Package ‘midr’

January 16, 2026

Type Package

Title Learning from Black-Box Models by Maximum Interpretation
Decomposition

Version 0.5.3

Description The goal of 'midr' is to provide a model-agnostic method for interpreting and explain-
ing black-box predictive models by creating a globally interpretable surrogate model. The pack-
age implements 'Maximum Interpretation Decomposition' (MID), a functional decomposi-
tion technique that finds an optimal additive approximation of the original model. This approxi-
mation is achieved by minimizing the squared error between the predictions of the black-
box model and the surrogate model. The theoretical foundations of MID are described in Iwa-
sawa & Matsumori (2025) [Forthcoming], and the package itself is de-
tailed in Asashiba et al. (2025) <doi:10.48550/arXiv.2506.08338>.

License MIT + file LICENSE
Encoding UTF-8
Imports graphics, grDevices, Rcpp, ReppEigen, rlang, stats, utils

Suggests datasets, ggplot2, khroma, knitr, RColorBrewer, rmarkdown,
scales, shapviz, testthat, viridisLite

Config/testthat/edition 3
RoxygenNote 7.3.2

URL https://github.com/ryo-asashi/midr,
https://ryo-asashi.github.io/midr/

BugReports https://github.com/ryo-asashi/midr/issues
LinkingTo Rcpp, ReppEigen
NeedsCompilation yes

Author Ryoichi Asashiba [aut, cre],
Hirokazu Iwasawa [aut],
Reiji Kozuma [ctb]

Maintainer Ryoichi Asashiba <ryoichi.asashiba@gmail.com>
Repository CRAN
Date/Publication 2026-01-16 16:20:02 UTC

https://doi.org/10.48550/arXiv.2506.08338
https://github.com/ryo-asashi/midr
https://ryo-asashi.github.io/midr/
https://github.com/ryo-asashi/midr/issues

2 color.theme

Contents
colortheme L 2
colortheme.info 5
factorencoder L e e e e 6
get.yhat L 8
gemid e e e e 10
ggmid.mid.breakdown oL 11
ggmid.mid.conditional 13
ggmid.mid.importance L. e e e e e 15
INETPIEL . . . o o v v o e e e e e e e e e e e e e e e e e e 17
mid.breakdown L. e e e 22
mid.conditional 23
mideeffect e 25
MIdIMPOItance o o i e e e e e e 26
mid.plotso e 27
MIdermMS e e e 29
NUMErC.eNCOAEr vt i e e e e e e e e e e e e e 30
plotmid 32
plot.mid.breakdown 34
plotmid.conditionalo 36
plotmidimportance 37
predictmid e e e 39
printmid L e 40
scale_color_theme, 41
set.colortheme L 43
shapviz.mid e 44
summary.mid L 45
theme midr e 46
weighted.loss L e 47

Index 49

color. theme Color Themes for Graphics
Description

The color.theme() function is the main interface for working with "color.theme" objects. It acts
as a dispatcher that, depending on the class of object, can retrieve a pre-defined theme by name
(see the "Theme Name Syntax" section), create a new theme from a vector of colors or a color-
generating function, and modify an existing "color.theme" object.

color.theme 3

Usage

color. theme(
object,
kernel.args = list(),
options = list(),

name = NULL,
source = NULL,
type = NULL,

reverse = FALSE,
env = color.theme.env(),

)
Arguments
object a character string to retrieve a pre-defined theme, a color kernel (i.e., a vector of
colors or a color generating function) to create a new theme, or a "color.theme"
object to be modified. See the "Details" section.
kernel.args a list of arguments to be passed to the color kernel.
options a list of option values to control the color theme’s behavior.
name a character string for the color theme name.
source a character string for the source name of the color theme.
type a character string specifying the type of the color theme. One of "sequential”,
"diverging", or "qualitative".
reverse logical. If TRUE, the order of colors is reversed.
env an environment where the color themes are registered.
optional named arguments used to modify the color theme. Any argument
passed here will override the corresponding settings in kernel.args or options.
kernel a color vector, a palette function, or a ramp function that serves as the basis for
generating colors.
Details

The "color.theme" object is a special environment that provides two color-generating functions:
...$palette() and ...$ramp().

...$palette() takes an integer n and returns a vector of n discrete colors. It is primarily intended
for qualitative themes, where distinct colors are used to represent categorical data.

...$ramp() takes a numeric vector x with values in the [0, 1] interval, and returns a vector of
corresponding colors. It maps numeric values onto a continuous color gradient, making it suitable
for sequential and diverging themes.

This function, color. theme(), is a versatile dispatcher that behaves differently depending on the
class of the object argument. If object is a character string (e.g., "Viridis", "grDevices/RdBu_r@q?alpha=.5"),
the string is parsed according to the theme name syntax, and the corresponding pre-defined theme
is loaded (see the "Theme Name Syntax" section for details). If object is a color kernel (i.e., a
character vector of colors, a palette function, or a ramp function), a new color theme is created from

4 color.theme

the kernel. If object is a "color.theme" object, the function returns a modified version of the theme,
applying any other arguments to update its settings.

Value

color.theme() returns a "color.theme" object, which is an environment with the special class
attribute, containing the . . .$palette() and .. .$ramp functions, along with other metadata about
the theme.

Theme Name Syntax

When retrieving a theme using a character string, you can use a special syntax to specify the source
and apply modifications:

"[(source)/I(name)[_r1[@(type)1[?(query)]"

* source: (optional) the source package or collection of the theme (e.g., "grDevices").
* name: the name of the theme (e.g., "RdBu").
e "_r": (optional) a suffix to reverse the color order.

* type: (optional) the desired theme type, which will be matched with "sequential", "diverging"

or "qualitative" (i.e., "s", "d", and "q" are sufficient, but longer strings such as "seq", "div",
"qual" are also possible).

* query: (optional) a query string to overwrite the color theme’s metadata including specific
theme options or kernel arguments. Pairs are in key=value format and separated by ; or
& (e.g., "...7alpha=0.5;na.color="gray50’"). Possible keys include "name", "source", "type",
"reverse" and any item of the theme’s options and kernel.args.

See Also

scale_color_theme, set.color.theme, color.theme.info

Examples

Retrieve a pre-defined theme

ct <- color.theme("Mako")
ct$palette(5L)

ct$ramp(seq.int(@, 1, length.out = 5))

Use special syntax to get a reversed, qualitative theme with alpha value
ct <- color.theme("grDevices/Zissou 1_r@qual?alpha=0.75")

ct$palette(5L)

ct$ramp(seq.int(@, 1, length.out = 5))

Create a new theme from a vector of colors

ct <- color.theme(c("#003f5c"”, "#7a5195", "#ef5675", "#ffa600"))
ct$palette(5L)

ct$ramp(seq.int (@, 1, length.out = 5))

Create a new theme from a palette function
ct <- color.theme(grDevices::rainbow)

color.theme.info 5

ct$palette(5L)
ct$ramp(seq.int(@, 1, length.out = 5))

Modify an existing theme

ct <- color.theme(ct, type = "qualitative”, kernel.args = list(v = 0.5))
ct$palette(5L)

ct$ramp(seq.int(@, 1, length.out = 5))

color.theme.info Retrieve Color Theme Information

Description

color.theme.info() returns a data frame listing all available color themes.

color.theme.env() provides direct access to the environment where the color themes are regis-
tered.

Usage

color.theme.info(env = color.theme.env())

color.theme.env()

Arguments

env an environment where the color themes are registered.

Details

These functions provide tools for inspecting the color themes available in the current R session.

color.theme.info() is the primary user-facing function for discovering themes by name, source,
and type.

color.theme.env() is an advanced function that returns the environment currently used as the

theme registry. It first checks for a user-specified environment via getOption("midr.color. theme.env").
If this option is NULL (the default), the function returns the package’s internal environment where

the default themes are stored.

Value

non

color.theme.info() returns a data frame with columns "name", "source", and "type".

color. theme.env() returns the environment currently used as the default theme registry.

See Also

color.theme, set.color.theme

factor.encoder

Examples

#

Get a data frame of all available themes

head(color. theme.info())

#

Get the environment where color themes are stored

theme_env <- color.theme.env()
names (theme_env)[1:5]

factor.encoder Encoder for Qualitative Variables

Description

factor.encoder() creates an encoder function for a qualitative (factor or character) variable. This
encoder converts the variable into a one-hot encoded (dummy) design matrix.

factor.frame() is a helper function to create a "factor.frame" object that defines the encoding
scheme.

Usage

factor.encoder(

X,

K,

use.catchall = TRUE,
catchall = "(others)”,
tag = "x",

frame = NULL,

weights = NULL

factor.frame(levels, catchall = "(others)", tag = "x")

Arguments

X
k

a vector to be encoded as a qualitative variable.

an integer specifying the maximum number of distinct levels to retain (including
the catch-all level). If not positive, all unique values of x are used.

use.catchall logical. If TRUE, less frequent levels are grouped into the catch-all level.

catchall a character string for the catch-all level.
tag the name of the variable.
frame a "factor.frame" object or a character vector that explicitly defines the levels of

the variable.

weights an optional numeric vector of sample weights for x.

levels a vector to be used as the levels of the variable.

factor.encoder 7

Details

This function is designed to handle qualitative data for use in the MID model’s linear system for-
mulation.

The primary mechanism is one-hot encoding. Each unique level of the input variable becomes a
column in the output matrix. For a given observation, the column corresponding to its level is
assigned a 1, and all other columns are assigned @.

When a variable has many unique levels (high cardinality), you can use the use.catchall = TRUE
and k arguments. This will group the k - 1 most frequent levels into their own columns, while all
other less frequent levels are consolidated into a single catchall level (e.g., "(others)" by default).
This is crucial for preventing MID models from becoming overly complex.

Value

factor.encoder() returns an object of class "encoder". This is a list containing the following

components:

frame a "factor.frame" object containing the encoding information (levels).
encode a function to convert a vector X into a one-hot encoded matrix.

n the number of encoding levels (i.e., columns in the design matrix).
type a character string describing the encoding type: "factor" or "null".

factor.frame() returns a "factor.frame" object containing the encoding information.

See Also

numeric.encoder

Examples

Create an encoder for a qualitative variable

data(iris, package = "datasets")
enc <- factor.encoder(x = iris$Species, use.catchall = FALSE, tag = "Species")
enc

Encode a vector with NA
enc$encode(x = c("setosa”, "virginica”, "ensata”, NA, "versicolor"))

Create an encoder with a pre-defined encoding frame

frm <- factor.frame(c("”setosa”, "virginica"), "other iris")

enc <- factor.encoder(x = iris$Species, frame = frm)

enc

enc$encode(c("setosa”, "virginica”, "ensata”, NA, "versicolor"))

Create an encoder with a character vector specifying the levels
enc <- factor.encoder(x = iris$Species, frame = c("setosa”, "versicolor"))
enc$encode(c("setosa”, "virginica”, "ensata”, NA, "versicolor"))

8 get.yhat

get.yhat Wrapper Prediction Function

Description

get.yhat() is a generic function that provides a unified interface for obtaining predictions from
various fitted model objects.

Usage

get.yhat(object, newdata, ...)

Default S3 method:

get.yhat(object,

S3 method for
get.yhat(object,

S3 method for
get.yhat(object,

S3 method for
get.yhat(object,

S3 method for
get.yhat(object,

S3 method for
get.yhat(object,

S3 method for
get.yhat(object,

S3 method for
get.yhat(object,

S3 method for
get.yhat(object,

S3 method for
get.yhat(object,

S3 method for
get.yhat(object,

S3 method for
get.yhat(object,

newdata, target = -1L,

class 'mid'
newdata, ...)
class 'lm'
newdata, ...)
class 'glm'
newdata, ...)

class 'rpart'
newdata, target = -1L,

class 'randomForest'
newdata, target = -1L,

class 'ranger'

newdata, target = -1L,
class 'svm'
newdata, target = -1L,
class 'ksvm'
newdata, target = -1L,

class 'AccurateGLM'
newdata, ...)

class 'glmnet'
newdata, ...)

class 'model_fit'
newdata, target = -1L,

get.yhat 9

S3 method for class 'rpf'

get.yhat(object, newdata, target = -1L, ...)
Arguments

object a fitted model object.

newdata a data.frame or matrix.

optional arguments passed on to the underlying predict () method for the object’s
class.

target an integer or character vector specifying the target levels used for the classifica-
tion models that return a matrix or data frame of class probabilities. The default,
-1, represents the probability of not being the base level.

Details

While many predictive models have a stats: :predict() method, the structure and type of their
outputs are not uniform. For example, some return a numeric vector, others a matrix of class
probabilities, and some a list. This function, get.yhat (), abstracts away this complexity.

For regression models, it returns the numeric prediction in the original scale of the response variable.
For classification models, it returns the sum of class probabilities for the classes specified by the
target argument.

Furthermore, get.yhat () provides more consistent handling of missing values. While some stats: :predict()
methods may return a shorter vector by omitting NAs, get.yhat () is designed to return a vector of
the same length as newdata, preserving NAs in their original positions.

The design of get.yhat() is strongly influenced by DALEX: :yhat ().

Value

get.yhat () returns a numeric vector of model predictions for newdata.

See Also

predict.mid

Examples
data(trees, package = "datasets")
model <- glm(Volume ~ ., trees, family = Gamma(log))

The output of stats::predict() might not be in the scale of the response variable
predict(model, trees[1:5, 1)

get.yhat() returns a numeric vector in the original scale of the response variable
get.yhat(model, trees[1:5, 1)
predict(model, trees[1:5, 1, type = "response”)

10

ggmid

ggmid

Plot MID Component Functions with ggplot2

Description

ggmid() is an S3 generic function for creating various visualizations from MID-related objects
using ggplot2. For "mid" objects (i.e., fitted MID models), it visualizes a single component function
specified by the term argument.

Usage
ggmid(object,

)

S3 method for class 'mid'

ggmid(
object,
term,

type = c("effect”, "data”, "compound”),

theme = NULL,

intercept = FALSE,

main.effects

= FALSE,

data = NULL,
limits = c(NA, NA),
jitter = 0.3,
resolution = c(100L, 100L),
)
S3 method for class 'mid'
autoplot(object, ...)
Arguments
object a "mid" object to be visualized.

term

type
theme

intercept
main.effects
data

limits

optional parameters passed to the main plotting layer.
a character string specifying the component function to be plotted.
the plotting style. One of "effect”, "data" or "compound".

a character string or object defining the color theme. See color.theme for de-
tails.

logical. If TRUE, the intercept is added to the MID values.
logical. If TRUE, main effects are included in the interaction plot.

a data frame to be plotted with the corresponding MID values. If not provided,
data is automatically extracted based on the function call.

a numeric vector of length two specifying the limits of the plotting scale. NA
values are replaced by the minimum and/or maximum MID values.

ggmid.mid.breakdown 11

jitter a numeric value specifying the amount of jitter for the data points.

resolution an integer or vector of two integers specifying the resolution of the raster plot
for interactions.

Details

For "mid" objects, ggmid() creates a "ggplot" object that visualizes a component function of the
fitted MID model.

The type argument controls the visualization style. The default, type = "effect”, plots the com-
ponent function itself. In this style, the plotting method is automatically selected based on the
effect’s type: a line plot for quantitative main effects; a bar plot for qualitative main effects; and
a raster plot for interactions. The type = "data” option creates a scatter plot of data, colored by
the values of the component function. The type = "compound” option combines both approaches,
plotting the component function alongside the data points.

Value

ggmid.mid() returns a "ggplot" object.

See Also

interpret, ggmid.mid. importance, ggmid.mid.conditional, ggmid.mid.breakdown, plot.mid

Examples

data(diamonds, package = "ggplot2")

set.seed(42)

idx <- sample(nrow(diamonds), Tle4)

mid <- interpret(price ~ (carat + cut + color + clarity)*2, diamonds[idx, J)

Plot a quantitative main effect
ggmid(mid, "carat")

Plot a qualitative main effect
ggmid(mid, "clarity”)

Plot an interaction effect with data points and a raster layer
ggmid(mid, "carat:clarity"”, type = "compound”, data = diamonds[idx, J)

Use a different color theme
ggmid(mid, "clarity:color”, theme = "RdBu")

ggmid.mid.breakdown Plot MID Breakdowns with ggplot2

Description

For "mid.breakdown" objects, ggmid() visualizes the breakdown of a prediction by component
functions.

12

ggmid.mid.breakdown

S3 method for class 'mid.breakdown'

type = c("waterfall”, "barplot”, "dotchart"),

Usage
ggmid(

object,

theme = NULL,
terms = NULL,
max.nterms
width = NULL,
vline = TRUE,

15L,

catchall = "(others)”,
label.format = c("%t=%v", "%t:%t"),
format.args = list(),

)
S3 method for class 'mid.breakdown'
autoplot(object, ...)
Arguments
object a "mid.breakdown" object to be visualized.
type the plotting style. One of "waterfall", "barplot" or "dotchart".
theme a character string or object defining the color theme. See color.theme for de-
tails.
terms an optional character vector specifying which terms to display.

max.nterms

width

vline
catchall
label.format

format.args

Details

the maximum number of terms to display in the plot. Less important terms will
be grouped into a "catchall" category.

a numeric value specifying the width of the bars.
logical. If TRUE, a vertical line is drawn at the zero or intercept line.
a character string for the catchall label.

a character vector of length one or two specifying the format of the axis labels.
The first element is used for main effects (default "%t = %v"), and the second is
for interactions (default "%t:%t"). Use "%t" for the term name and "%v" for its
value.

anamed list of additional arguments passed to format for formatting the values.
Common arguments include digits, nsmall, and big.mark.

optional parameters passed on to the main layer.

This is an S3 method for the ggmid() generic that creates a breakdown plot from a "mid.breakdown"
object, visualizing the contribution of each component function to a single prediction.

The type argument controls the visualization style. The default, type = "waterfall” (default),
creates a waterfall plot that shows how the prediction is built up from the intercept, with each term’s

ggmid.mid.conditional 13

contribution sequentially added or subtracted. The type = "barplot” option creates a standard bar
plot where the length of each bar represents the magnitude of the term’s contribution. The type =
"dotchart” option creates a dot plot showing the contribution of each term as a point connected to
a zero baseline.

Value

ggmid.mid.breakdown() returns a "ggplot" object.

See Also

mid.breakdown, ggmid, plot.mid.breakdown

Examples

data(diamonds, package = "ggplot2")

set.seed(42)

idx <- sample(nrow(diamonds), 1e4)

mid <- interpret(price ~ (carat + cut + color + clarity)*2, diamonds[idx, J)
mbd <- mid.breakdown(mid, diamonds[1L, 1)

Create a waterfall plot
ggmid(mbd, type = "waterfall")

Create a bar plot with a different theme
ggmid(mbd, type = "barplot”, theme = "highlight")

Create a dot chart
ggmid(mbd, type = "dotchart”, size = 3)

ggmid.mid.conditional Plot MID Conditional Expectations with ggplot2

Description

For "mid.conditional" objects, ggmid() visualizes Individual Conditional Expectation (ICE) curves
derived from a fitted MID model.

Usage
S3 method for class 'mid.conditional’
ggmid(
object,
type = c("iceplot”, "centered"),
theme = NULL,
term = NULL,

var.alpha = NULL,
var.color = NULL,
var.linetype = NULL,

14 ggmid.mid.conditional

var.linewidth = NULL,
reference = 1L,

dots = TRUE,

sample = NULL,

var.linetype

)

S3 method for class 'mid.conditional’

autoplot(object, ...)

Arguments

object a "mid.conditional”" object to be visualized.

type the plotting style. One of "iceplot" or "centered".

theme a character string or object defining the color theme. See color.theme for de-
tails.

term an optional character string specifying an interaction term. If passed, the ICE
curve for the specified term is plotted.

var.alpha a variable name or expression to map to the alpha aesthetic.

var.color a variable name or expression to map to the color aesthetic.

a variable name or expression to map to the linetype aesthetic.

var.linewidth a variable name or expression to map to the linewidth aesthetic.

reference an integer specifying the index of the evaluation point to use as the reference for
centering the c-ICE plot.
dots logical. If TRUE, points representing the actual predictions for each observation
are plotted.
sample an optional vector specifying the names of observations to be plotted.
optional parameters passed on to the main layer.
Details

This is an S3 method for the ggmid() generic that produces ICE curves from a "mid.conditional”
object. ICE plots are a model-agnostic tool for visualizing how a model’s prediction for a single
observation changes as one feature varies. This function plots one line for each observation in the
data.

The type argument controls the visualization style: The default, type = "iceplot”, plots the raw
ICE curves. The type = "centered” option creates the centered ICE (c-ICE) plot, where each
curve is shifted to start at zero, making it easier to compare the slopes of the curves.

The var.color, var.alpha, etc., arguments allow you to map aesthetics to other variables in your
data using (possibly) unquoted expressions.

Value

ggmid.mid.conditional() returns a "ggplot" object.

ggmid.mid.importance 15

See Also

mid.conditional, ggmid, plot.mid.conditional

Examples

data(airquality, package = "datasets")

library(midr)

mid <- interpret(Ozone ~ .”2, airquality, lambda = 0.1)
ice <- mid.conditional(mid, "Temp", data = airquality)

Create an ICE plot, coloring lines by 'Wind'
ggmid(ice, var.color = "Wind")

Create a centered ICE plot, mapping color and linetype to other variables
ggmid(ice, type = "centered”, theme = "Purple-Yellow",
var.color = factor(Month), var.linetype = Wind > 10)

ggmid.mid.importance Plot MID Importance with ggplot2

Description

For "mid.importance" objects, ggmid() visualizes the importance of component functions of the
fitted MID model.

Usage
S3 method for class 'mid.importance'’
ggmid(
object,
type = c("barplot”, "dotchart”, "heatmap”, "boxplot"),
theme = NULL,
terms = NULL,

max.nterms = 30L,

)
S3 method for class 'mid.importance'’
autoplot(object, ...)
Arguments
object a "mid.importance" object to be visualized.
type the plotting style. One of "barplot", "dotchart", "heatmap", or "boxplot".
theme a character string or object defining the color theme. See color.theme for de-
tails.

terms an optional character vector specifying which terms to display.

16 ggmid.mid.importance

max.nterms the maximum number of terms to display. Defaults to 30 for bar, dot and box
plots.

optional parameters passed on to the main layer.

Details

This is an S3 method for the ggmid () generic that creates an importance plot from a "mid.importance”
object, visualizing the average contribution of component functions to the fitted MID model.

The type argument controls the visualization style. The default, type = "barplot”, creates a stan-
dard bar plot where the length of each bar represents the overall importance of the term. The type
= "dotchart” option creates a dot plot, offering a clean alternative to the bar plot for visualizing
term importance. The type = "heatmap” option creates a matrix-shaped heat map where the color
of each cell represents the importance of the interaction between a pair of variables, or the main
effect on the diagonal. The type = "boxplot"” option creates a box plot where each box shows the
distribution of a term’s contributions across all observations, providing insight into the variability
of each term’s effect.

Value

ggmid.mid. importance() returns a "ggplot" object.

See Also

mid.importance, ggmid, plot.mid.importance

Examples

data(diamonds, package = "ggplot2")

set.seed(42)

idx <- sample(nrow(diamonds), 1e4)

mid <- interpret(price ~ (carat + cut + color + clarity)*2, diamonds[idx, J)
imp <- mid.importance(mid)

Create a bar plot (default)
ggmid(imp)

Create a dot chart
ggmid(imp, type = "dotchart”, theme = "Okabe-Ito", size = 3)

Create a heatmap
ggmid(imp, type = "heatmap”)

Create a boxplot to see the distribution of effects
ggmid(imp, type = "boxplot™)

interpret

17

interpret Fit MID Models

Description

interpret() is used to fit a Maximum Interpretation Decomposition (MID) model. MID models

are additive, highly interpretable models composed of functions, each with up to two variables.

Usage

interpret(object, ...)

Default S3 method:
interpret(

)

object,

X,

y = NULL,

weights = NULL,
pred.fun = get.yhat,
link = NULL,

k = c(NA, NA),

type = c(1L, 1L),
frames = list(),
interactions = FALSE,
terms = NULL,
singular.ok = FALSE,
mode = 1L,

method = NULL,

lambda = 0,

kappa = 1e+06,
na.action = getOption("na.action”),
verbosity = 1L,
encoding.digits = 3L,
use.catchall = FALSE,
catchall = "(others)”,
max.nelements = 1000000000L ,
nil = 1e-07,

tol = 1e-07,

pred.args = list(),

S3 method for class 'formula’
interpret(

formula,
data = NULL,
model = NULL,

18

pred.fun =
weights =

interpret

get.yhat,
NULL,

subset = NULL,

na.action

getOption("na.action”),

verbosity = 1L,

mode = 1L,

drop.unused.levels = FALSE,

pred.args

Arguments

object

y
weights
pred. fun

link

type

frames

interactions

list(),

a fitted model object to be interpreted.

optional arguments. For interpret.formula(), arguments to be passed on to
interpret.default(). For interpret.default(), ... can include conve-
nient aliases (e.g., "ok" for singular.ok, "ie" for interactions) as well as
several advanced fitting options (see the "Advanced Fitting Options" section for
details).

a matrix or data.frame of predictor variables to be used in the fitting process.
The response variable should not be included.

an optional numeric vector of the model predictions or the response variable.
a numeric vector of sample weights for each observation in x.

a function to obtain predictions from a fitted model, where the first argument
is for the fitted model and the second argument is for new data. The default is
get.yhat().

a character string specifying the link function: one of "logit", "probit", "cauchit",
"cloglog", "identity", "log", "sqrt", "1/mu”2", "inverse", "translogit", "transpro-
bit", "identity-logistic" and "identity-gaussian", or an object containing two func-
tions linkfun() and linkinv(). See help(make.link).

an integer or a vector of two integers specifying the maximum number of sample
points for main effects (k[1]) and interactions (k[2]). If a single integer is pro-
vided, it is used for main effects while the value for interactions is automatically
determined. Any NA value will also trigger this automatic determination. With
non-positive values, all unique data points are used as sample points.

an integer or integer-valued vector of length two. The type of encoding. The ef-
fects of quantitative variables are modeled as piecewise linear functions if type
is 1, and as step functions if type is @. If a vector is passed, type[1L] is used
for main effects and type[2L] is used for interactions.

a named list of encoding frames ("numeric.frame" or "factor.frame" objects).
The encoding frames are used to encode the variable of the corresponding name.
If the name begins with "I" or ":", the encoding frame is used only for main

effects or interactions, respectively.

logical. If TRUE and if terms and formula are not supplied, all interactions for
each pair of variables are modeled and calculated.

interpret

terms

singular.ok
mode

method

lambda

kappa

na.action

verbosity

encoding.digits

use.catchall

catchall
max.nelements

nil

tol

pred.args

formula
data

model
subset

19

a character vector of term labels or formula, specifying the set of component
functions to be modeled. If not passed, terms includes all main effects, and all
second-order interactions if interactions is TRUE.

logical. If FALSE, a singular fit is an error.

an integer specifying the method of calculation. If mode is 1, the centralization
constraints are treated as penalties for the least squares problem. If mode is 2,
the constraints are used to reduce the number of free parameters.

an integer specifying the method to be used to solve the least squares problem. A
non-negative value will be passed to RcppEigen: : fastLmPure(). If negative,
stats::1m.fit() is used.

the penalty factor for pseudo smoothing. The default is .

the penalty factor for centering constraints. Used only when mode is 1. The
default is 1e+6.

a function or character string specifying the method of NA handling. The default
is "na.omit".

the level of verbosity. @: fatal, 1: warning (default), 2: info or 3: debug.

an integer. The rounding digits for encoding numeric variables. Used only when
typeis 1.

logical. If TRUE, less frequent levels of qualitative variables are dropped and
replaced by the catchall level.

a character string specifying the catchall level.

an integer specifying the maximum number of elements of the design matrix.
Defaults to 1e9.

a threshold for the intercept and coefficients to be treated as zero. The default is
le-7.

a tolerance for the singular value decomposition. The default is 1e-7.

optional parameters other than the fitted model and new data to be passed to
pred. fun().

a symbolic description of the MID model to be fit.

a data.frame, list or environment containing the variables in formula. If not
found in data, the variables are taken from environment (formula).

a fitted model object to be interpreted.

an optional vector specifying a subset of observations to be used in the fitting
process.

drop.unused.levels

Details

logical. If TRUE, unused levels of factors will be dropped.

The MID model approximates a target model’s prediction function f(x), or values of the response
variable y. This model, denoted as F(x), has the following structure:

F(x) = fo+ ij(xj) + ijk(l'jvxk)

j<k

20

interpret

where fy is the intercept, f;(x;) is the main effect of feature j, and f;(x;, x) is the second-order
interaction effect between features j and k.

To ensure that the decomposed components are unique, they are fitted under the centering con-
straints: each main effect’s average is constrained to be zero, and each interaction effect’s condi-
tional averages are also constrained to be zero. The model is fitted by minimizing the squared error
between the target, f(x) ory, and the surrogate F(x), which is typically evaluated on a represen-
tative dataset.

Value

interpret() returns an object of class "mid". This is a list with the following components:

weights a numeric vector of the sample weights.

call the matched call.

terms the terms.object used.

link a "link-glm" or "link-midr" object containing the link function.
intercept the intercept.

encoders a list of variable encoders.

main.effects a list of data frames representing the main effects.

interacions a list of data frames representing the interactions.

ratio the ratio of the sum of squared error between the target model predictions and
the fitted MID values, to the sum of squared deviations of the target model pre-
dictions.

linear.predictors
a numeric vector of the linear predictors.

fitted.values anumeric vector of the fitted values.
residuals a numeric vector of the working residuals.

na.action information about the special handling of NAs.

Advanced Fitting Options

The ... argument can be used to pass several advanced fitting options:

fit.intercept logical. If TRUE, the intercept term is fitted as part of the least squares problem. If
FALSE (default), it is calculated as the weighted mean of the response.

interpolate.beta a character string specifying the method for interpolating inestimable coefficients
(betas) that arise from sparse data regions. Can be "iterative" for an iterative smoothing pro-
cess, "direct” for solving a linear system, or "none" to disable interpolation.

maxit an integer specifying the maximum number of iterations for the "iterative" interpolation
method.

save.memory an integer (0, 1, or 2) specifying the memory-saving level. Higher values reduce
memory usage at the cost of increased computation time.

weighted.norm logical. If TRUE, the columns of the design matrix are normalized by the square
root of their weighted sum. This is required to ensure the minimum-norm least squares so-
lution obtained by appropriate methods (i.e., 4 or 5) of fastLmPure() is the minimum-norm
solution in a weighted sense.

interpret 21

weighted.encoding logical. If TRUE, sample weights are used during the encoding process (e.g.,
for calculating quantiles to determine knots).

References

Asashiba R, Kozuma R, Iwasawa H (2025). “midr: Learning from Black-Box Models by Maximum
Interpretation Decomposition.” 2506.08338, https://arxiv.org/abs/2506.08338.

See Also

print.mid, summary.mid, predict.mid, plot.mid, ggmid, mid.plots, mid.effect, mid. terms,
mid. importance, mid.conditional, mid.breakdown

Examples

Fit a MID model as a surrogate for another model
data(cars, package = "datasets”)

model <- Im(dist ~ I(speed”2) + speed, cars)

mid <- interpret(dist ~ speed, cars, model)
plot(mid, "speed”, intercept = TRUE)

points(cars)

Fit a MID model as a standalone predictive model
data(airquality, package = "datasets")

mid <- interpret(Ozone ~ .”2, data = airquality, lambda = .5)
plot(mid, "Wind")

plot(mid, "Temp")

plot(mid, "Wind:Temp"”, main.effects = TRUE)

data(Nile, package = "datasets")
nile <- data.frame(time = 1:length(Nile), flow = as.numeric(Nile))

A flexible fit with many knots

mid <- interpret(flow ~ time, data = nile, k = 100L)
plot(mid, "time", intercept = TRUE, limits = c(600L, 1300L))
points(x = 1L:100L, y = Nile)

A smoother fit with fewer knots

mid <- interpret(flow ~ time, data = nile, k = 10L)
plot(mid, "time", intercept = TRUE, limits = c(600L, 1300L))
points(x = 1L:100L, y = Nile)

A pseudo-smoothed fit using a penalty

mid <- interpret(flow ~ time, data = nile, k = 100L, lambda = 100L)
plot(mid, "time", intercept = TRUE, limits = c(600L, 1300L))
points(x = 1L:100L, y = Nile)

https://arxiv.org/abs/2506.08338

22 mid.breakdown
mid.breakdown Calculate MID Breakdowns
Description
mid.breakdown() calculates the contribution of each component function of a fitted MID model to
a single prediction. It breaks down the total prediction into the effects of the intercept, main effects,
and interactions.
Usage
mid.breakdown(object, data = NULL, row = NULL, sort = TRUE)
Arguments
object a "mid" object.
data a data frame containing one or more observations for which to calculate the
MID breakdown. If not provided, data is automatically extracted based on the
function call.
row an optional numeric value or character string specifying the row of data to be
used for the breakdown. If NULL, and the data contains two or more observa-
tions, only the first observation is used.
sort logical. If TRUE, the output data frame is sorted by the absolute contribution of
each effect.
Details

mid.breakdown() is a method for local interpretability. For a given observation, it provides a clear
answer to the question, "How much did each component of the MID model contribute to the final
prediction?"

The function calculates the value of each term in the MID model’s additive structure for the specified
observation. The total prediction is the sum of these individual contributions. The prediction,
denoted F(x), is decomposed as:

F(x) = fo+ ij(xj) + ijk(%‘:xk)
J i<k

The output data frame itemizes the numerical value of each main effect (f;(x;)) and interaction
effect (f;x(x;,xx)), along with the intercept (f;). This makes the prediction transparent and easy
to understand.

Value

mid.breakdown() returns an object of class "mid.breakdown". This is a list with the following
components:

breakdown a data frame containing the breakdown of the prediction.

mid.conditional 23

data the data frame containing the predictor variable values used for the prediction.
intercept the intercept of the MID model.
prediction the predicted value from the MID model.

See Also

interpret, plot.mid.breakdown, ggmid.mid.breakdown

Examples

data(airquality, package = "datasets")
mid <- interpret(Ozone ~ .”2, data = airquality, lambda = 1)

Calculate the breakdown for the first observation in the data
mbd <- mid.breakdown(mid, data = airquality, row = 1)
print(mbd)

Calculate the breakdown for the third observation in the data
mbd <- mid.breakdown(mid, data = airquality, row = 3)
print(mbd)

mid.conditional Calculate MID Conditional Expectations

Description

mid.conditional() calculates the data required to draw Individual Conditional Expectation (ICE)
curves from a fitted MID model. ICE curves visualize how a single observation’s prediction changes
as a specified variable’s value varies, while all other variable are held constant.

Usage

mid.conditional(
object,
variable,
data = NULL,
resolution = 100L,
max.nsamples = 1000L,
type = c("response”, "link"),
keep.effects = TRUE

)
Arguments
object a "mid" object.
variable a character string or expression specifying the single predictor variable for which

to calculate ICE curves.

24

data

resolution

max.nsamples

type

keep.effects

Details

mid.conditional

a data frame containing the observations to be used for the ICE calculations. If
not provided, data is automatically extracted based on the function call.

an integer specifying the number of evaluation points for the variable’s range.

an integer specifying the maximum number of samples. If the number of obser-
vations exceeds this limit, the data is randomly sampled.

the type of prediction to return. "response" (default) for the original scale or
"link" for the scale of the linear predictor.

logical. If TRUE, the effects of individual component functions are stored in the
output object.

The function generates a set of hypothetical observations by creating copies of the original data and
varying the specified variable across a range of sample points. It then obtains a prediction for
each of these hypothetical observations from the MID model. The returned object can be plotted to
visualize the ICE curves.

Value

mid.conditional() returns an object of class "mid.conditional". This is a list with the following

components:

observed

conditional

values

See Also

a data frame of the original observations used, along with their predictions.

a data frame of the hypothetical observations and their corresponding predic-
tions.

a vector of the sample points for the variable used in the ICE calculation

interpret, plot.mid.conditional, ggmid.mid.conditional

Examples

data(airquality, package = "datasets")
mid <- interpret(Ozone ~ .”2, data = airquality, lambda = 1)

Calculate the ICE values for a fitted MID model
ice <- mid.conditional(mid, variable = "Wind"”, data = airquality)

print(ice)

mid.effect 25

mid.effect Evaluate Single MID Component Functions

Description

mid.effect() calculates the contribution of a single component function of a fitted MID model. It
serves as a low-level helper function for making predictions or for direct analysis of a term’s effect.

mid.f() is a convenient shorthand for mid.effect().

Usage

mid.effect(object, term, x, y = NULL)

mid.f(object, term, x, y = NULL)

Arguments
object a "mid" object.
term a character string specifying the component function (term) to evaluate.
X a vector of values for the first variable in the term. If a matrix or data frame is
provided, values of the related variables are extracted from it.
y a vector of values for the second variable in an interaction term.
Details

mid.effect() is a low-level function designed to calculate the contribution of a single com-
ponent function. Unlike predict.mid(), which is designed to return total model predictions,
mid.effect() is more flexible. It accepts vectors, as well as data frames, as input for x and vy,
making it particularly useful for visualizing a component’s effect in combination with other func-
tions, such as graphics: :curve().

For a main effect, the function evaluates the component function f;(z;) for a vector of values x;.
For an interaction, it evaluates f;;(z;, zx) using vectors x; and xy.

Value
mid.effect() returns a numeric vector of the calculated term contributions, with the same length
as x and y.

See Also

interpret, predict.mid

26 mid.importance

Examples

data(airquality, package = "datasets")
mid <- interpret(Ozone ~ .”2, data = airquality, lambda = 1)

Visualize the main effect of "Wind"
curve(mid.effect(mid, term = "Wind”, x), from = @, to = 25)

Visualize the interaction of "Wind" and "Temp"”

curve(mid. f(mid, "Wind:Temp", x, 50), @, 25)

curve(mid. f(mid, "Wind:Temp", x, 60), @, 25, add = TRUE, 1ty = 2)
curve(mid.f(mid, "Wind:Temp”, x, 70), @, 25, add = TRUE, lty = 3)

mid.importance Calculate MID Importance

Description

mid.importance() calculates the MID importance of a fitted MID model. This is a measure of
feature importance that quantifies the average contribution of each component function across a
dataset.

Usage

mid. importance(
object,
data = NULL,
weights = NULL,
sort = TRUE,
measure = 1L,
max.nsamples = 10000L

)
Arguments

object a "mid" object.

data a data frame containing the observations to calculate the importance. If not
provided, data is automatically extracted based on the function call.

weights an optional numeric vector of sample weights.

sort logical. If TRUE, the output data frame is sorted by importance in descending
order.

measure an integer specifying the measure of importance. Possible alternatives are 1 for

the mean absolute effect, 2 for the root mean square effect, and 3 for the median
absolute effect.

max.nsamples an integer specifying the maximum number of samples to retain in the predictions
component of the returned object. If the number of observations exceeds this
value, a weighted random sample is taken.

mid.plots 27

Details

The MID importance of a component function (e.g., a main effect or an interaction) is defined as
the mean absolute effect on the predictions within the given data. Terms with higher importance
have a larger average impact on the model’s overall predictions.

Value

mid.importance() returns an object of class "mid.importance”. This is a list containing the fol-
lowing components:

importance a data frame with the calculated importance values, sorted by default.
predictions the matrix of the fitted or predicted MID values. If the number of observations
exceeds max.nsamples, this matrix contains a sampled subset.
measure a character string describing the type of the importance measure used.
See Also

interpret, plot.mid. importance, ggmid.mid. importance

Examples

data(airquality, package = "datasets")
mid <- interpret(Ozone ~ .”2, data = airquality, lambda = 1)

Calculate MID importance using median absolute contribution
imp <- mid.importance(mid, data = airquality)
print(imp)

Calculate MID importance using root mean square contribution
imp <- mid.importance(mid, measure = 2)
print(imp)

mid.plots Plot Multiple MID Component Functions

Description

mid.plots() is a convenience function for applying ggmid() or plot() to multiple component
functions of a "mid" object at once. It can automatically determine common plotting scales and
manage the layout.

Usage

mid.plots(
object,
terms = mid.terms(object, interactions = FALSE),
limits = c(NA, NA),
intercept = FALSE,

28 mid.plots

main.effects = FALSE,
max.nplots = NULL,
engine = c("ggplot2", "graphics”),

)
Arguments

object a "mid" object.

terms a character vector of the terms to be visualized. By default, only the main effect
terms are used.

limits a numeric vector of length two specifying the mid value limits. NA values
are replaced by the minimum and/or maximum of the plotted MID values. If
intercept = TRUE is set, the intercept is also included in the limit calculation.

intercept logical. If TRUE, the intercept is added to the MID values and the plotting scale

is shifted accordingly.

main.effects logical. If TRUE, main effects are added to the interaction plots to show condi-
tional effects. This argument disables automatic limit calculations.

max.nplots the maximum number of plots to generate.
engine the plotting engine to use, either "ggplot2" or "graphics".

optional parameters passed on to plot.mid() or ggmid().

Value

If engine is "ggplot2", mid.plots() returns a list of "ggplot" objects. Otherwise (i.e., if engine is
"graphics"), mid.plots() produces plots as side-effects and returns NULL invisibly.

See Also

interpret, plot.mid, ggmid

Examples

data(diamonds, package = "ggplot2")

set.seed(42)

idx <- sample(nrow(diamonds), T1e4l)

mid <- interpret(price ~ (carat + cut + color + clarity) * 2, diamonds[idx,])

Plot selected main effects and interaction using the ggplot2 engine
mid.plots(mid, mid.terms(mid, require = "color"”, remove = "cut”), limits = NULL)

mid.terms 29

mid.terms Extract Terms from MID Models

Description

mid.terms() extracts term labels from a fitted MID model or derivative objects. Its primary
strength is the ability to filter terms based on their type (main effects vs. interactions) or their
associated variable names.

Usage

mid.terms(
object,
main.effects = TRUE,
interactions = TRUE,
require = NULL,
remove = NULL,

Arguments
object a "mid" object or another object that contains model terms. Can be a "mid.importance”,
"mid.conditional”, or "mid.breakdown" object.
main.effects logical. If FALSE, the main effect terms are excluded.

interactions logical. If FALSE, the interactions terms are excluded.

require a character vector of variable names. Only terms related to at least one of these
variables are returned.

remove a character vector of variable names. Terms related to any of these variables are
excluded.

aliases are supported for convenience: "me" for main.effects and "ie" for
interactions.

Details

A "term" in a MID model refers to either a main effect (e.g., "Wind") or an interaction effect (e.g.,
"Wind:Temp"). This function provides a flexible way to select a subset of these terms, which is
useful for plotting, summarizing, or other downstream analyses.

Value

mid.terms() returns a character vector of the selected term labels.

Note

This function provides the common underlying logic for the stats::terms() S3 methods for

"mid", "mid.importance", "mid.conditional", and "mid.breakdown" objects.

30 numeric.encoder

See Also

interpret

Examples

data(airquality, package = "datasets")
mid <- interpret(Ozone ~ .”2, airquality, lambda = 1)

Get only main effect terms
mid.terms(mid, interactions = FALSE)

Get terms related to "Wind" or "Temp”
mid.terms(mid, require = c("Wind", "Temp"))

Get terms related to "Wind” or "Temp”, but exclude any with "Day"”
mid.terms(mid, require = c("Wind", "Temp"), remove = "Day")

Get the predicted contributions of only the terms associated with "Wind”
terms_wind <- mid.terms(mid, require = "Wind")
predict(mid, airquality[1:3,], terms = terms_wind, type = "terms")

numeric.encoder Encoder for Quantitative Variables

Description

numeric.encoder () creates an encoder function for a quantitative variable. This encoder can then
be used to convert a numeric vector into a design matrix using either piecewise linear or one-hot
interval encoding, which are core components for modeling effects in a MID model.

numeric.frame() is a helper function to create a "numeric.frame" object that defines the encoding

scheme.
Usage

numeric.encoder(
X)
K,
type = 1L,
encoding.digits = NULL,
tag = “X”,
frame = NULL,

weights = NULL

numeric. frame(
reps = NULL,
breaks = NULL,

numeric.encoder 31

type = NULL,
encoding.digits = NULL,
tag = IIX”
)
Arguments
a numeric vector to be encoded.
an integer specifying the coarseness of the encoding. If not positive, all unique
values of x are used as knots or bins.
type an integer (1 or @) specifying the encoding method (see the "details" section).

encoding.digits
an integer specifying the rounding digits for the piecewise linear encoding (type

=1).

tag the name of the variable.

frame a "numeric.frame" object or a numeric vector that explicitly defines the knots or
breakes for the encoding.

weights an optional numeric vector of sample weights for x.

reps a numeric vector to be used as the representative values (knots).

breaks a numeric vector to be used as the binning breaks.

Details

The primary purpose of the encoder is to transform a single numeric variable into a design matrix
for the MID model’s linear system formulation. The output of the encoder depends on the type
argument.

When type = 1, the variable’s effect is modeled as a piecewise linear function with k knots including
both ends. For each value, the encoder finds the two nearest knots and assigns a weight to each,
based on its relative position. This results in a design matrix where each row has at most two
non-zero values that sum to 1. This approach creates a smooth, continuous representation of the
effect.

When type =0, the variable’s effect is modeled as a step function by dividing its range into k
intervals (bins). The encoder determines which interval each value falls into and assigns a 1 to
the corresponding column in the design matrix, with all other columns being @. This results in a
standard one-hot encoded matrix and creates a discrete, bin-based representation of the effect.

Value

numeric.encoder () returns an object of class "encoder". This is a list containing the following

components:

frame a "numeric.frame" object containing the encoding information.

encode a function to convert a numeric vector x into a dummy matrix.

n the number of encoding levels (i.e., columns in the design matrix).

type a character string describing the encoding type: "linear", "constant", or "null".

numeric.frame() returns a "numeric.frame" object containing the encoding information.

32 plot.mid

See Also

factor.encoder

Examples

Create an encoder for a quantitative variable

data(iris, package = "datasets”)
enc <- numeric.encoder(x = iris$Sepal.Length, k = 5L, tag = "Sepal.Length")
enc

Encode a numeric vector with NA and Inf
enc$encode(x = c(4:8, NA, Inf))

Create an encoder with a pre-defined encoding frame

frm <- numeric.frame(breaks = c(3, 5, 7, 9), type = 0L)
enc <- numeric.encoder(x = iris$Sepal.Length, frame = frm)
enc$encode(x = c(4:8, NA, Inf))

Create an encoder with a numeric vector specifying the knots
enc <- numeric.encoder(x = iris$Sepal.Length, frame = c(3, 5, 7, 9))
enc$encode(x = c(4:8, NA, Inf))

plot.mid Plot MID Component Functions

Description

For "mid" objects (i.e., fitted MID models), plot () visualizes a single component function specified
by the term argument.

Usage
S3 method for class 'mid'
plot(
X,
term,
type = c("effect”, "data”, "compound”),
theme = NULL,

intercept = FALSE,
main.effects = FALSE,

data = NULL,
limits = NULL,
jitter = 0.3,

resolution = c(100L, 100L),

plot.mid 33

Arguments

X a "mid" object to be visualized.

term a character string specifying the component function to be plotted.

type the plotting style. One of "effect", "data" or "compound".

theme a character string or object defining the color theme. See color.theme for de-
tails.

intercept logical. If TRUE, the intercept is added to the MID values.

main.effects logical. If TRUE, main effects are included in the interaction plot.

data a data frame to be plotted with the corresponding MID values. If not provided,
data is automatically extracted from the function call.

limits a numeric vector of length two specifying the limits of the plotting scale.

jitter a numeric value specifying the amount of jitter for the data points.

resolution an integer or vector of two integers specifying the resolution of the raster plot

for interactions.

optional parameters to be passed to the graphing function. Possible arguments
are "col", "fill", "pch", "cex", "Ity", "lwd" and aliases of them.

Details

This is an S3 method for the plot() generic that produces a plot from a "mid" object, visualizing a
component function of the fitted MID model.

The type argument controls the visualization style. The default, type = "effect”, plots the com-
ponent function itself. In this style, the plotting method is automatically selected based on the
effect’s type: a line plot for quantitative main effects; a bar plot for qualitative main effects; and a
filled contour (level) plot for interactions. The type = "data"” option creates a scatter plot of data,
colored by the values of the component function. The type = "compound” option combines both
approaches, plotting the component function alongside the data points.

Value

plot.mid() produces a plot as a side-effect and returns NULL invisibly.

See Also

interpret, ggmid

Examples

data(diamonds, package = "ggplot2")

set.seed(42)

idx <- sample(nrow(diamonds), 1le4)

mid <- interpret(price ~ (carat + cut + color + clarity)*2, diamonds[idx, J)

Plot a quantitative main effect
plot(mid, "carat")

34

plot.mid.breakdown

Plot a qualitative main effect
plot(mid, "clarity")

Plot an interaction effect with data points and a raster layer

plot(mid, "carat:

clarity”, type = "compound”, data = diamonds[idx, J)

Use a different color theme
plot(mid, "clarity:color"”, theme = "RdBu")

plot.mid.breakdown Plot MID Breakdowns

Description

For "mid.breakdown" objects, plot () visualizes the breakdown of a prediction by component func-

S3 method for class 'mid.breakdown’

type = c("waterfall”, "barplot”, "dotchart"),

tions.
Usage

plot(
X’
theme = NULL,
terms = NULL,
max.nterms =
width = NULL,
vline = TRUE,

15L,

catchall = "(others)”,
label.format = c("%t=%v", "%t:%t"),

format.args =

Arguments
X

type
theme

terms

max.nterms

width
vline
catchall

list(),

a "mid.breakdown" object to be visualized.
the plotting style. One of "waterfall", "barplot" or "dotchart".

a character string or object defining the color theme. See color.theme for de-
tails.

an optional character vector specifying which terms to display.

the maximum number of terms to display in the plot. Less important terms will
be grouped into a "catchall" category.

a numeric value specifying the width of the bars.
logical. If TRUE, a vertical line is drawn at the zero or intercept line.

a character string for the catchall label.

plot.mid.breakdown 35

label. format a character vector of length one or two specifying the format of the axis labels.
The first element is used for main effects (default "%t = %v"), and the second is
for interactions (default "%t:%t"). Use "%t" for the term name and "%v" for its
value.

format.args a named list of additional arguments passed to format for formatting the values.
Common arguments include digits, nsmall, and big.mark.

optional parameters passed on to the graphing function. Possible arguments are
"col", "fill", "pch", "cex", "lty", "lwd" and aliases of them.

Details

This is an S3 method for the plot () generic that produces a breakdown plot from a "mid.breakdown"
object, visualizing the contribution of each component function to a single prediction.

The type argument controls the visualization style. The default, type = "waterfall”, creates a
waterfall plot that shows how the prediction builds from the intercept, with each term’s contribution
sequentially added or subtracted. The type = "barplot” option creates a standard bar plot where
the length of each bar represents the magnitude of the term’s contribution. The type = "dotchart”
option creates a dot plot showing the contribution of each term as a point connected to a zero
baseline.

Value

plot.mid.breakdown() produces a plot as a side effect and returns NULL invisibly.

See Also

mid.breakdown, ggmid.mid.breakdown

Examples

data(diamonds, package = "ggplot2")

set.seed(42)

idx <- sample(nrow(diamonds), 1e4)

mid <- interpret(price ~ (carat + cut + color + clarity)”2, diamonds[idx, 1)
mbd <- mid.breakdown(mid, diamonds[1L, 1)

Create a waterfall plot
plot(mbd, type = "waterfall”)

Create a bar plot with a different theme
plot(mbd, type = "barplot”, theme = "highlight")

Create a dot chart
plot(mbd, type = "dotchart”, size = 1.5)

36

plot.mid.conditional

plot.mid.conditional Plot MID Conditional Expectations

Description

For "mid.conditional" objects, plot() visualizes Individual Conditional Expectation (ICE) curves

derived from a fitted MID model.

Usage
S3 method for class 'mid.conditional'’
plot(
X,
type = c("iceplot”, "centered"”),
theme = NULL,
term = NULL,
var.alpha = NULL,
var.color = NULL,

var.linetype = NULL,
var.linewidth = NULL,

reference = 1L,
dots = TRUE,
sample = NULL,
)
Arguments
X a "mid.conditional”" object to be visualized.
type the plotting style. One of "iceplot" or "centered".
theme a character string or object defining the color theme. See color.theme for de-
tails.
term an optional character string specifying an interaction term. If passed, the ICE
curve for the specified term is plotted.
var.alpha a variable name or expression to map to the alpha aesthetic.
var.color a variable name or expression to map to the color aesthetic.

var.linetype
var.linewidth

reference

dots

sample

a variable name or expression to map to the linetype aesthetic.
a variable name or expression to map to the linewidth aesthetic.

an integer specifying the index of the evaluation point to use as the reference for
centering the c-ICE plot.

logical. If TRUE, points representing the actual predictions for each observation
are plotted.

an optional vector specifying the names of observations to be plotted.

optional parameters passed on to the graphing functions.

plot.mid.importance 37

Details

This is an S3 method for the plot() generic that produces ICE curves from a "mid.conditional”
object. ICE plots are a model-agnostic tool for visualizing how a model’s prediction for a single
observation changes as one feature varies. This function plots one line for each observation in the
data.

The type argument controls the visualization style: The default, type = "iceplot”, plots the row
ICE curves. The type = "centered” option creates the centered ICE (c-ICE) plot, where each
curve is shifted so start at zero, which makes it easier to compare the slopes of the curves.

The var.color, var.alpha, etc., arguments allow you to map aesthetics to other variables in your
data using (possibly) unquoted expressions.

Value

plot.mid.conditional() produces an ICE plot as a side-effect and invisibly returns the ICE ma-
trix used for the plot.

See Also

mid.conditional, ggmid.mid.conditional

Examples

data(airquality, package = "datasets”)

library(midr)

mid <- interpret(Ozone ~ .*2, data = airquality, lambda = 0.1)
ice <- mid.conditional(mid, "Temp"”, data = airquality)

Create an ICE plot, coloring lines by 'Wind'
plot(ice, var.color = "Wind")

Create a centered ICE plot, mapping color and linetype to other variables
plot(ice, type = "centered”, theme = "Purple-Yellow",
var.color = factor(Month), var.linetype = Wind > 10)

plot.mid.importance Plot MID Importance

Description

For "mid.importance" objects, plot() visualizes the importance of component functions of the
fitted MID model.

38 plot.mid.importance

Usage
S3 method for class 'mid.importance'’
plot(
X)
type = c("barplot”, "dotchart”, "heatmap”, "boxplot"),
theme = NULL,
terms = NULL,

max.nterms = 30L,

)
Arguments
X a "mid.importance” object to be visualized.
type the plotting style. One of "barplot", "dotchart", "heatmap", or "boxplot".
theme a character string or object defining the color theme. See color.theme for de-
tails.
terms an optional character vector specifying which terms to display.
max.nterms the maximum number of terms to display. Defaults to 30 for bar, dot and box
plots.
optional parameters passed on to the graphing functions. Possible arguments are
"col", "fill", "pch", "cex", "lty", "lwd" and aliases of them.
Details

This is an S3 method for the plot () generic that produces an importance plot from a "mid.importance"
object, visualizing the average contribution of component functions to the fitted MID model.

The type argument controls the visualization style. The default, type = "barplot”, creates a stan-
dard bar plot where the length of each bar represents the overall importance of the term. The type
= "dotchart” option creates a dot plot, offering a clean alternative to the bar plot for visualizing
term importance. The type = "heatmap” option creates a matrix-shaped heat map where the color
of each cell represents the importance of the interaction between a pair of variables, or the main
effect on the diagonal. The type = "boxplot” option creates a box plot where each box shows the
distribution of a term’s contributions across all observations, providing insight into the variability
of each term’s effect.

Value

plot.mid. importance() produces a plot as a side effect and returns NULL invisibly.

See Also

mid. importance, ggmid.mid.importance

predict.mid 39

Examples

data(diamonds, package = "ggplot2")

set.seed(42)

idx <- sample(nrow(diamonds), le4)

mid <- interpret(price ~ (carat + cut + color + clarity)*2, diamonds[idx, 1)
imp <- mid.importance(mid)

Create a bar plot (default)
plot(imp)

Create a dot chart
plot(imp, type = "dotchart”, theme = "Okabe-Ito", size = 1.5)

Create a heatmap
plot(imp, type = "heatmap")

Create a boxplot to see the distribution of effects
plot(imp, type = "boxplot")

predict.mid Predict Method for fitted MID Models

Description

predict.mid() is an S3 method for "mid" objects that obtains predictions from a fitted MID model.
It can be used to predict on new data or to retrieve the fitted values from the original data.

Usage
S3 method for class 'mid'
predict(
object,
newdata = NULL,
na.action = "na.pass”,
type = c("response”, "link", "terms"),

terms = mid.terms(object),

)
Arguments
object a "mid" object to be used to make predictions.
newdata a data frame of the new observations. If NULL, the original fitted values are
extracted and returned.
na.action a function or character string specifying what should happen when the data con-

tain NA values.

type the type of prediction required. One of "response", "link", or "terms".

40 print.mid

terms a character vector of term labels, specifying a subset of component functions to
use for predictions.

arguments to be passed to other methods (not used in this method).

Details

The type argument allows you to specify the scale of the prediction. By default (type = "response”),
the function returns predictions on the original scale of the response variable. Alternatively, you
can obtain predictions on the scale of the linear predictor by setting type = "1ink". For a detailed
breakdown, setting type = "terms"” returns a matrix where each column represents the contribution
of a specific model term on the linear predictor scale.

The terms argument allows for predictions based on a subset of the model’s component functions,
excluding others.
Value

predict.mid() returns a numeric vector of MID model predictions, or a matrix if type = "terms”.

See Also

interpret, mid.effect, get.yhat

Examples

data(airquality, package = "datasets”)
test <- 1:10
mid <- interpret(Ozone ~ .”2, airquality[-test,], lambda = 1, link = "log")

Predict on new data
predict(mid, airquality[test, 1)

Get predictions on the link scale
predict(mid, airquality[test, 1, type = "link")

Get the contributions of specific terms
predict(mid, airquality[test, 1, terms = c("Temp”, "Wind"), type = "terms")

print.mid Print MID Models

Description

print.mid() is an S3 method for "mid" objects that prints a concise summary of a fitted MID
model.

Usage

S3 method for class 'mid'
print(x, digits = max(3L, getOption("digits"”) - 2L), main.effects = FALSE, ...)

scale_color_theme 41

Arguments
X a "mid" object to be printed.
digits an integer specifying the number of significant digits for printing.

main.effects logical. If TRUE, the MID values of each main effect are also printed.

arguments to be passed to other methods (not used in this method).

Details

By default, the print () method for "mid" objects provides a quick overview of the model structure
by listing the number of main effect and interaction terms. If main.effects = TRUE is specified, the
method will also print the contribution of each main effect at its sample points, providing a more
detailed look at the model’s components.

Value

print.mid() returns the original "mid" object invisibly.

See Also

interpret, summary.mid

Examples

data(cars, package = "datasets”)
mid <- interpret(dist ~ speed, cars)

Default print provides a concise summary
print(mid)

Setting main.effects = TRUE prints the contributions of each main effect
print(mid, main.effects = TRUE)

scale_color_theme Color Theme Scales for ggplot2 Graphics

Description

scale_color_theme() and its family of functions provide a unified interface to apply custom color
themes to the colour and fill aesthetics of "ggplot" objects.

Usage

scale_color_theme(
theme,

discrete = NULL,
middle = 0,

42 scale_color_theme

aesthetics = "colour”

scale_colour_theme(
theme,

L

discrete = NULL,

middle = 0,
aesthetics = "colour”
)
scale_fill_theme(theme, ..., discrete = NULL, middle = @, aesthetics = "fill")
Arguments
theme a color theme name (e.g., "Viridis"), a character vector of color names, or a
palette/ramp function. See ?color. theme for more details.
optional arguments to be passed to ggplot2: :continuous_scale() or ggplot2: :discrete_scale().
discrete logical. If TRUE, a discrete scale is used regardless of the theme type.
middle a numeric value specifying the middle point for the diverging color themes.
aesthetics the aesthetic to be scaled. Can be "colour", "color", or "fill".
Details

This function automatically determines the appropriate ggplot2 scale based on the theme’s type. If
the theme is "qualitative", a discrete scale is used by default to assign distinct colors to categorical
data. The discrete argument is automatically set to TRUE if not specified. If the theme is "sequen-
tial" or "diverging", a continuous scale is used by default. The "diverging" themes are handled by
scales: :rescale_mid() to correctly center the gradient around the middle value.

Value

scale_color_theme() returns a ggplot2 scale object (either a "ScaleContinuous" or "ScaleDis-
crete" object) that can be added to a "ggplot" object.

See Also

color.theme

Examples

data(txhousing, package = "ggplot2")

cities <- c("Houston”, "Fort Worth”, "San Antonio”, "Dallas"”, "Austin")

df <- subset(txhousing, city %in% cities)

d <- ggplot2::ggplot(data = df, ggplot2::aes(x = sales, y = median)) +
ggplot2: :geom_point(ggplot2::aes(colour = city))

Plot with a qualitative theme
d + scale_color_theme("”Set 1")

set.color.theme 43

Use a sequential theme as a discrete scale
d + scale_color_theme("”SunsetDark"”, discrete = TRUE)

data(faithfuld, package = "ggplot2")
v <- ggplot2::ggplot(faithfuld) +
ggplot2::geom_tile(ggplot2::aes(waiting, eruptions, fill = density))

Plot with continuous themes
v + scale_fill_theme("Plasma")

Use a diverging theme with a specified midpoint
v + scale_fill_theme("midr"”, middle = 0.017)

set.color. theme Register Color Themes

Description

set.color.theme() registers a custom color theme in the package’s theme registry.

Usage

set.color.theme(
kernel,
kernel.args = list(),
options = list(),

name = "newtheme”,
source = "custom”,
type = NULL,
env = color.theme.env()
)
Arguments
kernel a color vector, a palette function, or a ramp function to be used as a color ker-
nel. It can also be a character vector or a list (see the "Details" section). A
"color.theme" object can also be passed.
kernel.args a list of arguments to be passed to the color kernel.
options a list of option values to control the color theme’s behavior.
name a character string for the color theme name.
source a character string for the source name of the color theme.
type a character string specifying the type of the color theme. One of "sequential”,

"diverging", or "qualitative".

env an environment where the color themes are registered.

44 shapviz.mid

Details

This function takes a color vector, a color-generating function, or an existing "color.theme" object
and registers it under a specified name and source (default is "custom/newtheme"). The registered
color theme can then be easily retrieved using the "Theme Name Syntax" (see help(color. theme)).

To keep the registry environment size small, the kernel argument supports a form of lazy loading.
To use this feature, provide a vector or list containing two character strings. The first is an R
expression that returns a color kernel (e.g., "rainbow"), and the second is the namespace in which to
evaluate the expression (e.g., "grDevices"). The expression is evaluated only when the color theme
is loaded by color. theme().

Value
set.color.theme() returns the metadata of the previous theme that was overwritten (or NULL if
none existed) invisibly.

See Also

color.theme, color.theme.info

shapviz.mid Calculate MID-Derived Shapley Values

Description

shapviz.mid() is an S3 method for the shapviz::shapviz() generic, which calculates MID-
derived Shapley values from a fitted MID model.

Usage

S3 method for class 'mid'
shapviz(object, data = NULL)

Arguments
object a "mid" object.
data a data frame containing the observations for which to calculate MID-derived
Shapley values. If not passed, data is automatically extracted based on the func-
tion call.
Details

The function calculates MID-derived Shapley values by attributing the contribution of each com-
ponent function to its respective variables as follows: first, each main effect is fully attributed to its
corresponding variable; and then, each second-order interaction effect is split equally between the
two variables involved.

summary.mid 45

Value

shapviz.mid() returns an object of class "shapviz".

summary.mid Summarize MID Models

Description

For "mid" objects, an S3 method of summary() prints a comprehensive summary of a fitted MID
model.

Usage

S3 method for class 'mid'
summary (
object,
diagnosis = FALSE,
digits = max(3L, getOption("digits") - 2L),

Arguments
object a "mid" object to be summarized.
diagnosis logical. If TRUE, the diagnosis plot is displayed. Defaults to FALSE.
digits the number of significant digits for printing numeric values.
arguments to be passed to graphics: :panel.smooth() for the diagnosis plot.
Details

The S3 method summary.mid() generates a comprehensive overview of the fitted MID model. The
output includes:

 Call: the function call used to fit the MID model.

* Link: name of the link function used to fit the MID model, if applicable.

* Uninterpreted Variation Ratio: proportion of target model variance not explained by MID
model.

* Residuals: five-number summary of (working) residuals.
* Encoding: summary of encoding schemes per variable.

* Diagnosis: residuals vs fitted values plot (displayed only when diagnosis = TRUE).

Value

summary.mid() returns the original "mid" object invisibly.

46 theme_midr

See Also

interpret, print.mid

Examples

Summarize a fitted MID model

data(cars, package = "datasets”)
mid <- interpret(dist ~ speed, cars)
summary (mid)

theme_midr Default Plotting Themes

Description

theme_midr () returns a complete theme for "ggplot" objects, providing a consistent visual style
for ggplot2 plots.

par.midr() can be used to set graphical parameters for base R graphics.

Usage
theme_midr(
grid_type = C("none”, "X”’ ”yll’ ”Xy”),
base_size = 11,
base_family = "serif",

base_line_size
base_rect_size

base_size/22,
base_size/22

par.midr(...)

Arguments
grid_type the type of grid lines to display, one of "none", "x", "y" or "xy".
base_size base font size, given in pts.

base_family
base_line_size

base_rect_size

Value

base font family.
base size for line elements.
base size for rect elements.

for par.midr (), optional arguments in tag = value form to be passed to graphics

theme_midr () provides a ggplot2 theme customized for the midr package.

par.midr () returns the previous values of the changed parameters in an invisible named list.

cipar().

weighted.loss 47

Examples

Use theme_midr() with ggplot2

X <- data.frame(x = 1:10, y = 1:10)

ggplot2::ggplot(X) +
ggplot2::geom_point(ggplot2::aes(x, y)) +
theme_midr()

ggplot2::ggplot(X) +
ggplot2::geom_col(ggplot2::aes(x, y)) +
theme_midr(grid_type = "y")

ggplot2::ggplot(X) +
ggplot2::geom_line(ggplot2::aes(x, y)) +
theme_midr(grid_type = "xy")

Use par.midr() for base R graphics
old.par <- par.midr()

plot(y ~ x, data = X)

par(old.par)

weighted.loss Weighted Loss Function

Description

weighted.loss() computes various loss metrics (e.g., RMSE, MAE) between two numeric vec-
tors, or for the deviations from the weighted mean of a numeric vector.

Usage
weighted.loss(
X ’
y = NULL,
w = NULL,
na.rm = FALSE,
method = c("rmse”, "mse”, "mae", "medae", "r2")
)
Arguments
X a numeric vector.
y an optional numeric vector. If NULL, x is compared against its weighted mean.
w a numeric vector of sample weights for each value in x.
na.rm logical. If TRUE, any NA and NaNs are removed from all input vectors before the
calculation.
method the loss measure. One of "mse" (mean square error), "rmse" (root mean square

error), mae" (mean absolute error), "medae" (median absolute error), or "r2"
(R-squared).

48

Value

weighted.loss() returns a single numeric value.

Examples

Calculate loss metrics between x and y with weights

weighted.loss(x
weighted.loss(x
weighted.loss(x =

Verify uninterpreted

mid$ratio

c(o,
c(o,
c(0,

10), vy
10), y =
10), vy

c(0, 0), w
c(0, 0), w
c(0, 9), w

c(99, 1), method
c(99, 1), method
c(99, 1), method

weighted.loss

"rmse")
"mae")
"medae")

variation ratio of a fitted MID model without weights
mid <- interpret(dist ~ speed, cars)
1 - weighted.loss(cars$dist, predict(mid, cars), method = "r2")

Verify uninterpreted variation ratio of a fitted MID model with weights

w <- T:nrow(cars)

mid <- interpret(dist ~ speed, cars, weights = w)
1 - weighted.loss(cars$dist, predict(mid, cars), w = w, method = "r2")

mid$ratio

Index

autoplot.mid (ggmid), 10
autoplot.mid.breakdown
(ggmid.mid.breakdown), 11
autoplot.mid.conditional
(ggmid.mid.conditional), 13
autoplot.mid. importance
(ggmid.mid. importance), 15

color.theme, 2, 5, 10, 12, 14, 15, 33, 34, 36,
38,42, 44

color.theme.env (color.theme.info), 5

color.theme.info, 4, 5, 44

factor.encoder, 6, 32
factor.frame (factor.encoder), 6
format, 12, 35

get.yhat, 8, 40

ggmid, 10, 13, 15, 16, 21, 28, 33
ggmid.mid.breakdown, /1, 11, 23, 35
ggmid.mid.conditional, /1, 13, 24, 37
ggmid.mid.importance, 11, 15,27, 38

interpret, 11,17, 23-25, 27, 28, 30, 33, 40,
41,46

mid.breakdown, 13, 21, 22, 35
mid.conditional, /5, 21, 23, 37
mid.effect, 21, 25, 40

mid.f (mid.effect), 25

mid. importance, 16, 21, 26, 38
mid.plots, 21, 27
mid.terms, 27, 29

numeric.encoder, 7, 30
numeric.frame (numeric.encoder), 30

par.midr (theme_midr), 46
plot.mid, 11, 21, 28, 32
plot.mid.breakdown, 13, 23, 34
plot.mid.conditional, 15, 24, 36

49

plot.mid.importance, 16, 27, 37
predict.mid, 9, 21, 25, 39
print.mid, 21, 40, 46

scale_color_theme, 4, 41

scale_colour_theme (scale_color_theme),
41

scale_fill_theme (scale_color_theme), 41

set.color.theme, 4, 5,43

shapviz.mid, 44

summary.mid, 21, 41, 45

terms.object, 20
theme_midr, 46

weighted. loss, 47

	color.theme
	color.theme.info
	factor.encoder
	get.yhat
	ggmid
	ggmid.mid.breakdown
	ggmid.mid.conditional
	ggmid.mid.importance
	interpret
	mid.breakdown
	mid.conditional
	mid.effect
	mid.importance
	mid.plots
	mid.terms
	numeric.encoder
	plot.mid
	plot.mid.breakdown
	plot.mid.conditional
	plot.mid.importance
	predict.mid
	print.mid
	scale_color_theme
	set.color.theme
	shapviz.mid
	summary.mid
	theme_midr
	weighted.loss
	Index

