Package ‘gtools’

November 20, 2023

Title Various R Programming Tools

Description Functions to assist in R programming, including:

- assist in developing, updating, and maintaining R and R packages (‘ask’, 'checkRVersion',
'getDependencies', 'keywords', 'scat’),

- calculate the logit and inverse logit transformations ('logit', 'inv.logit'),

- test if a value is missing, empty or contains only NA and NULL values (‘invalid'),

- manipulate R's .Last function (‘addLast"),

- define macros (‘defmacro"),

- detect odd and even integers (‘odd’, 'even'),

- convert strings containing non-ASCII characters (like single quotes) to plain ASCII ('ASCIIfy"),

- perform a binary search (‘binsearch’),

- sort strings containing both numeric and character components (‘mixedsort'),

- create a factor variable from the quantiles of a continuous variable ('quantcut’),

- enumerate permutations and combinations (‘combinations', 'permutation'),

- calculate and convert between fold-change and log-ratio (‘foldchange’,
"logratio2foldchange', 'foldchange2logratio'),

- calculate probabilities and generate random numbers from Dirichlet distributions
(‘rdirichlet’, 'ddirichlet"),

- apply a function over adjacent subsets of a vector (‘'running’),

- modify the TCP_NODELAY ('de-Nagle') flag for socket objects,

- efficient 'rbind' of data frames, even if the column names don't match (‘smartbind"),

- generate significance stars from p-values ('stars.pval'),

- convert characters to/from ASCII codes (‘asc', 'chr'),

- convert character vector to ASCII representation ('ASCIIfy"),

- apply title capitalization rules to a character vector (‘capwords').

Version 3.9.5
License GPL-2

Depends methods, stats, utils

URL https://github.com/r-gregmisc/gtools

BugReports https://github.com/r-gregmisc/gtools/issues
Language en-US

Suggests car, gplots, knitr, rstudioapi, SGP, taxize

RoxygenNote 7.2.3

https://github.com/r-gregmisc/gtools
https://github.com/r-gregmisc/gtools/issues

2 R topics documented:

Encoding UTF-8
NeedsCompilation yes

Author Gregory R. Warnes [aut],
Ben Bolker [aut, cre] (<https://orcid.org/0000-0002-2127-0443>),
Thomas Lumley [aut],

Arni Magnusson [aut],
Bill Venables [aut],
Genei Ryodan [aut],
Steffen Moeller [aut],
Tan Wilson [ctb],

Mark Davis [ctb],

Nitin Jain [ctb],

Scott Chamberlain [ctb]

Maintainer Ben Bolker <bolker@mcmaster.ca>
Repository CRAN
Date/Publication 2023-11-20 15:10:05 UTC

R topics documented:

ASC o v v e e e e e e e e e e 3
ASCIIfy . . . o e 4
asK . . e 5
ASSEIT . o o e e e e e e 6
badDend L 7
baseOf e 8
binsearch 9
Capwords e e 12
checkRVersion e 14
combinationso e e 15
defmacro e 16
dirichlet e 19
ELISA . . . 20
foldchange oL 21
getDependencies e 22
gtools-deprecated 23
invalid L e 24
keywords 25
lastAdd e 26
loadedPackages 27
logit . . . e 28
MIXedSOrt e e 29
nareplace e 32
oddeven L e 33
PEIMULE L oL e e e e e e e e e e e 34
QUANECUL .+ o v v ot e 35

roman2into .. e e e e e e 36

https://orcid.org/0000-0002-2127-0443

asc 3

TUNNING . . o o v vt o e 37
SCAL . . o e e e e e e e 40
script_fileo 41
setTCPNoDelay e 42
smartbind L L e 43
split_path e e e 44
stars.pval ... L e e e e 45
stat.mode L e e e e 46
unByteCode 47

Index 50

asc Convert between characters and ASCII codes
Description

Convert between characters and ASCII codes

Usage
asc(char, simplify = TRUE)

chr(ascii)
Arguments
char vector of character strings
simplify logical indicating whether to attempt to convert the result into a vector or matrix
object. See sapply for details.
ascii vector or list of vectors containing integer ASCII codes
Value

asc returns the integer ASCII values for each character in the elements of char. If simplify=FALSE
the result will be a list containing one vector per element of char. If simplify=TRUE, the code will
attempt to convert the result into a vector or matrix.

asc returns the characters corresponding to the provided ASCII values.

Functions

* asc(): return the characters corresponding to the specified ASCII codes
e chr(): return the ASCII codes for the specified characters.

Author(s)

Adapted by Gregory R. Warnes <greg@warnes.net> from code posted by Mark Davis on the *Data
Debrief” blog on 2011-03-09 athttps: //datadebrief.blogspot.com/2011/03/ascii-code-table-in-r.
html.

https://datadebrief.blogspot.com/2011/03/ascii-code-table-in-r.html
https://datadebrief.blogspot.com/2011/03/ascii-code-table-in-r.html

4 ASCIIfy

See Also

strtoi, charToRaw, rawToChar, as.raw
Examples

ascii codes for lowercase letters
asc(letters)

uppercase letters from ascii codes
chr(65:90)

works on muti-character strings
(tmp <- asc("hello!"))
chr(tmp)

Use 'simplify=FALSE' to return the result as a list
(tmp <- asc("hello!”, simplify = FALSE))
chr(tmp)

When simplify=FALSE the results can be...
aSC(C(”a", Ilell, Ilill, llo u Vlyll)) # a VeCtOr

asc(c("ae", "io", "uy")) # or a matrix

" non
’ ’

When simplify=TRUE the results are always a list...
asc(c(”a”, "e", "i", "o", "u”, "y"), simplify = FALSE)
asc(c("ae", "io", "uy"), simplify = FALSE)

ASCIIfy Convert Characters to ASCII

Description

Convert character vector to ASCII, replacing non-ASCII characters with single-byte (‘\x@0’) or
two-byte (‘\u0000’) codes.

Usage

ASCIIfy(x, bytes = 2, fallback = "7?")

Arguments
X a character vector, possibly containing non-ASCII characters.
bytes either 1 or 2, for single-byte (‘\x@0’) or two-byte (‘\u000@’) codes.

fallback an output character to use, when input characters cannot be converted.

ask 5

Value
A character vector like x, except non-ASCII characters have been replaced with ‘\x00’ or ‘\u@00e’
codes.

Note

To render single backslashes, use these or similar techniques:

write(ASCIIfy(x), "file.txt")
cat(paste(ASCIIfy(x), collapse="\n"), "\n", sep="")

The resulting strings are plain ASCII and can be used in R functions and datasets to improve pack-
age portability.
Author(s)

Arni Magnusson.

See Also

showNonASCII identifies non-ASCII characters in a character vector.

Examples

cities <- c("S\u@@e3o Paulo”, "Reykjav\u@dedk")
print(cities)

ASCIIfy(cities, 1)

ASCIIfy(cities, 2)

athens <- "\u0391\u@3b8\u@3ae\ud3bd\u@3b1”
print(athens)
ASCIIfy(athens)

ask Display a prompt and collect the user’s response

Description

Display a prompt and collect the user’s response

Usage

ask(msg = "Press <RETURN> to continue: ", con = stdin())
Arguments

msg Character vector providing the message to be displayed

con Character connection to query, defaults to stdin().

6 assert

Details

The prompt message will be displayed, and then readLines is used to collect a single input value
(possibly empty), which is then returned.

In most situations using the default con=stdin() should work properly. Under RStudio, it is nec-
essary to specify con=file("stdin") for proper operation.
Value

A character scalar containing the input provided by the user.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

readlLines, scan

Examples

use default prompt
ask()

silly <- function() {

age <- ask("How old aroe you? ")

age <- as.numeric(age)

cat("In 10 years you will be”, age + 10, "years old!\n")
3

assert Defunct Functions in package gtools

Description

The functions or variables listed here are no longer part of package gtools.
Usage

assert(...)

capture(expression, collapse = "\n")

sprint(x, ...)

badDend 7

Arguments

expression, collapse, X, ...
ignored

Details

* assert is a defunct synonym for stopifnot.

* addLast has been replaced by lastAdd, which has the same purpose but applied using differ-
ent syntax.

e capture and capture.output have been removed in favor of capture.output from the
utils package.

See Also

Defunct, stopifnot, lastAdd, capture.output

badDend Dataset That Crashes Base:::Plot.Dendogram with ’Node Stack Over-
Sflow’

Description
Base:::Plot.Dendogram() will generate a ’Node Stack Overflow” when run on a dendrogram appro-
priately constructed from this data set.

Format
The format is: num [1:2047,1:12] 123456789 10 ... - attr(*, "dimnames")=List of 2 ..$: NULL
2§ :chr [1:12] "X" "V1" "V2" "V3" ..

Note
See help page for unByteCode to see how to construct the *bad’ dendrogram from this data and how
to work around the issue.

Examples

data(badDend)

8 baseOf

base0Of Transform an integer to an array of base-n digits

Description

Transform an integer to an array of base-n digits

Usage

baseOf (v, base = 10, len = 1)

Arguments
v A single integer value to be transformed.
base The base to which to transform to.
len The minimal length of the returned array.
Details

This function converts the elements of an integer vector as an array of its digits. The base of the
numbering scheme may be changed away from 10, which defines our decimal system, to any other
integer value. For base=2, the number is returned in the binary system. The least significant digit
has the highest index in the array, i.e. it appears on the right. The highest exponent is at position 1,
i.e. left.

To write decimal values in another base is very common in computer science. In particular at the
basis 2 the then possible values 0 and 1 are often interpreted as logical false or true. And at the
very interface to electrical engineering, it is indicated as an absence or presence of voltage. When
several bit values are transported synchronously, then it is common to give every lane of such a
data bus a unique 2”x value and interpret it as a number in the binary system. To distinguish 256
characters one once needed 8 bit ("byte"). It is the common unit in which larger non-printable
data is presented. Because of the many non-printable characters and the difficulty for most humans
to memorize an even longer alphabet, it is presented as two half bytes ("nibble") of 4 bit in a
hexadecimal presentation. Example code is shown below.

For statisticians, it is more likely to use bit representations for hashing. A bitset to 1 (TRUE) ate.g.
position 2, 9 or 17 is interpreted as the presence of a particular feature combination of a sample.
With baseOf, you can refer to the bit combination as a number, which is more easily and more
efficiently dealt with than with an array of binary values. The example code presents a counter of
combinations of features which may be interpreted as a Venn diagram.

Author(s)

Steffen Moeller <moeller@debian.org>

binsearch

Examples

decimal representation
base0f (123)

binary representation
base0f (123, base = 2)

octal representation
base0f (123, base = 8)

hexadecimal representation
base0f (123, base = 16)

hexadecimal with more typical letter-notation
c(0:9, LETTERS)[baseOf(123, 16)]

hexadecimal again, now showing a single string
paste(c(@:9, LETTERS)[baseOf (123, 16)], collapse = "")

decimal representation but filling leading zeroes
base0f (123, len = 5)

and converting that back
sum(2”(4:0) * baseOf (123, len = 5))

hashing and a tabular venn diagram derived from it
m <- matrix(sample(c(FALSE, TRUE), replace = TRUE, size = 300), ncol = 4)

colnames(m) <- c("strong”, "colorful”, "nice"”, "humorous")
names(dimnames(m)) <- c("samples”, "features"”)
head(m)

m.val <- apply(m, 1, function(X) {
return(sum(2*((ncol(m) - 1):0) * X))

»

m.val.rle <- rle(sort(m.val))

m.counts <- cbind(
baseOf (m.val.rle$value, base = 2, len = ncol(m)),
m.val.rle$lengths

)

colnames(m.counts) <- c(colnames(m), "num")

rownames(m.counts) <- apply(m.counts[, 1:ncol(m)], 1, paste, collapse = "")
m.counts[1 == m.counts[, "nice”] & 1 == m.counts[, "humorous”], , drop = FALSE]

m.counts[, "num”, drop = TRUE]

binsearch Binary Search

10 binsearch

Description

Search within a specified range to locate an integer parameter which results in the the specified
monotonic function obtaining a given value.

Usage

binsearch(
fun,
range,
target = 0,
lower = ceiling(min(range)),
upper = floor(max(range)),
maxiter = 100,
showiter = FALSE

)
Arguments
fun Monotonic function over which the search will be performed.
range 2-element vector giving the range for the search.
Additional parameters to the function fun.
target Target value for fun. Defaults to 0.
lower Lower limit of search range. Defaults to min(range).
upper Upper limit of search range. Defaults to max (range).
maxiter Maximum number of search iterations. Defaults to 100.
showiter Boolean flag indicating whether the algorithm state should be printed at each
iteration. Defaults to FALSE.
Details

This function implements an extension to the standard binary search algorithm for searching a sorted
list. The algorithm has been extended to cope with cases where an exact match is not possible, to
detect whether that the function may be monotonic increasing or decreasing and act appropriately,
and to detect when the target value is outside the specified range.

The algorithm initializes two variable 1o and high to the extremes values of range. It then generates
a new value center halfway between lo and hi. If the value of fun at center exceeds target, it
becomes the new value for 1o, otherwise it becomes the new value for hi. This process is iterated
until lo and hi are adjacent. If the function at one or the other equals the target, this value is
returned, otherwise 1o, hi, and the function value at both are returned.

Note that when the specified target value falls between integers, the two closest values are returned.
If the specified target falls outside of the specified range, the closest endpoint of the range will
be returned, and an warning message will be generated. If the maximum number if iterations was
reached, the endpoints of the current subset of the range under consideration will be returned.

binsearch

Value
A list containing:

call
numiter
flag

where

value

Note

11

How the function was called.
The number of iterations performed

One of the strings, "Found", "Between Elements", "Maximum number of itera-
tions reached", "Reached lower boundary", or "Reached upper boundary."

One or two values indicating where the search terminated.

Value of the function fun at the values of where.

This function often returns two values for where and value. Be sure to check the flag parameter
to see what these values mean.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

optim, optimize, uniroot

Examples

#i## Toy examples

search for x=10

binsearch(function(x) x - 10, range = c(0, 20))

search for x=10

N

binsearch(function(x) x - 10.1, range = c(0, 20))

Classical toy

example

binary search for the index of 'M' among the sorted letters
fun <- function(X) {
ifelse(LETTERS[X] > "M", 1,
ifelse(LETTERS[X] < "M", -1, @)

)
}

binsearch(fun, range = 1:26)
returns $where=13

LETTERS[13]

Substantive example, from genetics

Not run:

12 capwords

library(genetics)

Determine the necessary sample size to detect all alleles with

frequency 0.07 or greater with probability 0.95.

power.fun <- function(N) 1 - gregorius(N = N, freq = 0.07)$missprob

binsearch(power.fun, range = c(@, 100), target = 0.95)

equivalent to
gregorius(freq = 0.07, missprob = 0.05)

End(Not run)

capwords Capitalize Words for Titles

Description

This function capitalizes words for use in titles

Usage

capwords(
S,
strict = FALSE,
AP = TRUE,
onlyfirst = FALSE,
preserveMixed = FALSE,

non

sep =
)
Arguments

s character string to be processed

strict Logical, remove all additional capitalization.

AP Logical, apply the Associated Press (AP) rules for prepositions and conjunctions
that should not be capitalized in titles.

onlyfirst Logical, only capitalize the first word.

preserveMixed Logical, preserve the capitalization mixed-case words containing an upper-case
letter after a lower-case letter.

sep Character string, word separator

capwords 13

Details

This function separates the provided character string into separate words using sep as the word
separator. If firstonly==TRUE, it then capitalizes the first letter the first word, otherwise (the
default), it capitalizes the first letter of every word. If AP==TRUE, it then un-capitalizes words in
the Associated Press’s (AP) list of prepositions and conjunctions should not be capitalized in titles.
Next, it capitalizes the first word. It then re-joins the words using the specified separator.

If preserveMixed==TRUE, words with an upper-case letter appearing after a lower-case letter will
not be changed (e.g. "iDevice").

Value

A character scalar containing the capitalized words.

Author(s)

Gregory R. Warnes <greg@warnes.net> based on code from the chartr manual page, and Scott
Chamberlain’s taxize_capwords in the taxize package.

References

Fogarty, Mignon. Capitalizing Titles: "Which words should you capitalize? Grammar Girl’s Quick
and Dirty Tips for Better Writing. 9 Jun. 2011. Quick and Dirty Tips Website." Accessed 22 April
2016 https://www.quickanddirtytips.com/articles/capitalizing-titles/

See Also

chartr, taxize_capwords, capwords

Examples

capwords(”a function to capitalize words in a title")
capwords(”a function to capitalize words in a title", AP = FALSE)

capwords("testing the iProduct for defects”)

capwords("testing the iProduct for defects”, strict = TRUE)
capwords("testing the iProduct for defects”, onlyfirst = TRUE)
capwords("testing the iProduct for defects”, preserveMixed = TRUE)

capwords(”"title_using_underscores_as_separators”, sep = "_")

https://www.quickanddirtytips.com/articles/capitalizing-titles/

14 checkRVersion

checkRVersion Check if a newer version of R is available

Description

Check if a newer version of R is available

Usage

checkRVersion(quiet = FALSE)

Arguments

quiet Logical indicating whether printed output should be suppressed.

Details

This function accesses the R web site to discover the latest released version of R. It then compares
this version to the running version. If the running version is the same as the latest version, it prints
the message, "The latest version of R is installed:" followed by the version number, and returns
NULL. If the running version is older than the current version, it displays the message, "A newer
version of R is now available:" followed by the corresponding version number, and returns the
version number.

If quiet=TRUE, no printing is performed.

Value

Either the version number of the latest version of R, if the running version is less than the latest
version, or NULL.

Note

This function uses the internet to access the R project web site. If internet access is unavailable or
the R project web site is down, the function will fail.

Author(s)

Gregory R. Warnes

See Also

R.Version

combinations 15

Examples

try(

ver <- checkRVersion()
)
print(ver)
combinations Enumerate the Combinations or Permutations of the Elements of a
Vector

Description

combinations enumerates the possible combinations of a specified size from the elements of a
vector. permutations enumerates the possible permutations.

Usage
FALSE)

TRUE, repeats.allowed

combinations(n, r, v = 1:n, set

permutations(n, r, v = 1:n, set = TRUE, repeats.allowed = FALSE)

Arguments
n Size of the source vector
r Size of the target vectors
v Source vector. Defaults to 1:n
set Logical flag indicating whether duplicates should be removed from the source

vector v. Defaults to TRUE.

repeats.allowed
Logical flag indicating whether the constructed vectors may include duplicated
values. Defaults to FALSE.

Details

Caution: The number of combinations and permutations increases rapidly with n and r!.

To use values of n above about 45, you will need to increase R’s recursion limit. See the expression
argument to the options command for details on how to do this.

Taken from an email by Brian D Ripley <ripley @stats.ox.ac.uk> to r-help dated Tue, 14 Dec 1999
11:14:04 +0000 (GMT) in response to Alex Ahgarin <datamanagement@email.com>. Original
version was named "subsets" and was Written by Bill Venables.

Value

Returns a matrix where each row contains a vector of length r.

16 defmacro

Author(s)
Original versions by Bill Venables <Bill.Venables@cmis.csiro.au>. Extended to handle repeats.allowed
by Gregory R. Warnes <greg@warnes.net>.

References
Venables, Bill. "Programmers Note", R-News, Vol 1/1, Jan. 2001. https://cran.r-project.
org/doc/Rnews/

See Also

choose, options

Examples

combinations(3,2,letters[1:3])
combinations(3,2,letters[1:3],repeats=TRUE)

permutations(3,2,letters[1:3])
permutations(3,2,letters[1:3],repeats=TRUE)

Not run:

To use large 'n', you need to change the default recusion limit
options(expressions=1e5)

cmat <- combinations(300,2)

dim(cmat) # 44850 by 2

1

End(Not run)

defmacro Define a macro

Description

defmacro define a macro that uses R expression replacement

Usage
defmacro(..., expr)
strmacro(..., expr, strexpr)
Arguments
macro argument list
expr R expression defining the macro body

strexpr character string defining the macro body

https://cran.r-project.org/doc/Rnews/
https://cran.r-project.org/doc/Rnews/

defmacro 17

Details

strmacro define a macro that uses string replacement

defmacro and strmacro create a macro from the expression given in expr, with formal arguments
given by the other elements of the argument list.

A macro is similar to a function definition except for handling of formal arguments. In a function,
formal arguments are simply variables that contains the result of evaluating the expressions provided
to the function call. In contrast, macros actually modify the macro body by replacing each formal
argument by the expression (defmacro) or string (strmacro) provided to the macro call.

For defmacro, the special argument name DOTS will be replaced by ... in the formal argument
list of the macro so that ... in the body of the expression can be used to obtain any additional
arguments passed to the macro. For strmacro you can mimic this behavior providing a DOTS=""
argument. This is illustrated by the last example below.

Macros are often useful for creating new functions during code execution.

Value

A macro function.

Note

Note that because [the defmacro code] works on the parsed expression, not on a text string, defmacro
avoids some of the problems of traditional string substitution macros such as strmacro and the C
preprocessor macros. For example, in

mul <- defmacro(a, b, expr={a*b})

a C programmer might expect mul(i, j + k) to expand (incorrectly) to i*j + k. In fact it expands
correctly, to the equivalent of ix(j + k).

For a discussion of the differences between functions and macros, please Thomas Lumley’s R-News
article (reference below).

Author(s)
Thomas Lumley wrote defmacro. Gregory R. Warnes <greg@warnes.net> enhanced it and created
strmacro.

References

The original defmacro code was directly taken from:

Lumley T. "Programmer’s Niche: Macros in R", R News, 2001, Vol 1, No. 3, pp 11-13, https:
//cran.r-project.org/doc/Rnews/

See Also

function substitute, eval, parse, source, parse,

https://cran.r-project.org/doc/Rnews/
https://cran.r-project.org/doc/Rnews/

18 defmacro

Examples

HiHH
macro for replacing a specified missing value indicator with NA
within a dataframe

fizizid
setNA <- defmacro(df, var, values,
expr = {
df$var[df$var %in% values] <- NA
}
)

create example data using 999 as a missing value indicator
d <- data.frame(
Grp = c("Trt", "Ctl", "Ctl", "Trt", "Ctl"”, "Ctl", "Trt", "Ctl", "Trt", "Ctl"),
vi=c(, 2, 3, 4, 5, 6, 999, 8, 9, 10),
V2 = c(1, 1, 1, 1, 1, 2, 999, 2, 999, 999),
stringsAsFactors = TRUE

Try it out
setNA(d, V1, 999)
setNA(d, V2, 999)

d
H#HHH#
Expression macro
fizizd
plot.d <- defmacro(df, var, DOTS,

col = "red", title = "", expr =

plot(df$var ~ df$Grp, type = "b", col = col, main = title, ...)

)

plot.d(d, V1)
plot.d(d, V1, col "blue")
plot.d(d, V1, lwd = 4) # use optional 'DOTS' argument

H#iH#

String macro (note the quoted text in the calls below)
#

This style of macro can be useful when you are reading
function arguments from a text file

fizizd
plot.s <- strmacro(DF, VAR,
COL = "'red'”, TITLE = "''", DOTS = "", expr =
plot(DF$VAR ~ DF$Grp, type = "b", col = COL, main = TITLE, DOTS)
)

plot.sC"d", "1y
plot.s(DF = "d”, VAR = "V1", COL = '"blue”")

dirichlet 19

plot.s("d", "V1", DOTS = "lwd=4") # use optional 'DOTS' argument

fizizisizizizd
Create a macro that defines new functions
HHH
plot.sf <- defmacro(

type = "b", col = "black”,

title = deparse(substitute(x)), DOTS, expr =

function(x, y) plot(x, y, type = type, col = col, main = title, ...)

)

plot.red <- plot.sf(col = "red”, title = "Red is more Fun!")
plot.blue <- plot.sf(col = "blue”, title = "Blue is Best!"”, 1ty = 2)

plot.red(1:100, rnorm(100))
plot.blue(1:100, rnorm(100))

dirichlet Functions for the Dirichlet Distribution

Description

Functions to compute the density of or generate random deviates from the Dirichlet distribution

Usage
ddirichlet(x, alpha)

rdirichlet(n, alpha)

Arguments
X A vector containing a single random deviate or matrix containing one random
deviate per row.
alpha Vector or (for ddirichlet) matrix containing shape parameters.
n Number of random vectors to generate.
Details

The Dirichlet distribution is the multidimensional generalization of the beta distribution. It is the
canonical Bayesian distribution for the parameter estimates of a multinomial distribution.
Value

ddirichlet returns a vector containing the Dirichlet density for the corresponding rows of x.

rdirichlet returns a matrix with n rows, each containing a single Dirichlet random deviate.

20 ELISA

Functions

e ddirichlet(): Dirichlet distribution function.

e rdirichlet(): Generate dirichlet random deviates.

Author(s)

Code original posted by Ben Bolker to R-News on Fri Dec 15 2000. See https://stat.ethz.
ch/pipermail/r-help/2000-December/009561.html. Ben attributed the code to Ian Wilson
<i.wilson@maths.abdn.ac.uk>. Subsequent modifications by Gregory R. Warnes <greg@warnes.net>.

See Also

dbeta, rbeta

Examples

X <- rdirichlet(20, c(1, 1, 1))

ddirichlet(x, c(1, 1, 1))

ELISA Data from an ELISA assay

Description
Observed signals and (for some observations) nominal concentrations for samples that were aliquoted
to multiple assay plates, which were read multiple times on multiple days.
Format
a data frame with the following columns:
* PlateDay factor. Specifies one of four physically distinct 96 well plates
* Read factor. The signal was read 3 times for each plate.
* Description character. Indicates contents of sample.

* Concentration numeric. Nominal concentration of standards (NA for all other samples).

* Signal numeric. Assay signal. Specifically, optical density (a colorimetric assay).

Source

Anonymized data.

https://stat.ethz.ch/pipermail/r-help/2000-December/009561.html
https://stat.ethz.ch/pipermail/r-help/2000-December/009561.html

foldchange 21

foldchange Compute fold-change or convert between log-ratio and fold-change.

Description

foldchange computes the fold change for two sets of values. logratio2foldchange converts
values from log-ratios to fold changes. foldchange2logratio does the reverse.

Usage
foldchange(num, denom)
logratio2foldchange(logratio, base = 2)

foldchange2logratio(foldchange, base = 2)

Arguments
num, denom vector/matrix of numeric values
logratio vector/matrix of log-ratio values
base Exponential base for the log-ratio.
foldchange vector/matrix of fold-change values
Details
Fold changes are commonly used in the biological sciences as a mechanism for comparing the
relative size of two measurements. They are computed as: -7 if num > denom, and as
% otherwise.

Fold-changes have the advantage of ease of interpretation and symmetry about num = denom, but
suffer from a discontinuity between -1 and 1, which can cause significant problems when perform-
ing data analysis. Consequently statisticians prefer to use log-ratios.

Value

A vector or matrix of the same dimensions as the input containing the converted values.

Functions

* foldchange(): Compute fold-change.
* logratio2foldchange(): Compute foldchange from log-ratio values.

» foldchange2logratio(): Compute log-ratio from fold-change values.

Author(s)

Gregory R. Warnes <greg@warnes.net>

22

Examples
a <- 1:21
b <- 21:1

f <- foldchange(a, b)

cbind(a, b, f)

getDependencies

getDependencies

Get package dependencies

Description

Get package dependencies

Usage

getDependencies(
pkgs,

dependencies = c("Depends”, "Imports”, "LinkingTo"),

installed = TRUE,
available = TRUE,
base = FALSE,
recommended = FALSE

Arguments
pkgs character vector of package names
dependencies character vector of dependency types to include. Choices are "Depends”, "Im-
ports", "LinkingTo", "Suggests", and "Enhances". Defaults to c("Depends”,
"Imports”, "LinkingTo").
installed Logical indicating whether to pull dependency information from installed pack-
ages. Defaults to TRUE.
available Logical indicating whether to pull dependency information from available pack-
ages. Defaults to TRUE.
base Logical indicating whether to include dependencies on base packages that are
included in the R installation. Defaults to FALSE.
recommended Logical indicating whether to include dependencies on recommended packages
that are included in the R installation. Defaults to FALSE.
Details

This function recursively constructs the list of dependencies for the packages given by pkgs. By
default, the dependency information is extracted from both installed and available packages. As a
consequence, it works both for local and CRAN packages.

gtools-deprecated 23

Value

A character vector of package names.

Note

If available=TRUE R will attempt to access the currently selected CRAN repository, prompting for
one if necessary.

Author(s)
Gregory R. Warnes <greg@warnes.net> based on the non exported utils:::getDependencies
and utils:::.clean_up_dependencies?2.

See Also

installed.packages, available.packages

Examples

Not run:
A locally installed package
#' getDependencies(”MASS"”, installed = TRUE, available = FALSE)

A package on CRAN
getDependencies("gregmisc”, installed = FALSE, available = TRUE)

Show base and recommended dependencies
getDependencies(”MASS"”, available = FALSE, base = TRUE, recommended = TRUE)

Download the set of packages necessary to support a local package
deps <- getDependencies("MyLocalPackage"”, available = FALSE)
download. packages(deps, destdir = "./R_Packages")

End(Not run)

gtools-deprecated Deprecated Functions in the gtools package

Description
These functions are provided for compatibility with older versions of gtools, and may be defunct as
soon as the next release.

Details

gtools currently contains no deprecated functions.
help(”oldName-deprecated”) (note the quotes).

24 invalid

See Also
Deprecated
invalid Test if a value is missing, empty, contains only NA or NULL values, or
is a try-error.
Description

Test if a value is missing, empty, contains only NA or NULL values, or is a try-error.

Usage

invalid(x)

Arguments

X value to be tested

Value

Logical value.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

missing, is.na, is.null

Examples

invalid(NA)
invalid()
invalid(c(NA, NA, NULL, NA))

invalid(list(a = 1, b = NULL))

x <= try(log("A"))
invalid(x)

example use in a function
myplot <- function(x, y) {
if (invalid(y)) {
y <= X
x <= 1:length(y)

keywords 25

}

plot(x, y)
3
myplot(1:10)
myplot(1:10, NA)

keywords List valid keywords for R man pages

Description

List valid keywords for R man pages

Usage

keywords (topic)

Arguments

topic object or man page topic

Details

If topic is provided, return a list of the keywords associated with topic. Otherwise, display the
list of valid R keywords from the R doc/KEYWORDS file.

Author(s)

Gregory R. Warnes <greg@warnes.net>

See Also

help

Examples

Show all valid R keywords
Not run:
keywords ()

Show keywords associated with the 'merge' function
keywords(merge)

keywords("merge")

End(Not run)

26 lastAdd

lastAdd Non-destructively construct a .Last function to be executed when R
exits.

Description

Non-destructively construct a .Last function to be executed when R exits.

Usage

lastAdd(fun)

Arguments

fun Function to be called.

Detail