mgwrsar: GWR, Mixed GWR with Spatial Autocorrelation and Multiscale GWR (Top-Down Scale Approaches)

Provides methods for Geographically Weighted Regression with spatial autocorrelation (Geniaux and Martinetti 2017) <doi:10.1016/j.regsciurbeco.2017.04.001>. Implements Multiscale Geographically Weighted Regression with Top-Down Scale approaches (Geniaux 2026) <doi:10.1007/s10109-025-00481-4>.

Version: 1.3.1
Depends: R (≥ 3.5.0), sp, Matrix
Imports: Rcpp, ggplot2, sf, knitr, methods, doParallel, foreach, nabor, mapview, rlang, dplyr, gridExtra, grid, mboost, mgcv, caret, stringr, SMUT, plotly, RhpcBLASctl, magrittr, lifecycle
LinkingTo: Rcpp, RcppEigen, RcppArmadillo
Suggests: rmarkdown
Published: 2026-01-21
DOI: 10.32614/CRAN.package.mgwrsar
Author: Ghislain Geniaux [aut, cre], Davide Martinetti [aut], César Martinez [aut]
Maintainer: Ghislain Geniaux <ghislain.geniaux at inrae.fr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
SystemRequirements: C++17
Citation: mgwrsar citation info
Materials: NEWS
CRAN checks: mgwrsar results

Documentation:

Reference manual: mgwrsar.html , mgwrsar.pdf
Vignettes: GWR and Mixed GWR with spatial autocorrelation (source, R code)
GWR and MGWR with Space-Time Kernels (source, R code)
Estimating GWR and Mixed GWR Models with mgwrsar package: An Introduction with House Price Data (source, R code)
Multiscale GWR using top down scale approaches (source, R code)
Speeding up GWR like models with mgwrsar package using Target Points, rough gaussian kernel and parallelisation (source, R code)

Downloads:

Package source: mgwrsar_1.3.1.tar.gz
Windows binaries: r-devel: mgwrsar_1.1.zip, r-release: mgwrsar_1.1.zip, r-oldrel: mgwrsar_1.1.zip
macOS binaries: r-release (arm64): mgwrsar_1.1.tgz, r-oldrel (arm64): mgwrsar_1.1.tgz, r-release (x86_64): mgwrsar_1.1.tgz, r-oldrel (x86_64): mgwrsar_1.1.tgz
Old sources: mgwrsar archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mgwrsar to link to this page.