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adaptive_fnhat Specialized “Workhorse” Function for Kernel Adaptive Density Esti-
mators

Description

Common specialized computational “workhorse” function to compute the kernel adaptive density
estimators both in eq. (1.6) of Srihera & Stute (2011) and in eq. (4) of Eichner & Stute (2013)
(together with several related quantities) with a σ that minimizes the estimated MSE using an esti-
mated θ. This function is “specialized” in that it expects some pre-computed quantities (in addition
to the point(s) at which the density is to be estimated, the data, etc.). In particular, the estimator of
θ (which is typically the arithmetic mean of the data) is expected to be already “contained” in those
pre-computed quantities, which increases the computational efficiency.

Usage

adaptive_fnhat(x, data, K, h, sigma, Ai, Bj, fnx, ticker = FALSE,
plot = FALSE, parlist = NULL, ...)

Arguments

x Numeric vector (x1, . . . , xk) of location(s) at which the density estimate is to
be computed.

data Numeric vector (X1, . . . , Xn) of the data from which the estimate is to be com-
puted.
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K Kernel function with vectorized in- & output.

h Numeric scalar, where (usually) h = n−1/5.

sigma Numeric vector (σ1, . . . , σs) with s ≥ 1.

Ai Numeric matrix expecting in its i-th row (xi − X1, . . . , xi − Xn)/h, where
(usually) x1, . . . , xk with k = length(x) are the points at which the density is
to be estimated for the data X1, . . . , Xn with h = n−1/5.

Bj Numeric vector expecting (−J(1/n), . . . ,−J(n/n)) in case of the rank trans-
formation method, but (θ̂ −X1, . . . , θ̂ −Xn) in case of the non-robust Srihera-
Stute-method.

fnx Numeric vector expecting (fn(x1), . . . , fn(xk)) with fn(xi) the Parzen-Rosenblatt
estimator at xi, i.e., fn(xi) = mean(K(Ai[i,]))/h where here typically h
= n−1/5.

ticker Logical; determines if a ’ticker’ documents the iteration progress through sigma.
Defaults to FALSE.

plot Logical or character or numeric and indicates if graphical output should be pro-
duced. Defaults to FALSE (i.e., no graphical output is produced). If it is a char-
acter string or a numeric value, graphical output will be written to numbered
pdf-files (one for each element of x, in the current working directory) whose
names start with the provided “value” after converting it into a character string
followed by the index number of the pertaining x-element. (Parts of the graphi-
cal output are generated by minimize_MSEHat.)

parlist A list of graphical parameters; affects only the pdf-files (if any are created at
all). Default: NULL.

... Possible further arguments passed to minimize_MSEHat() (where they are cur-
rently ignored).

Details

The computational procedure in this function can be highly iterative because for each point in x (and
hence for each row of matrix Ai) the MSE estimator is computed as a function of σ on a (usually
fine) σ-grid provided through sigma. This happens by repeated calls to bias_AND_scaledvar().
The minimization in σ is then performed by minimize_MSEHat() using both a discrete grid-search
and the numerical optimization routine implemented in base R’s optimize(). Finally, compute_fnhat()
yields the actual value of the density estimator for the adapted σ, i.e., for the MSE-estimator-
minimizing σ. (If necessary the computation over the σ-grid is repeated after extending the range of
the grid until the estimator functions for both bias and variance are not constant across the σ-grid.)

Value

A list of as many lists as elements in x, each with components x, y, sigma.adap, msehat.min,
discr.min.smaller, and sig.range.adj whose meanings are as follows:

x the n coordinates of the points where the density is estimated.
y the estimate of the density value f(x).
sigma.adap Minimizer of MSE-estimator (from function minimize_MSEHat).
msehat.min Minimum of MSE-estimator (from function minimize_MSEHat).
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discr.min.smaller TRUE iff the numerically found minimum was smaller than the discrete one (from function minimize_MSEHat).
sig.range.adj Number of adjustments of sigma-range.

References

Srihera & Stute (2011) and Eichner & Stute (2013): see kader.

Examples

## Not run:
require(stats)

# Kernel adaptive density estimators for simulated N(0,1)-data
# computed on an x-grid using the rank transformation and the
# non-robust method:

set.seed(2017); n <- 100; Xdata <- sort(rnorm(n))
x <- seq(-4, 4, by = 0.5); Sigma <- seq(0.01, 10, length = 51)
h <- n^(-1/5)

x.X_h <- outer(x/h, Xdata/h, "-")
fnx <- rowMeans(dnorm(x.X_h)) / h # Parzen-Rosenblatt estim. at

# x_j, j = 1, ..., length(x).
# non-robust method:

theta.X <- mean(Xdata) - Xdata
adaptive_fnhat(x = x, data = Xdata, K = dnorm, h = h, sigma = Sigma,

Ai = x.X_h, Bj = theta.X, fnx = fnx, ticker = TRUE, plot = TRUE)

# rank transformation-based method (requires sorted data):
negJ <- -J_admissible(1:n / n) # rank trafo
adaptive_fnhat(x = x, data = Xdata, K = dnorm, h = h, sigma = Sigma,

Ai = x.X_h, Bj = negJ, fnx = fnx, ticker = TRUE, plot = TRUE)

## End(Not run)

bias_AND_scaledvar Estimators of Bias and Scaled Variance

Description

“Workhorse” function for vectorized (in σ) computation of both the bias estimator and the scaled
variance estimator of eq. (2.3) in Srihera & Stute (2011), and for the analogous computation of the
bias and scaled variance estimator for the rank transformation method in the paragraph after eq. (6)
in Eichner & Stute (2013).

Usage

bias_AND_scaledvar(sigma, Ai, Bj, h, K, fnx, ticker = FALSE)
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Arguments

sigma Numeric vector (σ1, . . . , σs) with s ≥ 1.

Ai Numeric vector expecting (x0 − X1, . . . , x0 − Xn)/h, where (usually) x0 is
the point at which the density is to be estimated for the data X1, . . . , Xn with
h = n−1/5.

Bj Numeric vector expecting (−J(1/n), . . . ,−J(n/n)) in case of the rank trans-
formation method, but (θ̂ −X1, . . . , θ̂ −Xn) in case of the non-robust Srihera-
Stute-method. (Note that this the same as argument Bj of adaptive_fnhat!)

h Numeric scalar, where (usually) h = n−1/5.

K Kernel function with vectorized in- & output.

fnx fn(x0) = mean(K(Ai))/h, where here typically h = n−1/5.

ticker Logical; determines if a ’ticker’ documents the iteration progress through sigma.
Defaults to FALSE.

Details

Pre-computed fn(x0) is expected for efficiency reasons (and is currently prepared in function
adaptive_fnhat).

Value

A list with components BiasHat and VarHat.scaled, both numeric vectors of same length as
sigma.

References

Srihera & Stute (2011) and Eichner & Stute (2013): see kader.

Examples

require(stats)

set.seed(2017); n <- 100; Xdata <- sort(rnorm(n))
x0 <- 1; Sigma <- seq(0.01, 10, length = 21)

h <- n^(-1/5)
Ai <- (x0 - Xdata)/h
fnx0 <- mean(dnorm(Ai)) / h # Parzen-Rosenblatt estimator at x0.

# non-robust method:
Bj <- mean(Xdata) - Xdata
# # rank transformation-based method (requires sorted data):
# Bj <- -J_admissible(1:n / n) # rank trafo

kader:::bias_AND_scaledvar(sigma = Sigma, Ai = Ai, Bj = Bj, h = h,
K = dnorm, fnx = fnx0, ticker = TRUE)
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bias_ES2012 Bias Estimator of Eichner & Stute (2012)

Description

Bias estimator Biasn(σ), vectorized in σ, on p. 2540 of Eichner & Stute (2012).

Usage

bias_ES2012(sigma, h, xXh, thetaXh, K, mmDiff)

Arguments

sigma Numeric vector (σ1, . . . , σs) with s ≥ 1 with values of the scale parameter σ.

h Numeric scalar for bandwidth h (as “contained” in thetaXh and xXh).

xXh Numeric vector expecting the pre-computed h-scaled differences (x − X1)/h,
. . . , (x − Xn)/h where x is the single (!) location for which the weights are
to be computed, the Xi’s are the data values, and h is the numeric bandwidth
scalar.

thetaXh Numeric vector expecting the pre-computed h-scaled differences (θ − X1)/h,
. . . , (θ −Xn)/h where θ is the numeric scalar location parameter, and the Xi’s
and h are as in xXh.

K A kernel function (with vectorized in- & output) to be used for the estimator.

mmDiff Numeric vector expecting the pre-computed differencesmn(X1)−mn(x), . . . ,mn(Xn)−
mn(x).

Details

The formula can also be found in eq. (15.21) of Eichner (2017). Pre-computed (x − Xi)/h,
(θ −Xi)/h, and mn(Xi)−mn(x) are expected for efficiency reasons (and are currently prepared
in function kare).

Value

A numeric vector of the length of sigma.

References

Eichner & Stute (2012) and Eichner (2017): see kader.

See Also

kare which currently does the pre-computing.
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Examples

require(stats)

# Regression function:
m <- function(x, x1 = 0, x2 = 8, a = 0.01, b = 0) {
a * (x - x1) * (x - x2)^3 + b

}
# Note: For a few details on m() see examples in ?nadwat.

n <- 100 # Sample size.
set.seed(42) # To guarantee reproducibility.
X <- runif(n, min = -3, max = 15) # X_1, ..., X_n # Design.
Y <- m(X) + rnorm(length(X), sd = 5) # Y_1, ..., Y_n # Response.

h <- n^(-1/5)
Sigma <- seq(0.01, 10, length = 51) # sigma-grid for minimization.
x0 <- 5 # Location at which the estimator of m should be computed.

# m_n(x_0) and m_n(X_i) for i = 1, ..., n:
mn <- nadwat(x = c(x0, X), dataX = X, dataY = Y, K = dnorm, h = h)

# Estimator of Bias_x0(sigma) on the sigma-grid:
(Bn <- bias_ES2012(sigma = Sigma, h = h, xXh = (x0 - X) / h,

thetaXh = (mean(X) - X) / h, K = dnorm, mmDiff = mn[-1] - mn[1]))

## Not run:
# Visualizing the estimator of Bias_n(sigma) at x on the sigma-grid:

plot(Sigma, Bn, type = "o", xlab = expression(sigma), ylab = "",
main = bquote(widehat("Bias")[n](sigma)~~"at"~~x==.(x0)))

## End(Not run)

compute_fnhat “Unified” Function for Kernel Adaptive Density Estimators

Description

“Unified” function to compute the kernel density estimator both of Srihera & Stute (2011) and of
Eichner & Stute (2013).

Usage

compute_fnhat(x, data, K, h, Bj, sigma)

Arguments

x Numeric vector with the location(s) at which the density estimate is to be com-
puted.
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data Numeric vector (X1, . . . , Xn) of the data from which the estimate is to be com-
puted.

K A kernel function (with vectorized in- & output) to be used for the estimator.

h Numeric scalar for bandwidth h.

Bj Numeric vector expecting (−J(1/n), . . . ,−J(n/n)) as produced in fnhat_SS2011
in case of the rank transformation method (using an admissible rank transforma-
tion as implemented by J_admissible), but (θ̂−X1, . . . , θ̂−Xn) as produced
in fnhat_ES2013 in case of the non-robust method.

sigma Numeric scalar for value of scale parameter σ.

Details

Implementation of both eq. (1.6) in Srihera & Stute (2011) for given and fixed scalars σ and θ,
and eq. (4) in Eichner & Stute (2013) for a given and fixed scalar σ and for a given and fixed rank
transformation (and, of course, for fixed and given location(s) in x, data (X1, . . . , Xn), a kernel
function K and a bandwidth h). The formulas that the computational version implemented here is
based upon are given in eq. (15.3) and eq. (15.9), respectively, of Eichner (2017). This function
rests on preparatory computations done in fnhat_SS2011 or fnhat_ES2013.

Value

A numeric vector of the same length as x with the estimated density values from eq. (1.6) of Srihera
& Stute (2011) or eq. (4) of Eichner & Stute (2013).

Note

In case of the rank transformation method the data are expected to be sorted in increasing order.

References

Srihera & Stute (2011), Eichner and Stute (2013), and Eichner (2017): see kader.

Examples

require(stats)

# The kernel density estimators for simulated N(0,1)-data and a single
# sigma-value evaluated on a grid using the rank transformation and
# the non-robust method:
set.seed(2017); n <- 100; Xdata <- rnorm(n)
xgrid <- seq(-4, 4, by = 0.1)
negJ <- -J_admissible(1:n / n) # The rank trafo requires
compute_fnhat(x = xgrid, data = sort(Xdata), # sorted data!

K = dnorm, h = n^(-1/5), Bj = negJ, sigma = 1)

theta.X <- mean(Xdata) - Xdata # non-robust method
compute_fnhat(x = xgrid, data = Xdata, K = dnorm, h = n^(-1/5),

Bj = theta.X, sigma = 1)
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cuberoot Cube-root that retains its argument’s sign

Description

Computes (x1/31 , . . . , x
1/3
n ) with x1/3i being negative if xi < 0.

Usage

cuberoot(x)

Arguments

x Numeric vector.

Value

Vector of same length and mode as input.

Examples

kader:::cuberoot(x = c(-27, -1, -0, 0, 1, 27))

curve(kader:::cuberoot(x), from = -27, to = 27)

epanechnikov Epanechnikov kernel

Description

Vectorized evaluation of the Epanechnikov kernel.

Usage

epanechnikov(x)

Arguments

x Numeric vector.

Value

A numeric vector of the Epanechnikov kernel evaluated at the values in x.



10 fnhat_ES2013

Examples

kader:::epanechnikov(x = c(-sqrt(6:5), -2:2, sqrt(5:6)))

curve(kader:::epanechnikov(x), from = -sqrt(6), to = sqrt(6))

fnhat_ES2013 Robust Kernel Density Estimator of Eichner & Stute (2013)

Description

Implementation of eq. (4) in Eichner & Stute (2013) for a given and fixed scalar σ, for rank trans-
formation function J (and, of course, for fixed and given location(s) in x, data (X1, . . . , Xn), a
kernel function K, and a bandwidth h).

Usage

fnhat_ES2013(x, data, K, h, ranktrafo, sigma)

Arguments

x Numeric vector with the location(s) at which the density estimate is to be com-
puted.

data Numeric vector (X1, . . . , Xn) of the data from which the estimate is to be com-
puted. Missing values are not allowed and entail an error.

K A kernel function to be used for the estimator.

h Numeric scalar for bandwidth h.

ranktrafo A function used for the rank transformation.

sigma Numeric scalar for value of scale parameter σ.

Details

The formula upon which the computational version implemented here is based is given in eq. (15.9)
of Eichner (2017). This function does mainly only a simple preparatory computation and then calls
compute_fnhat which does the actual work.

Value

An object with class "density" whose underlying structure is a list containing the following com-
ponents (as described in density), so that the print and plot methods for density-objects are
immediately available):

x the n coordinates of the points where the density is estimated.
y the estimated density values from eq. (4) in Eichner & Stute (2013).
bw the bandwidth used.
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n the sample size. (Recall: missing or infinite values are not allowed here.)
call the call which produced the result.
data.name the deparsed name of the x argument.
has.na logical, for compatibility (always FALSE).

Additionally:
ranktrafo as in Arguments.
sigma as in Arguments.

References

Eichner & Stute (2013) and Eichner (2017): see kader.

See Also

fnhat_SS2011.

Examples

require(stats); require(grDevices); require(datasets)

# Simulated N(0,1)-data and one sigma-value
set.seed(2016); n <- 100; d <- rnorm(n)
xgrid <- seq(-4, 4, by = 0.1)
(fit <- fnhat_ES2013(x = xgrid, data = d, K = dnorm, h = n^(-1/5),

ranktrafo = J2, sigma = 1) )

plot(fit, ylim = range(0, dnorm(0), fit$y), col = "blue")
curve(dnorm, add = TRUE); rug(d, col = "red")
legend("topleft", lty = 1, col = c("blue", "black", "red"),

legend = expression(hat(f)[n], phi, "data"))

# The same data, but several sigma-values
sigmas <- seq(1, 4, length = 4)
(fit <- lapply(sigmas, function(sig)

fnhat_ES2013(x = xgrid, data = d, K = dnorm, h = n^(-1/5),
ranktrafo = J2, sigma = sig)) )

ymat <- sapply(fit, "[[", "y")
matplot(x = xgrid, y = ymat, type = "l", lty = 1, col = 2 + seq(sigmas),

ylim = range(0, dnorm(0), ymat), main = "", xlab = "", ylab = "Density")
curve(dnorm, add = TRUE); rug(d, col = "red")
legend("topleft", lty = 1, col = c("black", "red", NA), bty = "n",

legend = expression(phi, "data", hat(f)[n]~"in other colors"))

# Old-Faithful-eruptions-data and several sigma-values
d <- faithful$eruptions; n <- length(d); er <- extendrange(d)
xgrid <- seq(er[1], er[2], by = 0.1); sigmas <- seq(1, 4, length = 4)
(fit <- lapply(sigmas, function(sig)
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fnhat_ES2013(x = xgrid, data = d, K = dnorm, h = n^(-1/5),
ranktrafo = J2, sigma = sig)) )

ymat <- sapply(fit, "[[", "y"); dfit <- density(d, bw = "sj")
plot(dfit, ylim = range(0, dfit$y, ymat), main = "", xlab = "")
rug(d, col = "red")
matlines(x = xgrid, y = ymat, lty = 1, col = 2 + seq(sigmas))
legend("top", lty = 1, col = c("black", "red", NA), bty = "n",

legend = expression("R's est.", "data", hat(f)[n]~"in other colors"))

fnhat_SS2011 (Non-robust) Kernel Density Estimator of Srihera & Stute (2011)

Description

Implementation of eq. (1.6) in Srihera & Stute (2011) for given and fixed scalars σ and θ (and, of
course, for fixed and given location(s) in x, data (X1, . . . , Xn), a kernel functionK and a bandwidth
h).

Usage

fnhat_SS2011(x, data, K, h, theta, sigma)

Arguments

x Numeric vector with the location(s) at which the density estimate is to be com-
puted.

data Numeric vector (X1, . . . , Xn) of the data from which the estimate is to be com-
puted. Missing or infinite values are not allowed and entail an error.

K A kernel function to be used for the estimator.

h Numeric scalar for bandwidth h.

theta Numeric scalar for value of location parameter θ.

sigma Numeric scalar for value of scale parameter σ.

Details

The formula upon which the computational version implemented here is based is given in eq. (15.3)
of Eichner (2017). This function does mainly only a simple preparatory computation and then calls
compute_fnhat which does the actual work.

Value

An object with class "density" whose underlying structure is a list containing the following com-
ponents (as described in density), so that the print and plot methods for density-objects are
immediately available):
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x the n coordinates of the points where the density is estimated.
y the estimated density values from eq. (1.6) in Srihera & Stute (2011).
bw the bandwidth used.
n the sample size. (Recall: missing or infinite values are not allowed here.)
call the call which produced the result.
data.name the deparsed name of the x argument.
has.na logical, for compatibility (always FALSE).

Additionally:
theta as in Arguments.
sigma as in Arguments.

References

Srihera & Stute (2011) and Eichner (2017): see kader.

See Also

fnhat_ES2013.

Examples

require(stats); require(grDevices); require(datasets)

# Simulated N(0,1)-data and one sigma-value
set.seed(2017); n <- 100; d <- rnorm(n)
xgrid <- seq(-4, 4, by = 0.1)
(fit <- fnhat_SS2011(x = xgrid, data = d, K = dnorm, h = n^(-1/5),

theta = mean(d), sigma = 1))

plot(fit, ylim = range(0, dnorm(0), fit$y), col = "blue")
curve(dnorm, add = TRUE); rug(d, col = "red")
legend("topleft", lty = 1, col = c("blue", "black", "red"),

legend = expression(tilde(f)[n], phi, "data"))

# The same data, but several sigma-values
sigmas <- seq(1, 4, length = 4)
(fit <- lapply(sigmas, function(sig)

fnhat_SS2011(x = xgrid, data = d, K = dnorm, h = n^(-1/5),
theta = mean(d), sigma = sig)))

ymat <- sapply(fit, "[[", "y")
matplot(x = xgrid, y = ymat, type = "l", lty = 1, col = 3:6,

ylim = range(0, dnorm(0), ymat), main = "", xlab = "", ylab = "Density")
curve(dnorm, add = TRUE); rug(d, col = "red")
legend("topleft", lty = 1, col = c("black", "red", NA), bty = "n",

legend = expression(phi, "data", tilde(f)[n]~"in other colors"))

# Old-Faithful-eruptions-data and several sigma-values
d <- faithful$eruptions; n <- length(d); er <- extendrange(d)
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xgrid <- seq(er[1], er[2], by = 0.1); sigmas <- seq(1, 4, length = 4)
(fit <- lapply(sigmas, function(sig)

fnhat_SS2011(x = xgrid, data = d, K = dnorm, h = n^(-1/5),
theta = mean(d), sigma = sig)))

ymat <- sapply(fit, "[[", "y"); dfit <- density(d, bw = "sj")
plot(dfit, ylim = range(0, dfit$y, ymat), main = "", xlab = "")
rug(d, col = "red")
matlines(x = xgrid, y = ymat, lty = 1, col = 3:6)
legend("top", lty = 1, col = c("black", "red", NA), bty = "n",

legend = expression("R's est.", "data", tilde(f)[n]~"in other colors"))

J1 J1

Description

Eq. (15.16) in Eichner (2017) as a result of Cardano’s formula.

Usage

J1(u, cc = sqrt(5/3))

Arguments

u Numeric vector.

cc Numeric constant, defaults to
√

(5/3).

Details

Using, for brevity’s sake, J1a(u, c) := −qc(u) and J1b(u, c) := J1a(u, c)
2 + p3c , the definition of

J1 reads:

J1(u, c) := [J1a(u, c) +
√

(J1b(u, c))]
1/3 + [J1a(u, c)−

√
(J1b(u, c))]

1/3.

For implementation details of qc(u) and pc see qc and pc, respectively.

For further mathematical details see Eichner (2017) and/or Eichner & Stute (2013).

Value

Vector of same length and mode as u.

Note

Eq. (15.16) in Eichner (2017), and hence J1(u, c), requires c to be in [
√

(5/3), 3). If cc does not
satisfy this requirement a warning (only) is issued.

See Also

J_admissible.
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Examples

u <- seq(0, 1, by = 0.01)
c0 <- expression(sqrt(5/3))
c1 <- expression(sqrt(3) - 0.01)
cgrid <- c(1.35, seq(1.4, 1.7, by = 0.1))
cvals <- c(eval(c0), cgrid, eval(c1))

Y <- sapply(cvals, function(cc, u) J1(u, cc = cc), u = u)
cols <- rainbow(ncol(Y), end = 9/12)
matplot(u, Y, type = "l", lty = "solid", col = cols,

ylab = expression(J[1](u, c)))
abline(h = 0)
legend("topleft", title = "c", legend = c(c0, cgrid, c1),

lty = 1, col = cols, cex = 0.8)

J2 J2

Description

Eq. (20) in Eichner (2017) (based on "Bronstein’s formula for k = 3")

Usage

J2(u, cc = sqrt(5))

Arguments

u Numeric vector.
cc Numeric constant, defaults to

√
5.

Details

J2(u, c) = 2
√

(− pc) ∗ sin(1/3 ∗ arcsin(qc(u)/(−pc)3/2))
For implementation details of qc(u) and pc see qc and pc, respectively.

For further mathematical details see Eichner (2017) and/or Eichner & Stute (2013).

Value

Vector of same length and mode as u.

Note

Eq. (20) in Eichner (2017), and hence J2(u, c), requires c to be in (
√
3,
√
5]. If cc does not satisfy

this requirement (only) a warning is issued.

The default cc = sqrt(5) yields the optimal rank transformation.



16 J_admissible

See Also

J_admissible.

Examples

u <- seq(0, 1, by = 0.01)
c0 <- expression(sqrt(3) + 0.01)
c1 <- expression(sqrt(5))
cgrid <- seq(1.85, 2.15, by = 0.1)
cvals <- c(eval(c0), cgrid, eval(c1))

Y <- sapply(cvals, function(cc, u) J2(u, cc = cc), u = u)
cols <- rainbow(ncol(Y), end = 9/12)
matplot(u, Y, type = "l", lty = "solid", col = cols,

ylab = expression(J[2](u, c)))
abline(h = 0)
legend("topleft", title = "c", legend = c(c0, cgrid, c1),

lty = 1, col = cols, cex = 0.8)

J_admissible Admissible Rank Transformations of Eichner & Stute (2013)

Description

This is just a wrapper for the functions J1, J2, and u− >
√
3 ∗ (2u − 1) which implement the

admissible transformations for the three cases for c. For mathematical details see eq. (15.16) and
(15.17) in Eichner (2017) and/or Eichner & Stute (2013).

Usage

J_admissible(u, cc = sqrt(5))

Arguments

u Numeric vector.

cc Numeric constant, defaults to
√
5.

Details

Basically, for cc in [
√
(5/3),

√
5]:

J_admissible(u, cc) = J1(u, cc) if cc <
√
3,

J_admissible(u, cc) = J2(u, cc) if cc >
√
3, and

J_admissible(u, cc) = sqrt(3) * (2*u - 1) if cc =
√
3.
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Value

Vector of same length and mode as u.

Note

The admissible rank transformations require c to be in [
√
(5/3),

√
5]. If cc does not satisfy this

requirement a warning (only) is issued. The default cc = sqrt(5), i.e., c =
√
5, yields the optimal

rank transformation.

See Also

J1 and J2.

Examples

par(mfrow = c(1, 2), mar = c(3, 3, 0.5, 0.5), mgp = c(1.7, 0.7, 0))
example(J1)
example(J2)

kade Kernel Adaptive Density Estimator

Description

Wrapper function which does some preparatory calculations and then calls the actual “workhorse”
functions which do the main computations for kernel adaptive density estimation of Srihera &
Stute (2011) or Eichner & Stute (2013). Finally, it structures and returns the obtained results.
Summarizing information and technical details can be found in Eichner (2017).

Usage

kade(x, data, kernel = c("gaussian", "epanechnikov", "rectangular"),
method = c("both", "ranktrafo", "nonrobust"), Sigma = seq(0.01, 10, length
= 51), h = NULL, theta = NULL, ranktrafo = J2, ticker = FALSE,
plot = FALSE, parlist = NULL, ...)

Arguments

x Vector of location(s) at which the density estimate is to be computed.

data Vector (X1, . . . , Xn) of the data from which the estimate is to be computed. NAs
or infinite values are removed (and a warning is issued).
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kernel A character string naming the kernel to be used for the adaptive estimator.
This must partially match one of "gaussian", "rectangular" or "epanechnikov",
with default "gaussian", and may be abbreviated to a unique prefix. (Currently,
this kernel is also used for the initial, non-adaptive Parzen-Rosenblatt estimator
which enters into the estimators of bias and variance as described in the refer-
ences.)

method A character string naming the method to be used for the adaptive estimator. This
must partially match one of "both", "ranktrafo" or "nonrobust", with default
"both", and may be abbreviated to a unique prefix.

Sigma Vector of value(s) of the scale parameter σ. If of length 1 no adaptation is
performed. Otherwise considered as the initial grid over which the optimization
of the adaptive method will be performed. Defaults to seq(0.01, 10, length
= 51).

h Numeric scalar for bandwidth h. Defaults to NULL and is then internally set to
n−1/5.

theta Numeric scalar for value of location parameter θ. Defaults to NULL and is then
internally set to the arithmetic mean of x1, . . . , xn.

ranktrafo Function used for the rank transformation. Defaults to J2 (with its default cc =
sqrt(5)).

ticker Logical; determines if a ’ticker’ documents the iteration progress through Sigma.
Defaults to FALSE.

plot Logical or character or numeric and indicates if graphical output should be pro-
duced. Defaults to FALSE (i.e., no graphical output is produced) and is passed
to adaptive_fnhat() which does the actual work. For details on how it is
processed see there.

parlist A list of graphical parameters that is passed to adaptive_fnhat(); see there.
Default: NULL.

... Further arguments possibly passed down. Currently ignored.

Value

In the case of only one method a data frame whose components have the following names and
meanings:

x x_0.
y Estimate of f(x_0).
sigma.adap The found minimizer of the MSE-estimator, i.e., the adaptive smoothing parameter value.
msehat.min The found minimum of the MSE-estimator.
discr.min.smaller TRUE iff the numerically found minimum was smaller than the discrete one.
sig.range.adj Number of adjustments of sigma-range.

In the case of both methods a list of two data frames of the just described structure.
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References

Srihera & Stute (2011), Eichner & Stute (2013), and Eichner (2017): see kader.

Examples

require(stats)

# Generating N(0,1)-data
set.seed(2017); n <- 80; d <- rnorm(n)

# Estimating f(x0) for one sigma-value
x0 <- 1
(fit <- kade(x = x0, data = d, method = "nonrobust", Sigma = 1))

# Estimating f(x0) for sigma-grid
x0 <- 1
(fit <- kade(x = x0, data = d, method = "nonrobust",

Sigma = seq(0.01, 10, length = 10), ticker = TRUE))

## Not run:
# Estimating f(x0) for sigma-grid and Old-Faithful-eruptions-data

x0 <- 2
(fit <- kade(x = x0, data = faithful$eruptions, method = "nonrobust",

Sigma = seq(0.01, 10, length = 51), ticker = TRUE, plot = TRUE))

## End(Not run)

kader Kernel Adjusted Density Estimation and Regression

Description

Package of functions to compute kernel estimators for

• nonparametric density estimation using a data-adjusted kernel or an appropriate rank-transformation,
and for

• nonparametric regression using a data-adjusted kernel.

Details

The functions are based on the theory laid out in the following papers:

• Srihera, R., Stute, W. (2011): Kernel adjusted density estimation. Statistics and Probability
Letters 81, 571 - 579, URL http://dx.doi.org/10.1016/j.spl.2011.01.013.

• Eichner, G., Stute, W. (2012): Kernel adjusted nonparametric regression. Journal of Statisti-
cal Planning and Inference 142, 2537 - 2544, URL http://dx.doi.org/10.1016/j.jspi.
2012.03.011.

http://dx.doi.org/10.1016/j.spl.2011.01.013
http://dx.doi.org/10.1016/j.jspi.2012.03.011
http://dx.doi.org/10.1016/j.jspi.2012.03.011
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• Eichner, G., Stute, W. (2013): Rank Transformations in Kernel Density Estimation. Journal of
Nonparametric Statistics 25(2), 427 - 445, URL http://dx.doi.org/10.1080/10485252.
2012.760737.

A very brief summary of the three papers above and sort of a vignette is presented in Eichner, G.
(2017): Kader - An R package for nonparametric kernel adjusted density estimation and regression.
In: Ferger, D., et al. (eds.): From Statistics to Mathematical Finance, Festschrift in Honour of
Winfried Stute. Springer International Publishing. To appear in Jan. 2018. DOI then(!) presumably:
10.1007/978-3-319-50986-0.

kare Kernel Adaptive Regression Estimator

Description

Wrapper function which does some preparatory calculations and then calls the actual “workhorse”
functions which do the main computations for kernel adaptive regression estimation of Eichner &
Stute (2012). Finally, it structures and returns the obtained results. Summarizing information and
technical details can be found in Eichner (2017).

Usage

kare(x.points, data, kernel = c("gaussian", "epanechnikov", "rectangular"),
Sigma = seq(0.01, 10, length = 51), h = NULL, theta = NULL)

Arguments

x.points Vector of location(s) at which the regression estimate is to be computed.

data Data frame or list with one component named x which contains the vector of re-
gressor values x1, . . . , xn and one named y which holds the vector of pertaining
response values y1, . . . , yn (in the corresponding order) of the data from which
the estimate is to be computed at the values given in x.points. Pairs (xi, yi)
with NA or an infinite value in a least one of their elements are removed (and a
warning is issued).

kernel A character string naming the kernel to be used for the adaptive estimator. This
must partially match one of "gaussian", "rectangular" or "epanechnikov", with
default "gaussian", and may be abbreviated to a unique prefix. (Currently, this
kernel is also used for the initial, non-adaptive Nadaraya-Watson regression es-
timator which enters into the estimators of bias and variance as described in the
references.)

Sigma Vector of value(s) of the scale parameter σ. If of length 1 no adaptation is
performed. Otherwise considered as the grid over which the optimization of the
adaptive method will be performed. Defaults to seq(0.01, 10, length = 51).

h Numeric scalar for bandwidth h. Defaults to NULL and is then internally set to
n−1/5.

theta Numeric scalar for value of location parameter θ. Defaults to NULL and is then
internally set to the arithmetic mean of x1, . . . , xn.

http://dx.doi.org/10.1080/10485252.2012.760737
http://dx.doi.org/10.1080/10485252.2012.760737
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Value

If length(x.points) = 1, a list of eight components with the following names and meanings:

x Scalar x-value in x.points at which the regression estimator was computed.
y Estimated scalar value of m(x) at point in x.points.
sigma.adap The found scalar minimizer of the MSE-estimator, i.e., the adaptive smoothing parameter value.
msehat.min The found scalar minimum of the MSE-estimator.
Sigma Vector with the σ-grid on which the minimization process was performed.
Bn Vector with the estimator of bias on that σ-grid.
Vn2 Ditto for the variance.
MSE Ditto for the MSE.

If length(x.points) > 1, a list with the same component names as above, but then

x Vector x.points with x-values at which the regression estimator was computed.
y Vector of estimated values of m(x) at the x-values in x.points.
sigma.adap Vector of the found minimizers of the MSE-estimator, i.e., the adaptive smoothing parameter values.
msehat.min Vector of the found minima of the MSE-estimator.
Sigma Vector with the σ-grid on which the minimization process was performed.
Bn (length(Sigma) by length(x.points))-matrix with the estimated values of the bias on the σ-grid in their columns (which correspond to the x-values).
Vn2 Ditto for the variance.
MSE Ditto for the MSE.

References

Eichner & Stute (2012) and Eichner (2017): see kader.

Examples

require(stats)

# Regression function:
m <- function(x, x1 = 0, x2 = 8, a = 0.01, b = 0) {
a * (x - x1) * (x - x2)^3 + b

}
# Note: For a few details on m() see examples in ?nadwat.

x0 <- 5 # The point x_0 at which the MSE-optimal kernel adjusted
# nonparametric estimation of m should take place. (Recall: for m's
# default values a minimum is at 2, a point of inflection at 4, and
# a saddle point an 8; an "arbitrary" point would, e.g., be at 5.)

n <- 100 # Sample size.
sdeps <- 1 # Std. dev. of the \epsilon_i: \sqrt(Var(Y|X=x))

# (here: constant in x).
design.ctr <- x0 + 0.5 # "centre" and "scale" of the design, i.e.,
design.scl <- 1 # in the normal scenario below, expected value and

# std. dev. of the distribution of the x_i's.
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set.seed(42) # To guarantee reproducibility.
x <- rnorm(n, mean = design.ctr, sd = design.scl) # x_1, ..., x_n
Y <- m(x) + rnorm(length(x), sd = sdeps) # Y_1, ..., Y_n
data <- data.frame(x = x, y = Y)

# Computing the kernel adaptive regression estimator values
#**********************************************************

x.points <- seq(-3.3 * design.scl, 3.3 * design.scl, length = 101) +
design.ctr # x-grid on which to draw and estimate the regr. fct. m.

Sigma <- seq(0.01, 10, length = 51) # \sigma-grid for minimization.
fit <- kare(x.points = x0, data = data, Sigma = Sigma)

## Not run:
# Grafical display for the current data set
#******************************************
# Storing the curent settings of the graphics device
# and changing its layout for the three plots to come:

op <- par(mfrow = c(3, 1), mar = c(3, 3, 2, 0.1)+0.1,
mgp = c(1.5, 0.5, 0), tcl = -0.3, cex.main = 2)

# The scatter plot of the "raw data":
plot(y ~ x, data = data, xlim = range(data$x, x.points),

ylim = range(data$y, fit$y, na.rm = TRUE),
main = bquote(n == .(n)), xlab = "x", ylab = "y")

# The "true" regression function m:
lines(x.points, m(x.points), lty = 2)

# The MSE-optimal kernel adjusted nonparametric regression estimator
# at x_0, i.e., the point (x_0, \hat m_n(x_0)):

points(fit$x, fit$y, col = "red", pch = 4, cex = 2)

# The legend for the "true" regression function m and for the point
# (x_0, \hat m_n(x_0)):

legend("topleft", lty = c(2, NA), pch = c(NA, 4),
col = c("black", "red"), bty = "n", cex = 1.2,
legend = c(as.expression(bquote(paste("m with ",

sigma(paste(Y, "|", X == x))
== .(sdeps)))),

as.expression(bquote(paste(hat(m)[n](x[0]), " at ",
x[0] == .(x0))))))

# Visualizing the estimators of (Bias_n(sigma))^2 and
# Var_n(sigma) at x0 on the sigma-grid:

with(fit,
matplot(Sigma, cbind(Bn*Bn, Vn2), type = "l", lty = 1:2,
col = c("black", "red"), xlab = expression(sigma), ylab = ""))

# The legend for (Bias_n(sigma))^2 and Var_n(sigma):
legend("topleft", lty = 1:2, col = c("black", "red"), bty = "n",

legend = c(expression(paste(widehat(plain(Bias))[n]^2, (sigma))),
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expression(widehat(plain(Var))[n](sigma))),
cex = 1.2)

# Visualizing the estimator of MSE_n(sigma) at x0 on the sigma-grid
# together with the point indicating the detected minimum, and a legend:

plot(fit$Sigma, fit$MSE, type = "l",
xlab = expression(sigma), ylab = "")

points(fit$sigma.adap, fit$msehat.min, pch = 4, col = "red", cex = 2)
legend("topleft", lty = c(1, NA), pch = c(NA, 4),
col = c("black", "red"), bty = "n", cex = 1.2,
legend = c(expression(widehat(plain(MSE))[n](sigma)),

substitute(group("(", list(plain(Minimizer),
plain(Minimum)), ")")

== group("(", list(x, y), ")"),
list(x = signif(fit$sigma.adap, 4),

y = signif(fit$msehat.min, 4)))))

par(op) # Restoring the previous settings of the graphics device.

## End(Not run)

kfn_vectorized Convolution of Kernel Function K with fn

Description

Vectorized evaluation of the convolution of the kernel function K with fn.

Usage

kfn_vectorized(u, K, xixj, h, sig)

Arguments

u Numeric vector.

K Kernel function with vectorized in- & output.

xixj Numeric matrix.

h Numeric scalar.

sig Numeric scalar.

Details

Vectorized (in u) evaluation of - a more explicit representation of - the integrand K(u) ∗ fn(. . . −
h2/σ ∗ u) which is used in the computation of the bias estimator before eq. (2.3) in Srihera & Stute
(2011). Also used for the analogous computation of the respective bias estimator in the paragraph
after eq. (6) in Eichner & Stute (2013).



24 minimize_MSEHat

Value

A vector of (K ∗ fn)(u) evaluated at the values in u.

Note

An alternative implementation could be K(u) * sapply(h/sig * u, function(v) mean(K(xixj -
v))) / h

Examples

require(stats)

set.seed(2017); n <- 100; Xdata <- rnorm(n)
x0 <- 1; sig <- 1; h <- n^(-1/5)

Ai <- (x0 - Xdata)/h
Bj <- mean(Xdata) - Xdata # in case of non-robust method
AiBj <- outer(Ai, Bj/sig, "+")

ugrid <- seq(-10, 10, by = 1)
kader:::kfn_vectorized(u = ugrid, K = dnorm, xixj = AiBj, h = h, sig = sig)

minimize_MSEHat Minimization of Estimated MSE

Description

Minimization of the estimated MSE as function of σ in four steps.

Usage

minimize_MSEHat(VarHat.scaled, BiasHat.squared, sigma, Ai, Bj, h, K, fnx,
ticker = FALSE, plot = FALSE, ...)

Arguments

VarHat.scaled Vector of estimates of the scaled variance (for values of σ in sigma).
BiasHat.squared

Vector of estimates of the squared bias (for values of σ in sigma).

sigma Numeric vector (σ1, . . . , σs) with s ≥ 1.

Ai Numeric vector expecting (x0 − X1, . . . , x0 − Xn)/h, where (usually) x0 is
the point at which the density is to be estimated for the data X1, . . . , Xn with
h = n−1/5.

Bj Numeric vector expecting (−J(1/n), . . . ,−J(n/n)) in case of the rank trans-
formation method, but (θ̂ −X1, . . . , θ̂ −Xn) in case of the non-robust Srihera-
Stute-method. (Note that this the same as argument Bj of adaptive_fnhat!)
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h Numeric scalar, where (usually) h = n−1/5.

K Kernel function with vectorized in- & output.

fnx fn(x0) = mean(K(Ai))/h, where here typically h = n−1/5.

ticker Logical; determines if a ’ticker’ documents the iteration progress through sigma.
Defaults to FALSE.

plot Should graphical output be produced? Defaults to FALSE.

... Currently ignored.

Details

Step 1: determine first (= smallest) maximizer of VarHat.scaled (!) on the grid in sigma. Step
2: determine first (= smallest) minimizer of estimated MSE on the σ-grid LEFT OF the first maxi-
mizer of VarHat.scaled. Step 3: determine a range around the yet-found (discrete) minimizer of
estimated MSE within which a finer search for the “true” minimum is continued using numerical
minimization. Step 4: check if the numerically determined minimum is indeed better, i.e., smaller
than the discrete one; if not keep the first.

Value

A list with components sigma.adap, msehat.min and discr.min.smaller whose meanings are
as follows:

sigma.adap Found minimizer of MSE estimator.
msehat.min Found minimum of MSE estimator.
discr.min.smaller TRUE iff the numerically found minimum was smaller than the discrete one.

Examples

require(stats)

set.seed(2017); n <- 100; Xdata <- sort(rnorm(n))
x0 <- 1; Sigma <- seq(0.01, 10, length = 11)

h <- n^(-1/5)
Ai <- (x0 - Xdata)/h
fnx0 <- mean(dnorm(Ai)) / h # Parzen-Rosenblatt estimator at x0.

# For non-robust method:
Bj <- mean(Xdata) - Xdata
# # For rank transformation-based method (requires sorted data):
# Bj <- -J_admissible(1:n / n) # rank trafo

BV <- kader:::bias_AND_scaledvar(sigma = Sigma, Ai = Ai, Bj = Bj,
h = h, K = dnorm, fnx = fnx0, ticker = TRUE)

kader:::minimize_MSEHat(VarHat.scaled = BV$VarHat.scaled,
BiasHat.squared = (BV$BiasHat)^2, sigma = Sigma, Ai = Ai, Bj = Bj,
h = h, K = dnorm, fnx = fnx0, ticker = TRUE, plot = FALSE)
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mse_hat MSE Estimator

Description

Vectorized (in σ) function of the MSE estimator in eq. (2.3) of Srihera & Stute (2011), and of the
analogous estimator in the paragraph after eq. (6) in Eichner & Stute (2013).

Usage

mse_hat(sigma, Ai, Bj, h, K, fnx, ticker = FALSE)

Arguments

sigma Numeric vector (σ1, . . . , σs) with s ≥ 1.

Ai Numeric vector expecting (x0 − X1, . . . , x0 − Xn)/h, where (usually) x0 is
the point at which the density is to be estimated for the data X1, . . . , Xn with
h = n−1/5.

Bj Numeric vector expecting (−J(1/n), . . . ,−J(n/n)) in case of the rank trans-
formation method, but (θ̂ −X1, . . . , θ̂ −Xn) in case of the non-robust Srihera-
Stute-method. (Note that this the same as argument Bj of adaptive_fnhat!)

h Numeric scalar, where (usually) h = n−1/5.

K Kernel function with vectorized in- & output.

fnx fn(x0) = mean(K(Ai))/h, where here typically h = n−1/5.

ticker Logical; determines if a ’ticker’ documents the iteration progress through sigma.
Defaults to FALSE.

Value

A vector with corresponding MSE values for the values in sigma.

See Also

For details see bias_AND_scaledvar.

Examples

require(stats)

set.seed(2017); n <- 100; Xdata <- sort(rnorm(n))
x0 <- 1; Sigma <- seq(0.01, 10, length = 11)

h <- n^(-1/5)
Ai <- (x0 - Xdata)/h
fnx0 <- mean(dnorm(Ai)) / h # Parzen-Rosenblatt estimator at x0.
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# non-robust method:
theta.X <- mean(Xdata) - Xdata
kader:::mse_hat(sigma = Sigma, Ai = Ai, Bj = theta.X,

h = h, K = dnorm, fnx = fnx0, ticker = TRUE)

# rank transformation-based method (requires sorted data):
negJ <- -J_admissible(1:n / n) # rank trafo
kader:::mse_hat(sigma = Sigma, Ai = Ai, Bj = negJ,

h = h, K = dnorm, fnx = fnx0, ticker = TRUE)

nadwat The Classical Nadaraya-Watson Regression Estimator

Description

In its arguments x and dataX vectorized function to compute the classical Nadaraya-Watson esti-
mator (as it is mn in eq. (1.1) in Eichner & Stute (2012)).

Usage

nadwat(x, dataX, dataY, K, h)

Arguments

x Numeric vector with the location(s) at which the Nadaraya-Watson regression
estimator is to be computed.

dataX Numeric vector (X1, . . . , Xn) of the x-values from which (together with the
pertaining y-values) the estimate is to be computed.

dataY Numeric vector (Y1, . . . , Yn) of the y-values from which (together with the per-
taining x-values) the estimate is to be computed.

K A kernel function (with vectorized in- & output) to be used for the estimator.

h Numeric scalar for bandwidth h.

Details

Implementation of the classical Nadaraya-Watson estimator as in eq. (1.1) in Eichner & Stute (2012)
at given location(s) in x for data (X1, Y1), . . . , (Xn, Yn), a kernel function K and a bandwidth h.

Value

A numeric vector of the same length as x.
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Examples

require(stats)

# Regression function: a polynomial of degree 4 with one maximum (or
# minimum), one point of inflection, and one saddle point.
# Memo: for p(x) = a * (x - x1) * (x - x2)^3 + b the max. (or min.)
# is at x = (3*x1 + x2)/4, the point of inflection is at x =
# (x1 + x2)/2, and the saddle point at x = x2.

m <- function(x, x1 = 0, x2 = 8, a = 0.01, b = 0) {
a * (x - x1) * (x - x2)^3 + b
}
# Note: for m()'s default values a minimum is at x = 2, a point
# of inflection at x = 4, and a saddle point at x = 8.

n <- 100 # Sample size.
set.seed(42) # To guarantee reproducibility.
X <- runif(n, min = -3, max = 15) # X_1, ..., X_n
Y <- m(X) + rnorm(length(X), sd = 5) # Y_1, ..., Y_n

x <- seq(-3, 15, length = 51) # Where the Nadaraya-Watson estimator
# mn of m shall be computed.

mn <- nadwat(x = x, dataX = X, dataY = Y, K = dnorm, h = n^(-1/5))

plot(x = X, y = Y); rug(X)
lines(x = x, y = mn, col = "blue") # The estimator.
curve(m, add = TRUE, col = "red") # The "truth".

pc pc

Description

Coefficient pc of eq. (15.15) in Eichner (2017).

Usage

pc(cc)

Arguments

cc Numeric vector.

Details

p_c = 1/5 * (3c^2 - 5) / (3 - c^2) * c^2.

For further details see p. 297 f. in Eichner (2017) and/or Eichner & Stute (2013).
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Value

Vector of same length and mode as cc.

Note

pc should be undefined for c =
√
3, but pc is here implemented to return Inf in each element of its

return vector for which the corresponding element in cc contains R’s value of sqrt(3).

Examples

c0 <- expression(sqrt(5/3))
c1 <- expression(sqrt(3) - 0.01)
cgrid <- seq(1.325, 1.7, by = 0.025)
cvals <- c(eval(c0), cgrid, eval(c1))

plot(cvals, pc(cvals), xaxt = "n", xlab = "c", ylab = expression(p[c]))
axis(1, at = cvals, labels = c(c0, cgrid, c1), las = 2)

qc qc

Description

Coefficient qc(u) of eq. (15.15) in Eichner (2017).

Usage

qc(u, cc = sqrt(5/3))

Arguments

u Numeric vector.

cc Numeric constant, defaults to
√

(5/3).

Details

qc(u) = 2/5 ∗ c5/(3− c2) ∗ (1− 2 ∗ u)
For further details see p. 297 f. in Eichner (2017) and/or Eichner & Stute (2013).

Value

Vector of same length and mode as u.
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Note

qc(u) should be undefined for c =
√
3, but qc is here implemented to return Inf * (1 - 2*u) if cc

contains R’s value of sqrt(3).

Examples

u <- c(0, 1) # seq(0, 1, by = 0.1)
c0 <- expression(sqrt(5/3))
c1 <- expression(sqrt(3) - 0.05)
cgrid <- seq(1.4, 1.6, by = 0.1)
cvals <- c(eval(c0), cgrid, eval(c1))

Y <- sapply(cvals, function(cc, u) qc(u, cc = cc), u = u)
cols <- rainbow(ncol(Y), end = 9/12)
matplot(u, Y, type = "l", lty = "solid", col = cols,

ylab = expression(q[c](u)))
abline(h = 0, lty = "dashed")
legend("topright", title = "c", legend = c(c0, cgrid, c1),

lty = 1, col = cols, cex = 0.8)

rectangular Rectangular kernel

Description

Vectorized evaluation of the rectangular kernel.

Usage

rectangular(x, a = -0.5, b = 0.5)

Arguments

x Numeric vector.

a Numeric scalar: lower bound of kernel support; defaults to -0.5.

b Numeric scalar: upper bound of kernel support; defaults to 0.5.

Value

A numeric vector of the rectangular kernel evaluated at the values in x.
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Examples

kader:::rectangular(x = seq(-1, 1, by = 0.1))

curve(kader:::rectangular(x), from = -1, to = 1)

var_ES2012 Variance Estimator of Eichner & Stute (2012)

Description

Variance estimator V arn(σ), vectorized in σ, on p. 2540 of Eichner & Stute (2012).

Usage

var_ES2012(sigma, h, xXh, thetaXh, K, YmDiff2)

Arguments

sigma Numeric vector (σ1, . . . , σs) with s ≥ 1 with values of the scale parameter σ.

h Numeric scalar for bandwidth h (as “contained” in thetaXh and xXh).

xXh Numeric vector expecting the pre-computed h-scaled differences (x − X1)/h,
. . . , (x − Xn)/h where x is the single (!) location for which the weights are
to be computed, the Xi’s are the data values, and h is the numeric bandwidth
scalar.

thetaXh Numeric vector expecting the pre-computed h-scaled differences (θ − X1)/h,
. . . , (θ −Xn)/h where θ is the numeric scalar location parameter, and the Xi’s
and h are as in xXh.

K A kernel function (with vectorized in- & output) to be used for the estimator.

YmDiff2 Numeric vector of the pre-computed squared differences (Y1 − mn(x))
2, . . . ,

(Yn −mn(x))
2.

Details

The formula can also be found in eq. (15.22) of Eichner (2017). Pre-computed (x − Xi)/h,
(θ −Xi)/h, and (Yi −mn(x))

2 are expected for efficiency reasons (and are currently prepared in
function kare).

Value

A numeric vector of the length of sigma.

References

Eichner & Stute (2012) and Eichner (2017): see kader.
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See Also

kare which currently does the pre-computing.

Examples

require(stats)

# Regression function:
m <- function(x, x1 = 0, x2 = 8, a = 0.01, b = 0) {
a * (x - x1) * (x - x2)^3 + b

}
# Note: For a few details on m() see examples in ?nadwat.

n <- 100 # Sample size.
set.seed(42) # To guarantee reproducibility.
X <- runif(n, min = -3, max = 15) # X_1, ..., X_n # Design.
Y <- m(X) + rnorm(length(X), sd = 5) # Y_1, ..., Y_n # Response.

h <- n^(-1/5)
Sigma <- seq(0.01, 10, length = 51) # sigma-grid for minimization.
x0 <- 5 # Location at which the estimator of m should be computed.

mnX <- nadwat(x = X, dataX = X, dataY = Y, K = dnorm, h = h) # m_n(X_i)
# for i = 1, ..., n.

# Estimator of Var_x0(sigma) on the sigma-grid:
(Vn <- var_ES2012(sigma = Sigma, h = h, xXh = (x0 - X) / h,

thetaXh = (mean(X) - X) / h, K = dnorm, YmDiff2 = (Y - mnX)^2))

## Not run:
# Visualizing the estimator of Var_n(sigma) at x0 on the sigma-grid:

plot(Sigma, Vn, type = "o", xlab = expression(sigma), ylab = "",
main = bquote(widehat("Var")[n](sigma)~~"at"~~x==.(x0)))

## End(Not run)

weights_ES2012 Weights W_ni of Eichner & Stute (2012)

Description

Function, vectorized in its first argument sigma, to compute the “updated” weights Wni in eq. (2.1)
of Eichner & Stute (2012) for the kernel adjusted regression estimator.

Usage

weights_ES2012(sigma, xXh, thetaXh, K, h)
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Arguments

sigma Numeric vector (σ1, . . . , σs) with s ≥ 1 with values of the scale parameter σ.

xXh Numeric vector expecting the pre-computed h-scaled differences (x − X1)/h,
. . . , (x − Xn)/h where x is the single (!) location for which the weights are
to be computed, the Xi’s are the data values, and h is the numeric bandwidth
scalar.

thetaXh Numeric vector expecting the pre-computed h-scaled differences (θ − X1)/h,
. . . , (θ −Xn)/h where θ is the numeric scalar location parameter, and the Xi’s
and h are as in xXh.

K A kernel function (with vectorized in- & output) to be used for the estimator.

h Numeric scalar for bandwidth h (as “contained” in thetaXh and xXh).

Details

Note that it is not immediately obvious that Wni in eq. (2.1) of Eichner & Stute (2012) is a function
of σ. In fact, Wni = Wni(x;h, θ, σ) as can be seen on p. 2542 ibid. The computational version
implemented here, however, is given in (15.19) of Eichner (2017). Pre-computed (x −Xi)/h and
(θ−Xi)/h, i = 1, . . . , n are expected for efficiency reasons (and are currently prepared in function
kare).

Value

If length(sigma) > 1 a numeric matrix of the dimension length(sigma) by length(xXh) with el-
ements (Wni(x;h, θ, σr)) for r = 1, . . . , length(sigma) and i = 1, . . . , length(xXh); otherwise
a numeric vector of the same length as xXh.

References

Eichner & Stute (2012) and Eichner (2017): see kader.

See Also

bias_ES2012 and var_ES2012 which both call this function, and kare which currently does the
pre-computing.

Examples

require(stats)

# Regression function:
m <- function(x, x1 = 0, x2 = 8, a = 0.01, b = 0) {
a * (x - x1) * (x - x2)^3 + b
}
# Note: For a few details on m() see examples in ?nadwat.

n <- 100 # Sample size.
set.seed(42) # To guarantee reproducibility.
X <- runif(n, min = -3, max = 15) # X_1, ..., X_n # Design.
Y <- m(X) + rnorm(length(X), sd = 5) # Y_1, ..., Y_n # Response.
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h <- n^(-1/5)
Sigma <- seq(0.01, 10, length = 51) # sigma-grid for minimization.
x0 <- 5 # Location at which the estimator of m should be computed.

# Weights (W_{ni}(x; \sigma_r))_{1<=r<=length(Sigma), 1<=i<=n} for
# Var_n(sigma) and Bias_n(sigma) each at x0 on the sigma-grid:

weights_ES2012(sigma = Sigma, xXh = (x0 - X) / h,
thetaXh = (mean(X) - X) / h, K = dnorm, h = h)
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