analysis of prehistoric canid remains
from Thailand. Journal of Archaeological Science 7:149-165.

Manly, B.F.J. (2007) Randomization, bootstrap and Monte Carlo methods in biology. Third Edition.
Chapman \& Hall/CRC, Boca Raton.

Examples

data(jackal)
str(jackal)

boxplot of mandible length vs sex
plot(Length ~ Sex, data = jackal)

nobs-methods Number of observations in a given object

Description

nobs is a generic function to return the number of observations from a model. shuffle provides a
few methods for other types of data object in R.

Usage

S3 method for class 'numeric'
nobs(object, ...)

S3 method for class 'integer'
nobs(object, ...)

S3 method for class 'matrix'

nobs-methods 15

nobs(object, ...)

S3 method for class 'data.frame'
nobs(object, ...)

S3 method for class 'character'
nobs(object, ...)

S3 method for class 'factor'
nobs(object, ...)

Arguments

object a data frame or matrix, or a numeric, integer, character, or factor vector.

... arguments to other methods.

Details

Function nobs is a simple generic function to return the number of observations in a range of R
model objects. Methods are provided to work with a variety of R objects.

Value

The (numeric) number of observations in object.

Author(s)

Gavin Simpson

Examples

set.seed(1)
numeric vector
len <- sample(1:10, 1)
v <- as.numeric(sample(1:100, len))
len
obs <- nobs(v)
isTRUE(all.equal(len, obs))

integer
len <- sample(1L:10L, 1)
obs <- nobs(len)
isTRUE(all.equal(len, obs))

16 numPerms

numPerms Number of possible permutations for a given object

Description

numPerms calculates the maximum number of permutations possible under the current permutation
scheme.

Usage

numPerms(object, control = how())

Arguments

object any object handled by nobs.

control a list of control values describing properties of the permutation design, as re-
turned by a call to how.

Details

Function numPerms returns the number of permutations for the passed object and the selected
permutation scheme. object can be one of a data frame, matrix, an object for which a scores
method exists, or a numeric or integer vector. In the case of a numeric or integer vector, a vector of
length 1 can be used and it will be expanded to a vector of length object (i.e., 1:object) before
computing the number of permutations. As such, object can be the number of observations not
just the object containing the observations.

Value

The (numeric) number of possible permutations of observations in object.

Note

In general, mirroring "series" or "grid" designs doubles or quadruples, respectively, the number
of permutations without mirroring (within levels of strata if present). This is not true in two special
cases:

1. In "grid" designs where the number of columns is equal to 2, and

2. In "series" designs where the number of observations in a series is equal to 2.

For example, with 2 observations there are 2 permutations for "series" designs:

1. 1-2, and

2. 2-1.

If these two permutations were mirrored, we would have:

1. 2-1, and

numPerms 17

2. 1-2.

It is immediately clear that this is the same set of permutations without mirroring (if one reorders
the rows). A similar situation arises in "grid" designs where the number of columns per grid is
equal to 2. Note that the number of rows per grid is not an issue here.

Author(s)

Gavin Simpson

See Also

shuffle and how. Additional nobs methods are provide, see nobs-methods.

Examples

permutation design --- see ?how
ctrl <- how() ## defaults to freely exchangeable

vector input
v <- 1:10
(obs <- nobs(v))
numPerms(v, control = ctrl)

integer input
len <- length(v)
(obs <- nobs(len))
numPerms(len, control = ctrl)

new design, objects are a time series
ctrl <- how(within = Within(type = "series"))
numPerms(v, control = ctrl)
number of permutations possible drastically reduced...
...turn on mirroring
ctrl <- how(within = Within(type = "series", mirror = TRUE))
numPerms(v, control = ctrl)

Try blocking --- 2 groups of 5
bl <- numPerms(v, control = how(blocks = gl(2,5)))
bl

should be same as
pl <- numPerms(v, control = how(plots = Plots(strata = gl(2,5))))
pl
stopifnot(all.equal(bl, pl))

18 set-methods

set-methods Replacement functions to set components of a permutation design

Description

Simple functions to allow abstracted replacement of components of a permutation design, for ex-
ample as returned by how. In addition to performing replacement of components of the list returned
by how, these replacement function also update the matched calls stored within the list to facilitate
the use of update by users.

Usage

setBlocks(object) <- value
setPlots(object) <- value
setWithin(object) <- value
setStrata(object) <- value
setNperm(object) <- value
setAllperms(object) <- value
setMaxperm(object) <- value
setMinperm(object) <- value
setComplete(object) <- value
setMake(object) <- value
setObserved(object) <- value
setRow(object) <- value
setCol(object) <- value
setDim(object) <- value
setType(object) <- value
setMirror(object) <- value
setConstant(object) <- value

Arguments

object An R object to dispatch on.

value The replacement value/object.

Details

These are replacement functions for working with permutation design objects created by how. They
should be used in preference to directly updating the permutation design in case the internal struc-
ture of object changes as permute is developed and because the matched call also needs to be
updated to facilitate use of update on the how object.

Value

These replacement functions return object suitably modified.

shuffle 19

Note

setStrata<- has methods for objects of class "how" and "Plots". The former sets the blocks
component of the how object, whilst the latter sets the strata component of the Plots object.

setDim<-, setRow<-, and setCol<- cannot be used on an object of class "how". Instead, extract
the Plots or Within components with getPlots or getWithin and alter those components, then
use the resulting object to replace the plots or within components using setPlots or setWithin.

Author(s)

Gavin Simpson

See Also

check, a utility function for checking permutation scheme described by how. Comparable extractor
functions are also available; see get-methods.

Examples

extract components from a "how" object
hh <- how()
getNperm(hh)
setNperm(hh) <- 999
getNperm(hh)

shuffle Unrestricted and restricted permutations

Description

Unrestricted and restricted permutation designs for time series, line transects, spatial grids and
blocking factors.

Usage

shuffle(n, control = how())

permute(i, n, control)

Arguments

n numeric; the length of the returned vector of permuted values. Usually the num-
ber of observations under consideration. May also be any object that nobs knows
about; see nobs-methods.

control a list of control values describing properties of the permutation design, as re-
turned by a call to how.

i integer; row of control$all.perms to return.

20 shuffle

Details

shuffle can generate permutations for a wide range of restricted permutation schemes. A small
selection of the available combinations of options is provided in the Examples section below.

permute is a higher level utility function for use in a loop within a function implementing a per-
mutation test. The main purpose of permute is to return the correct permutation in each iteration
of the loop, either a random permutation from the current design or the next permutation from
control$all.perms if it is not NULL and control$complete is TRUE.

Value

For shuffle a vector of length n containing a permutation of the observations 1, . . . , n using the
permutation scheme described by argument control.

For permute the ith permutation from the set of all permutations, or a random permutation from
the design.

Author(s)

Gavin Simpson

References

shuffle() is modelled after the permutation schemes of Canoco 3.1 (ter Braak, 1990); see also
Besag & Clifford (1989).

Besag, J. and Clifford, P. (1989) Generalized Monte Carlo significance tests. Biometrika 76; 633–
642.

ter Braak, C. J. F. (1990). Update notes: CANOCO version 3.1. Wageningen: Agricultural Mathe-
matics Group. (UR).

See Also

check, a utility function for checking permutation scheme described by how.

Examples

set.seed(1234)

unrestricted permutations
shuffle(20)

observations represent a time series of line transect
CTRL <- how(within = Within(type = "series"))
shuffle(20, control = CTRL)

observations represent a time series of line transect
but with mirroring allowed
CTRL <- how(within = Within(type = "series", mirror = TRUE))
shuffle(20, control = CTRL)

shuffle 21

observations represent a spatial grid, 5rx4c
nr <- 5
nc <- 4
CTRL <- how(within = Within(type = "grid", ncol = nc, nrow = nr))
perms <- shuffle(20, control = CTRL)
view the permutation as a grid
matrix(matrix(1:20, nrow = nr, ncol = nc)[perms],

ncol = nc, nrow = nr)

random permutations in presence of strata
plots <- Plots(strata = gl(4, 5))
CTRL <- how(plots = plots, within = Within(type = "free"))
shuffle(20, CTRL)
as above but same random permutation within strata
CTRL <- how(plots = plots, within = Within(type = "free",

constant = TRUE))
shuffle(20, CTRL)

time series within each level of block
CTRL <- how(plots = plots, within = Within(type = "series"))
shuffle(20, CTRL)
as above, but with same permutation for each level
CTRL <- how(plots = plots, within = Within(type = "series",

constant = TRUE))
shuffle(20, CTRL)

spatial grids within each level of block, 4 x (5r x 5c)
nr <- 5
nc <- 5
nb <- 4 ## number of blocks
plots <- Plots(gl(nb, 25))
CTRL <- how(plots = plots,

within = Within(type = "grid", ncol = nc, nrow = nr))
shuffle(100, CTRL)
as above, but with same permutation for each level
CTRL <- how(plots = plots,

within = Within(type = "grid", ncol = nc, nrow = nr,
constant = TRUE))

shuffle(100, CTRL)

permuting levels of plots instead of observations
CTRL <- how(plots = Plots(gl(4, 5), type = "free"),

within = Within(type = "none"))
shuffle(20, CTRL)
permuting levels of plots instead of observations
but plots represent a time series
CTRL <- how(plots = Plots(gl(4, 5), type = "series"),

within = Within(type = "none"))
shuffle(20, CTRL)

permuting levels of plots but plots represent a time series
free permutation within plots
CTRL <- how(plots = Plots(gl(4, 5), type = "series"),

22 shuffle

within = Within(type = "free"))
shuffle(20, CTRL)

permuting within blocks
grp <- gl(2, 10) # 2 groups of 10 samples each
CTRL <- how(blocks = grp)
shuffle(length(grp), control = CTRL)

Simple function using permute() to assess significance
of a t.test
pt.test <- function(x, group, control) {

function to calculate t
t.statistic <- function(x, y) {

m <- length(x)
n <- length(y)
means and variances, but for speed
xbar <- mean(x)
ybar <- mean(y)
xvar <- var(x)
yvar <- var(y)
pooled <- sqrt(((m-1)*xvar + (n-1)*yvar) / (m+n-2))
(xbar - ybar) / (pooled * sqrt(1/m + 1/n))

}
check the control object
#control <- check(x, control)$control ## FIXME
number of observations
Nobs <- nobs(x)
group names
lev <- names(table(group))
vector to hold results, +1 because of observed t
t.permu <- numeric(length = control$nperm) + 1
calculate observed t
t.permu[1] <- t.statistic(x[group == lev[1]], x[group == lev[2]])
generate randomisation distribution of t
for(i in seq_along(t.permu)) {

return a permutation
want <- permute(i, Nobs, control)
calculate permuted t
t.permu[i+1] <- t.statistic(x[want][group == lev[1]],

x[want][group == lev[2]])
}
pval from permutation test
pval <- sum(abs(t.permu) >= abs(t.permu[1])) / (control$nperm + 1)
return value
return(list(t.stat = t.permu[1], pval = pval))

}

generate some data with slightly different means
set.seed(1234)
gr1 <- rnorm(20, mean = 9)
gr2 <- rnorm(20, mean = 10)
dat <- c(gr1, gr2)
grouping variable

shuffle-utils 23

grp <- gl(2, 20, labels = paste("Group", 1:2))
create the permutation design
control <- how(nperm = 999, within = Within(type = "free"))
perform permutation t test
perm.val <- pt.test(dat, grp, control)
perm.val

compare perm.val with the p-value from t.test()
t.test(dat ~ grp, var.equal = TRUE)

shuffle-utils Utility functions for unrestricted and restricted permutations

Description

Unrestricted and restricted permutations for time series, line transects, spatial grids and blocking
factors.

Usage

shuffleFree(x, size)

shuffleSeries(x, mirror = FALSE, start = NULL, flip = NULL)

shuffleGrid(nrow, ncol, mirror = FALSE, start.row = NULL,
start.col = NULL, flip = NULL)

shuffleStrata(strata, type, mirror = FALSE, start = NULL, flip = NULL,
nrow, ncol, start.row = NULL, start.col = NULL)

Arguments

x vector of indices to permute.
size number of random permutations required
mirror logical; should mirroring of sequences be allowed?
start integer; the starting point for time series permutations. If missing, a random

starting point is determined.
flip logical, length 1 (shuffleSeries) or length 2 (shuffleGrid); force mirroring

of permutation. This will always return the reverse of the computed permuta-
tion. For shuffleGrid, the first element pertains to flipping rows, the second to
flipping columns of the grid.

nrow, ncol numeric; the number of rows and columns in the grid.
start.row, start.col

numeric; the starting row and column for the shifted grid permutation. If non
supplied, a random starting row and column will be selected.

strata factor; the blocks to permute.
type character; the type of permutation used to shuffle the strata. One of "free",

"grid" or "series".

24 shuffle-utils

Details

These are developer-level functions for generating permuted indexes from one of several restricted
and unrestricted designs.

shuffleFree is a wrapper to code underlying sample, but without the extra over head of sanity
checks. It is defined as sample.int(x, size, replace = FALSE). You must arrange for the correct
values to be supplied, where x is a vector of indices to sample from, and size is the number of
indices to sample. Sampling is done without replacement and without regard to prior probabilities.
Argument size is allowed so that one can draw a single observation at random from the indices x.
In general use, size would be set equal to length{x}.

Value

A integer vector of permuted indices.

Author(s)

Gavin Simpson

See Also

check, a utility function for checking permutation scheme described by how. shuffle as a user-
oriented wrapper to these functions.

Examples

set.seed(3)

draw 1 value at random from the set 1:10
shuffleFree(1:10, 1)

permute the series 1:10
x <- 1:10
shuffleSeries(x) ## with random starting point
shuffleSeries(x, start = 5L) ## known starting point
shuffleSeries(x, flip = TRUE) ## random start, forced mirror
shuffleSeries(x, mirror = TRUE) ## random start, possibly mirror

permute a grid of size 3x3
shuffleGrid(3, 3) ## random starting row/col
shuffleGrid(3, 3, start.row = 2,

start.col = 3) ## with known row/col
shuffleGrid(3, 3, flip = rep(TRUE, 2)) ## random start, forced mirror

shuffleSet 25

shuffleSet Generate a set of permutations from the specified design.

Description

shuffleSet returns a set of nset permutations from the specified design. The main purpose of the
function is to circumvent the overhead of repeatedly calling shuffle to generate a set of permuta-
tions.

Usage

shuffleSet(n, nset, control = how(), check = TRUE, quietly = FALSE)

S3 method for class 'permutationMatrix'
as.matrix(x, ...)

Arguments

n numeric; the number of observations in the sample set. May also be any object
that nobs knows about; see nobs-methods.

nset numeric; the number of permutations to generate for the set. Can be missing,
the default, in which case nset is determined from control.

control an object of class "how" describing a valid permutation design.

check logical; should the design be checked for various problems via function check?
The default is to check the design for the stated number of observations and
update control accordingly. See Details.

quietly logical; should messages by suppressed?

x an object of class "permutationMatrix", as returned by shuffleSet.

... arguments passed to other methods. For the as.matrix method only.

Details

shuffleSet is designed to generate a set of nset permutation indices over which a function can
iterate as part of a permutation test. It is only slightly more efficient than calling shuffle nset
times, but it is far more practical than the simpler function because a set of permutations can be
worked on by applying a function to the rows of the returned object. This simplifies the function
applied, and facilitates the use of parallel processing functions, thus enabling a larger number of
permutations to be evaluated in reasonable time.

By default, shuffleSet will check the permutations design following a few simple heuristics. See
check for details of these. Whether some of the heuristics are activiated or not can be controlled via
how, essentialy via its argument minperm. In particular, if there are fewer than minperm permuta-
tions, shuffleSet will generate and return all possible permutations, which may differ from the
number requested via argument nset.

The check argument to shuffleSet controls whether checking is performed in the permutation
design. If you set check = FALSE then exactly nset permutations will be returned. However, do be

26 shuffleSet

aware that there is no guarantee that the set of permutations returned will be unique, especially so
for designs and data sets where there are few possible permutations relative to the number requested.

The as.matrix method sets the control and seed attributes to NULL and removes the "permutationMatrix"
class, resulting in a standard matrix object.

Value

Returns a matrix of permutations, where each row is a separate permutation. As such, the returned
matrix has nset rows and n columns.

Author(s)

Gavin L. Simpson

References

shuffleSet() is modelled after the permutation schemes of Canoco 3.1 (ter Braak, 1990); see also
Besag & Clifford (1989).

Besag, J. and Clifford, P. (1989) Generalized Monte Carlo significance tests. Biometrika 76; 633–
642.

ter Braak, C. J. F. (1990). Update notes: CANOCO version 3.1. Wageningen: Agricultural Mathe-
matics Group. (UR).

See Also

See shuffle for generating a single permutation, and how for setting up permutation designs.

Examples

set.seed(1)
simple random permutations, 5 permutations in set
shuffleSet(n = 10, nset = 5)

series random permutations, 5 permutations in set
shuffleSet(10, 5, how(within = Within(type = "series")))

series random permutations, 10 permutations in set,
with possible mirroring
CTRL <- how(within = Within(type = "series", mirror = TRUE))
shuffleSet(10, 10, CTRL)

Permuting strata
4 groups of 5 observations
CTRL <- how(within = Within(type = "none"),

plots = Plots(strata = gl(4,5), type = "free"))
shuffleSet(20, 10, control = CTRL)

10 random permutations in presence of Plot-level strata
plotStrata <- Plots(strata = gl(4,5))

shuffleSet 27

CTRL <- how(plots = plotStrata,
within = Within(type = "free"))

numPerms(20, control = CTRL)
shuffleSet(20, 10, control = CTRL)
as above but same random permutation within Plot-level strata
CTRL <- how(plots = plotStrata,

within = Within(type = "free", constant = TRUE))
numPerms(20, control = CTRL)
shuffleSet(20, 10, CTRL) ## check this.

time series within each level of Plot strata
CTRL <- how(plots = plotStrata,

within = Within(type = "series"))
shuffleSet(20, 10, CTRL)
as above, but with same permutation for each Plot-level stratum
CTRL <- how(plots = plotStrata,

within = Within(type = "series", constant = TRUE))
shuffleSet(20, 10, CTRL)

Index

∗ datasets
jackal, 13

∗ design
check, 5
shuffle, 19
shuffle-utils, 23
shuffleSet, 25

∗ htest
shuffle, 19
shuffle-utils, 23
shuffleSet, 25

∗ methods
check, 5
get-methods, 8
set-methods, 18

∗ utilities
check, 5

∗ utils
get-methods, 8
how, 11
set-methods, 18

allFree (allUtils), 4
allGrid (allUtils), 4
allPerms, 2, 4, 5, 12
allSeries (allUtils), 4
allStrata (allUtils), 4
allUtils, 4
as.allPerms (allPerms), 2
as.matrix, 2
as.matrix.allPerms (allPerms), 2
as.matrix.permutationMatrix

(shuffleSet), 25

Blocks (how), 11

check, 5, 11, 13, 19, 20, 24, 25

get-methods, 8
getAllperms (get-methods), 8

getBlocks (get-methods), 8
getCol (get-methods), 8
getComplete (get-methods), 8
getConstant (get-methods), 8
getControl (get-methods), 8
getDim (get-methods), 8
getHow (get-methods), 8
getMake (get-methods), 8
getMaxperm (get-methods), 8
getMinperm (get-methods), 8
getMirror (get-methods), 8
getNperm (get-methods), 8
getObserved (get-methods), 8
getPlots, 19
getPlots (get-methods), 8
getRow (get-methods), 8
getStrata (get-methods), 8
getType (get-methods), 8
getWithin, 19
getWithin (get-methods), 8

how, 2, 4–6, 8, 10, 11, 11, 16–20, 24–26

jackal, 13

nobs, 14, 16, 17
nobs-methods, 14
nobs.character (nobs-methods), 14
nobs.data.frame (nobs-methods), 14
nobs.factor (nobs-methods), 14
nobs.integer (nobs-methods), 14
nobs.matrix (nobs-methods), 14
nobs.numeric (nobs-methods), 14
numPerms, 5, 16

permute (shuffle), 19
Plots, 19
Plots (how), 11
print, 3
print.allPerms (allPerms), 2

28

INDEX 29

print.check (check), 5
print.how (how), 11
print.summary.allPerms (allPerms), 2
print.summary.check (check), 5

sample, 24
set-methods, 18
setAllperms<- (set-methods), 18
setBlocks<- (set-methods), 18
setCol<- (set-methods), 18
setComplete<- (set-methods), 18
setConstant<- (set-methods), 18
setDim<- (set-methods), 18
setMake<- (set-methods), 18
setMaxperm<- (set-methods), 18
setMinperm<- (set-methods), 18
setMirror<- (set-methods), 18
setNperm<- (set-methods), 18
setObserved<- (set-methods), 18
setPlots<- (set-methods), 18
setRow<- (set-methods), 18
setStrata<- (set-methods), 18
setType<- (set-methods), 18
setWithin<- (set-methods), 18
shuffle, 5, 6, 13, 17, 19, 24–26
shuffle-utils, 23
shuffleFree (shuffle-utils), 23
shuffleGrid (shuffle-utils), 23
shuffleSeries (shuffle-utils), 23
shuffleSet, 13, 25
shuffleStrata (shuffle-utils), 23
summary, 3
summary.allPerms (allPerms), 2
summary.check, 5
summary.check (check), 5

update, 18

Within (how), 11

	allPerms
	allUtils
	check
	get-methods
	how
	jackal
	nobs-methods
	numPerms
	set-methods
	shuffle
	shuffle-utils
	shuffleSet
	Index

