
Package ‘greybox’
January 19, 2026

Type Package

Title Toolbox for Model Building and Forecasting

Version 2.0.7

Date 2026-01-19

URL https://github.com/config-i1/greybox

BugReports https://github.com/config-i1/greybox/issues

Language en-GB

Description Implements functions and instruments for regression model building and its
application to forecasting. The main scope of the package is in variables selection
and models specification for cases of time series data. This includes promotional
modelling, selection between different dynamic regressions with non-standard
distributions of errors, selection based on cross validation, solutions to the fat
regression model problem and more. Models developed in the package are tailored
specifically for forecasting purposes. So as a results there are several methods
that allow producing forecasts from these models and visualising them.

License LGPL-2.1

Depends R (>= 3.5.0)

Imports stats, generics (>= 0.1.2), graphics, utils, pracma, nloptr,
statmod, zoo, texreg, xtable, methods

LinkingTo Rcpp

Suggests smooth (>= 3.1.0), doMC, doParallel, foreach, testthat,
rmarkdown, knitr

Enhances vars, forecast

RoxygenNote 7.3.3

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation yes

Author Ivan Svetunkov [aut, cre] (Senior Lecturer at Centre for Marketing
Analytics and Forecasting, Lancaster University, UK),

Yves R. Sagaert [ctb] (Visiting Research at Centre for Marketing
Analytics and Forecasting, Lancaster University, UK)

1

https://github.com/config-i1/greybox
https://github.com/config-i1/greybox/issues

2 Contents

Maintainer Ivan Svetunkov <ivan@svetunkov.com>

Repository CRAN

Date/Publication 2026-01-19 09:50:02 UTC

Contents
accuracy.greybox . 3
actuals . 4
AICc . 5
aid . 6
alm . 8
association . 13
coef.greybox . 15
coefbootstrap . 16
cramer . 18
dalaplace . 19
dbcnorm . 21
detectdst . 23
determination . 24
dfnorm . 25
dgnorm . 27
Distributions . 29
dlaplace . 30
dlogitnorm . 31
drectnorm . 33
ds . 34
dsrboot . 36
dtplnorm . 38
errorType . 39
extractScale . 40
graphmaker . 42
greybox . 43
hm . 45
implant . 46
is.greybox . 47
lmCombine . 48
lmDynamic . 51
mcor . 53
ME . 54
measures . 58
nparam . 59
outlierdummy . 60
pAIC . 62
pcor . 63
pinball . 64
plot.greybox . 65
pointLik . 67

accuracy.greybox 3

polyprod . 69
predict.alm . 70
rmcb . 72
ro . 74
sm . 77
spread . 79
stepwise . 80
tableplot . 82
temporaldummy . 83
xregExpander . 85
xregMultiplier . 86
xregTransformer . 87

Index 89

accuracy.greybox Error measures for an estimated model

Description

Function produces error measures for the provided object and the holdout values of the response
variable. Note that instead of parameters x, test, the function accepts the vector of values in
holdout. Also, the parameters d and D are not supported - MASE is always calculated via division
by first differences.

Usage

S3 method for class 'greybox'
accuracy(object, holdout = NULL, ...)

S3 method for class 'predict.greybox'
accuracy(object, holdout = NULL, ...)

Arguments

object The estimated model or a forecast from the estimated model generated via either
predict() or forecast() functions.

holdout The vector of values of the response variable in the holdout (test) set. If not
provided, then the function will return the in-sample error measures.

... Other variables passed to the forecast() function (e.g. newdata).

Details

The function is a wrapper for the measures function and is implemented for convenience.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

4 actuals

Examples

xreg <- cbind(rlaplace(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rlaplace(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

ourModel <- alm(y~x1+x2+trend, xreg, subset=c(1:80), distribution="dlaplace")
accuracy(predict(ourModel,xreg[-c(1:80),]), xreg[-c(1:80),"y"])

actuals Function extracts the actual values from the function

Description

This is a simple method that returns the values of the response variable of the model

Usage

actuals(object, all = TRUE, ...)

Default S3 method:
actuals(object, all = TRUE, ...)

S3 method for class 'lm'
actuals(object, all = TRUE, ...)

S3 method for class 'alm'
actuals(object, all = TRUE, ...)

S3 method for class 'predict.greybox'
actuals(object, all = TRUE, ...)

Arguments

object Model estimated using one of the functions of smooth package.

all If FALSE, then in the case of the occurrence model, only demand sizes will be
returned.

... Other parameters to pass to the method. Currently nothing is supported here.

Value

The vector of the response variable.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

AICc 5

Examples

xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

ourModel <- stepwise(xreg)

actuals(ourModel)

AICc Corrected Akaike’s Information Criterion and Bayesian Information
Criterion

Description

This function extracts AICc / BICc from models. It can be applied to wide variety of models that
use logLik() and nobs() methods (including the popular lm, forecast, smooth classes).

Usage

AICc(object, ...)

BICc(object, ...)

Arguments

object Time series model.

... Some stuff.

Details

AICc was proposed by Nariaki Sugiura in 1978 and is used on small samples for the models with
normally distributed residuals. BICc was derived in McQuarrie (1999) and is used in similar cir-
cumstances.

IMPORTANT NOTE: both of the criteria can only be used for univariate models (regression models,
ARIMA, ETS etc) with normally distributed residuals! In case of multivariate models, both criteria
need to be modified. See Bedrick & Tsai (1994) for details.

Value

This function returns numeric value.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

6 aid

References

• Burnham Kenneth P. and Anderson David R. (2002). Model Selection and Multimodel In-
ference. A Practical Information-Theoretic Approach. Springer-Verlag New York. DOI:
[10.1007/b97636](http://dx.doi.org/10.1007/b97636).

• McQuarrie, A. D. (1999). A small-sample correction for the Schwarz SIC model selection
criterion. Statistics & Probability Letters, 44(1), 79–86. [10.1016/S0167-7152(98)00294-
6](https://doi.org/10.1016/S0167-7152(98)00294-6).

• McQuarrie A.D., A small-sample correction for the Schwarz SIC model selection criterion,
Statistics & Probability Letters 44 (1999) pp.79-86. doi:10.1016/S01677152(98)002946

• Sugiura Nariaki (1978) Further analysts of the data by Akaike’s information criterion and the
finite corrections, Communications in Statistics - Theory and Methods, 7:1, 13-26, doi:10.1080/
03610927808827599

• Bedrick, E. J., & Tsai, C.-L. (1994). Model Selection for Multivariate Regression in Small
Samples. Biometrics, 50(1), 226. doi:10.2307/2533213

See Also

AIC, BIC

Examples

xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

ourModel <- stepwise(xreg)

AICc(ourModel)
BICc(ourModel)

aid Automatic Identification of Demand

Description

The function applies several models on the provided time series and identifies what type of demand
it is based on an information criterion.

Usage

aid(y, ic = c("AICc", "AIC", "BICc", "BIC"), level = 0.99,
loss = "likelihood", ...)

aidCat(data, ...)

https://doi.org/10.1016/S0167-7152%2898%2900294-6
https://doi.org/10.1080/03610927808827599
https://doi.org/10.1080/03610927808827599
https://doi.org/10.2307/2533213

aid 7

Arguments

y The vector of the data.

ic Information criterion to use.

level The confidence level used in stockouts identification.

loss The type of loss function to use in model estimation. See alm for possible op-
tions.

... Other parameters passed to the alm() function. In case of the aidCat() func-
tion, the aid() parameters can be passed here.

data The dataframe or a matrix to which the aid function should be applied

Details

In the first step, function creates inter-demand intervals and fits a model with LOWESS of it assum-
ing Geometric distribution. The outliers from this model are treated as potential stock outs.

In the second step, the function creates explanatory variables based on LOWESS of the original
data, then applies Normal, Normal + Bernoulli models and selects the one that has the lowest IC.
Based on that, it decides what type of demand the data corresponds to: regular or intermittent.
Finally, if the data is count, the function will identify that.

Value

aid() returns an object of class "aid", which contains:

• y - The original data;

• models - All fitted models;

• ICs - Values of information criteria;

• type - The list with the specific type categories (count/fractional, intermittent/regular, smooth/lumpy);

• name - The name of the identified demand;

• stockouts - List with start and end ids of potential stockouts;

• new - Binary showing whether the data start with the abnormal number of zeroes. Must be a
new product then;

• obsolete - Binary showing whether the data ends with the abnormal number of zeroes. Must
be product that was discontinued (obsolete).

aidCat() returns an object of class "aidCat", which contains:

• categories - the vector with the names of categories for each time series;

• types - the vector with the count of series in each category;

• anomalies - the vector that contains counts of cases where product was flagged as new, obsolete
and having stockouts.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

8 alm

Examples

Data from Poisson distribution
y <- rpois(120, 0.7)
aid(y)

xreg <- cbind(x1=rpois(100,1), x2=rpois(100,2),
x3=rpois(100,5), x4=rnorm(100,10,2))

plot(aidCat(xreg))

alm Augmented Linear Model

Description

Function estimates model based on the selected distribution

Usage

alm(formula, data, subset, na.action, distribution = c("dnorm", "dlaplace",
"ds", "dgnorm", "dlogis", "dt", "dalaplace", "dlnorm", "dllaplace", "dls",
"dlgnorm", "dbcnorm", "dinvgauss", "dgamma", "dexp", "dfnorm", "drectnorm",
"dpois", "dnbinom", "dbinom", "dgeom", "dbeta", "dlogitnorm", "plogis",
"pnorm"), loss = c("likelihood", "MSE", "MAE", "HAM", "LASSO", "RIDGE",
"ROLE"), occurrence = c("none", "plogis", "pnorm"), scale = NULL,
orders = c(0, 0, 0), parameters = NULL, fast = FALSE, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. Can also include trend, which would add
the global trend.

data a data frame or a matrix, containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset.
The factory-fresh default is na.omit. Another possible value is NULL, no action.
Value na.exclude can be useful.

distribution what density function to use in the process. The full name of the distribution
should be provided here. Values with "d" in the beginning of the name refer to
the density function, while "p" stands for "probability" (cumulative distribution
function). The names align with the names of distribution functions in R. For
example, see dnorm.

loss The type of Loss Function used in optimization. loss can be:

• "likelihood" - the model is estimated via the maximisation of the likeli-
hood of the function specified in distribution;

alm 9

• "MSE" (Mean Squared Error),
• "MAE" (Mean Absolute Error),
• "HAM" (Half Absolute Moment),
• "LASSO" - use LASSO to shrink the parameters of the model;
• "RIDGE" - use RIDGE to shrink the parameters of the model;
• "ROLE" - "RObust Likelihood Estimator", which uses trimmed mean in the

calculation of scale and likelihood. A separate parameter trim can be pro-
vided in ellipsis. If not provided, the default value is 0.05;

In case of LASSO / RIDGE, the variables are not normalised prior to the esti-
mation, but the parameters are divided by the standard deviations of explanatory
variables inside the optimisation. As the result the parameters of the final model
have the same interpretation as in the case of classical linear regression. Note
that the user is expected to provide the parameter lambda.
A user can also provide their own function here as well, making sure that it
accepts parameters actual, fitted and B. Here is an example:
lossFunction <- function(actual, fitted, B, xreg) return(mean(abs(actual-fitted)))
loss=lossFunction

See vignette("alm","greybox") for some details on losses and distributions.

occurrence what distribution to use for occurrence variable. Can be "none", then nothing
happens; "plogis" - then the logistic regression using alm() is estimated for
the occurrence part; "pnorm" - then probit is constructed via alm() for the oc-
currence part. In both of the latter cases, the formula used is the same as the
formula for the sizes. Alternatively, you can provide the formula here, and alm
will estimate logistic occurrence model with that formula. Finally, an "alm"
model can be provided and its estimates will be used in the model construction.
If this is not "none", then the model is estimated in two steps: 1. Occurrence
part of the model; 2. Sizes part of the model (excluding zeroes from the data).

scale formula for scale parameter of the model. If NULL, then it is assumed that the
scale is constant. This might be useful if you need a model with changing vari-
ance (i.e. in case of heteroscedasticity). The log-link is used for the scale (i.e.
take exponent of obtained fitted value for the scale, so that it is always positive).

orders the orders of ARIMA to include in the model. Only non-seasonal orders are
accepted.

parameters vector of parameters of the linear model. When NULL, it is estimated.

fast if TRUE, then the function won’t check whether the data has variability and
whether the regressors are correlated. Might cause trouble, especially in cases
of multicollinearity.

... additional parameters to pass to distribution functions. This includes:

• alpha - value for Asymmetric Laplace distribution;
• size - the size for the Negative Binomial distribution;
• nu - the number of degrees of freedom for Chi-Squared and Student’s t;
• shape - the shape parameter for Generalised Normal distribution;
• lambda - the meta parameter for LASSO / RIDGE. Should be between 0

and 1, regulating the strength of shrinkage, where 0 means don’t shrink
parameters (use MSE) and 1 means shrink everything (ignore MSE);

10 alm

• lambdaBC - lambda for Box-Cox transform parameter in case of Box-Cox
Normal Distribution.

• FI=TRUE will make the function also produce Fisher Information matrix,
which then can be used to calculated variances of smoothing parameters
and initial states of the model. This is used in the vcov method;

You can also pass parameters to the optimiser:

1. B - the vector of starting values of parameters for the optimiser, should
correspond to the explanatory variables. If formula for scale was provided,
the parameters for that part should follow the parameters for location;

2. algorithm - the algorithm to use in optimisation ("NLOPT_LN_NELDERMEAD"
by default);

3. maxeval - maximum number of evaluations to carry out. Default is 40
per estimated parameter. In case of LASSO / RIDGE the default is 80 per
estimated parameter;

4. maxtime - stop, when the optimisation time (in seconds) exceeds this;
5. xtol_rel - the precision of the optimiser (the default is 1E-6);
6. xtol_abs - the absolute precision of the optimiser (the default is 1E-8);
7. ftol_rel - the stopping criterion in case of the relative change in the loss

function (the default is 1E-4);
8. ftol_abs - the stopping criterion in case of the absolute change in the loss

function (the default is 0 - not used);
9. print_level - the level of output for the optimiser (0 by default). If equal

to 41, then the detailed results of the optimisation are returned.

You can read more about these parameters by running the function nloptr.print.options.

Details

This is a function, similar to lm, but using likelihood for the cases of several non-normal distribu-
tions. These include:

1. dnorm - Normal distribution,

2. dlaplace - Laplace distribution,

3. ds - S-distribution,

4. dgnorm - Generalised Normal distribution,

5. dlogis - Logistic Distribution,

6. dt - T-distribution,

7. dalaplace - Asymmetric Laplace distribution,

8. dlnorm - Log-Normal distribution,

9. dllaplace - Log-Laplace distribution,

10. dls - Log-S distribution,

11. dlgnorm - Log-Generalised Normal distribution,

12. dfnorm - Folded normal distribution,

13. drectnorm - Rectified normal distribution,

alm 11

14. dbcnorm - Box-Cox normal distribution,

15. dinvgauss - Inverse Gaussian distribution,

16. dgamma - Gamma distribution,

17. dexp - Exponential distribution,

18. dlogitnorm - Logit-normal distribution,

19. dbeta - Beta distribution,

20. dpois - Poisson Distribution,

21. dnbinom - Negative Binomial Distribution,

22. dbinom - Binomial Distribution,

23. dgeom - Geometric Distribution,

24. plogis - Cumulative Logistic Distribution,

25. pnorm - Cumulative Normal distribution.

This function can be considered as an analogue of glm, but with the focus on time series. This is
why, for example, the function has orders parameter for ARIMA and produces time series analysis
plots with plot(alm(...)).

This function is slower than lm, because it relies on likelihood estimation of parameters, hessian
calculation and matrix multiplication. So think twice when using distribution="dnorm" here.

The estimation is done via the maximisation of likelihood of a selected distribution, so the number
of estimated parameters always includes the scale. Thus the number of degrees of freedom of the
model in case of alm will typically be lower than in the case of lm.

See more details and examples in the vignette for "ALM": vignette("alm","greybox")

Value

Function returns model - the final model of the class "alm", which contains:

• coefficients - estimated parameters of the model,

• FI - Fisher Information of parameters of the model. Returned only when FI=TRUE,

• fitted - fitted values,

• residuals - residuals of the model,

• mu - the estimated location parameter of the distribution,

• scale - the estimated scale parameter of the distribution. If a formula was provided for scale,
then an object of class "scale" will be returned.

• distribution - distribution used in the estimation,

• logLik - log-likelihood of the model. Only returned, when loss="likelihood" or loss="ROLE"
and in several special cases of distribution and loss combinations (e.g. loss="MSE", distribu-
tion="dnorm"),

• loss - the type of the loss function used in the estimation,

• lossFunction - the loss function, if the custom is provided by the user,

• lossValue - the value of the loss function,

• res - the output of the optimisation (nloptr function),

12 alm

• df.residual - number of degrees of freedom of the residuals of the model,

• df - number of degrees of freedom of the model,

• call - how the model was called,

• rank - rank of the model,

• data - data used for the model construction,

• terms - terms of the data. Needed for some additional methods to work,

• occurrence - the occurrence model used in the estimation,

• B - the value of the optimised parameters. Typically, this is a duplicate of coefficients,

• other - the list of all the other parameters either passed to the function or estimated in the
process, but not included in the standard output (e.g. alpha for Asymmetric Laplace),

• timeElapsed - the time elapsed for the estimation of the model.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

stepwise, lmCombine,xregTransformer

Examples

An example with mtcars data and factors
mtcars2 <- within(mtcars, {

vs <- factor(vs, labels = c("V", "S"))
am <- factor(am, labels = c("automatic", "manual"))
cyl <- factor(cyl)
gear <- factor(gear)
carb <- factor(carb)

})
The standard model with Log-Normal distribution
ourModel <- alm(mpg~., mtcars2[1:30,], distribution="dlnorm")
summary(ourModel)
plot(ourModel)
Produce table based on the output for LaTeX
xtable(summary(ourModel))

Produce predictions with the one sided interval (upper bound)
predict(ourModel, mtcars2[-c(1:30),], interval="p", side="u")

Model with heteroscedasticity (scale changes with the change of qsec)
ourModel <- alm(mpg~., mtcars2[1:30,], scale=~qsec)

Artificial data for the other examples
xreg <- cbind(rlaplace(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rlaplace(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

An example with Laplace distribution

association 13

ourModel <- alm(y~x1+x2+trend, xreg, subset=c(1:80), distribution="dlaplace")
summary(ourModel)
plot(predict(ourModel,xreg[-c(1:80),]))

And another one with Asymmetric Laplace distribution (quantile regression)
with optimised alpha
ourModel <- alm(y~x1+x2, xreg, subset=c(1:80), distribution="dalaplace")

An example with AR(1) order
ourModel <- alm(y~x1+x2, xreg, subset=c(1:80), distribution="dnorm", orders=c(1,0,0))
summary(ourModel)
plot(predict(ourModel,xreg[-c(1:80),]))

Examples with the count data
xreg[,1] <- round(exp(xreg[,1]-70),0)

Negative Binomial distribution
ourModel <- alm(y~x1+x2, xreg, subset=c(1:80), distribution="dnbinom")
summary(ourModel)
predict(ourModel,xreg[-c(1:80),],interval="p",side="u")

Poisson distribution
ourModel <- alm(y~x1+x2, xreg, subset=c(1:80), distribution="dpois")
summary(ourModel)
predict(ourModel,xreg[-c(1:80),],interval="p",side="u")

Examples with binary response variable
xreg[,1] <- round(xreg[,1] / (1 + xreg[,1]),0)

Logistic distribution (logit regression)
ourModel <- alm(y~x1+x2, xreg, subset=c(1:80), distribution="plogis")
summary(ourModel)
plot(predict(ourModel,xreg[-c(1:80),],interval="c"))

Normal distribution (probit regression)
ourModel <- alm(y~x1+x2, xreg, subset=c(1:80), distribution="pnorm")
summary(ourModel)
plot(predict(ourModel,xreg[-c(1:80),],interval="p"))

association Measures of association

Description

Function returns the matrix of measures of association for different types of variables.

14 association

Usage

association(x, y = NULL, use = c("na.or.complete", "complete.obs",
"everything", "all.obs"), method = c("auto", "pearson", "spearman",
"kendall", "cramer"))

assoc(x, y = NULL, use = c("na.or.complete", "complete.obs", "everything",
"all.obs"), method = c("auto", "pearson", "spearman", "kendall", "cramer"))

Arguments

x Either data.frame or a matrix
y The numerical variable.
use What observations to use. See cor function for details. The only option that is

not available here is "pairwise.complete.obs".
method Which method to use for the calculation of measures of association. By default

this is "auto", which means that the function will use: cor, mcor or cramer -
depending on the scales of variables. The other options force the function to use
one and the same method for all the variables:

• "pearson" - Pearson’s correlation coefficient using cor;
• "spearman" - Spearman’s correlation coefficient based on cor;
• "kendall" - Kendall’s correlation coefficient via cor;
• "cramer" - Cramer’s V using cramer;

Be aware that the wrong usage of measures of association might give misleading
results.

Details

The function looks at the types of the variables and calculates different measures depending on the
result:

• If both variables are numeric, then Pearson’s correlation is calculated;
• If both variables are categorical, then Cramer’s V is calculated;
• Finally, if one of the variables is categorical, and the other is numeric, then multiple correlation

is returned.

After that the measures are wrapped up in a matrix.

Function also calculates the p-values associated with the respective measures (see the return).

See details in the vignette "Marketing analytics with greybox": vignette("maUsingGreybox","greybox")

assoc() is just a short name for the association{}.

Value

The following list of values is returned:

• value - Matrix of the coefficients of association;
• p.value - The p-values for the parameters;
• type - The matrix of the types of measures of association.

coef.greybox 15

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

table, tableplot, spread,cramer, mcor

Examples

association(mtcars)

coef.greybox Coefficients of the model and their statistics

Description

These are the basic methods for the alm and greybox models that extract coefficients, their covari-
ance matrix, confidence intervals or generating the summary of the model. If the non-likelihood
related loss was used in the process, then it is recommended to use bootstrap (which is slow, but
more reliable).

Usage

S3 method for class 'greybox'
coef(object, bootstrap = FALSE, ...)

S3 method for class 'alm'
confint(object, parm, level = 0.95, bootstrap = FALSE, ...)

S3 method for class 'scale'
confint(object, parm, level = 0.95, bootstrap = FALSE, ...)

S3 method for class 'alm'
vcov(object, bootstrap = FALSE, ...)

S3 method for class 'scale'
vcov(object, bootstrap = FALSE, ...)

S3 method for class 'alm'
summary(object, level = 0.95, bootstrap = FALSE, ...)

Arguments

object The model estimated using alm or other greybox function.

bootstrap The logical, which determines, whether to use bootstrap in the process or not.

... Parameters passed to coefbootstrap function.

16 coefbootstrap

parm The parameters that need to be extracted.

level The confidence level for the construction of the interval.

Details

The coef() method returns the vector of parameters of the model. If bootstrap=TRUE, then the
coefficients are calculated as the mean values of the bootstrapped ones.

The vcov() method returns the covariance matrix of parameters. If bootstrap=TRUE, then the
bootstrap is done using coefbootstrap function

The confint() constructs the confidence intervals for parameters. Once again, this can be done
using bootstrap=TRUE.

Finally, the summary() returns the table with parameters, their standard errors, confidence intervals
and general information about the model.

Value

Depending on the used method, different values are returned.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

alm, coefbootstrap

Examples

An example with ALM
ourModel <- alm(mpg~., mtcars, distribution="dlnorm")
coef(ourModel)
vcov(ourModel)
confint(ourModel)
summary(ourModel)

coefbootstrap Bootstrap for parameters of models

Description

The function does the bootstrap for parameters of models and returns covariance matrix together
with the original bootstrapped data.

coefbootstrap 17

Usage

coefbootstrap(object, nsim = 1000, size = floor(0.75 * nobs(object)),
replace = FALSE, prob = NULL, parallel = FALSE, method = c("cr",
"dsr"), ...)

S3 method for class 'lm'
coefbootstrap(object, nsim = 1000, size = floor(0.75 *
nobs(object)), replace = FALSE, prob = NULL, parallel = FALSE,
method = c("cr", "dsr"), ...)

S3 method for class 'alm'
coefbootstrap(object, nsim = 1000, size = floor(0.75 *
nobs(object)), replace = FALSE, prob = NULL, parallel = FALSE,
method = c("cr", "dsr"), ...)

Arguments

object The model estimated using either lm, or alm, or glm.

nsim Number of iterations (simulations) to run.

size A non-negative integer giving the number of items to choose (the sample size),
passed to sample function in R. If not provided and model contains ARIMA
components, this value will be selected at random on each iteration. This is only
used for method="cr".

replace Should sampling be with replacement? Also, passed to sample function in R.
Only used in method="cr".

prob A vector of probability weights for obtaining the elements of the vector being
sampled. This is passed to the sample as well. Only used with method="cr".

parallel Either a logical, specifying whether to do the calculations in parallel, or the
number, specifying the number of cores to use for the parallel calculation.

method Which bootstrap method to use. Currently two options are supported: "dsr" -
"Data Shape Replication, implemented in dsrboot; "cr" - "Case Resampling",
basic bootstrap that assumes that observations are independent (not suitable for
models with ARIMA elements).

... Parameters passed to the dsrboot function.

Details

The function applies the same model as in the provided object on a smaller sample in order to get
the estimates of parameters and capture the uncertainty about them. This is a simple implementation
of the case resampling, which assumes that the observations are independent.

Value

Class "bootstrap" is returned, which contains:

• vcov - the covariance matrix of parameters;

• coefficients - the matrix with the bootstrapped coefficients.

18 cramer

• nsim - number of runs done;

• size - the sample size used in the bootstrap;

• replace - whether the sampling was done with replacement;

• prob - a vector of probability weights used in the process;

• parallel - whether the calculations were done in parallel;

• model - the name of the model used (the name of the function);

• timeElapsed - the time that was spend on the calculations.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

alm

Examples

An example with ALM
ourModel <- alm(mpg~., mtcars, distribution="dlnorm", loss="HAM")
A fast example with 10 iterations. Use at least 100 to get better results
coefbootstrap(ourModel, nsim=10)

cramer Calculate Cramer’s V for categorical variables

Description

Function calculates Cramer’s V for two categorical variables based on the table function

Usage

cramer(x, y, use = c("na.or.complete", "complete.obs", "everything",
"all.obs"), unbiased = TRUE)

Arguments

x First categorical variable.

y Second categorical variable.

use What observations to use. See cor function for details. The only option that is
not available here is "pairwise.complete.obs".

unbiased Determines whether to calculate the biased version of Cramer’s V or the one
with the small sample correction.

dalaplace 19

Details

The function calculates Cramer’s V and also returns the associated statistics from Chi-Squared test
with the null hypothesis of independence of the two variables.

See details in the vignette "Marketing analytics with greybox": vignette("maUsingGreybox","greybox")

Value

The following list of values is returned:

• value - The value of Cramer’s V;

• statistic - The value of Chi squared statistic associated with the Cramer’s V;

• p.value - The p-value of Chi squared test associated with the Cramer’s V;

• df - The number of degrees of freedom from the test.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

Wicher Bergsma (2013), A bias-correction for Cramér’s V and Tschuprow’s T. Journal of the Ko-
rean Statistical Society, 42, pp. 323-328. doi:10.1016/j.jkss.2012.10.002.

See Also

table, tableplot, spread,mcor, association

Examples

cramer(mtcars$am, mtcars$gear)

dalaplace Asymmetric Laplace Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the Asym-
metric Laplace distribution with the location parameter mu, scale and the asymmetry parameter
alpha.

https://doi.org/10.1016/j.jkss.2012.10.002

20 dalaplace

Usage

dalaplace(q, mu = 0, scale = 1, alpha = 0.5, log = FALSE)

palaplace(q, mu = 0, scale = 1, alpha = 0.5)

qalaplace(p, mu = 0, scale = 1, alpha = 0.5)

ralaplace(n = 1, mu = 0, scale = 1, alpha = 0.5)

Arguments

q vector of quantiles.

mu vector of location parameters (means).

scale vector of scale parameters.

alpha value of asymmetry parameter. Varies from 0 to 1.

log if TRUE, then probabilities are returned in logarithms.

p vector of probabilities.

n number of observations. Should be a single number.

Details

When mu=0 and scale=1, the Laplace distribution becomes standardized. The distribution has the
following density function:

f(x) = alpha (1-alpha) / scale exp(-(x-mu)/scale (alpha - I(x<=mu))),

where I(.) is the indicator function (equal to 1 if the condition is satisfied and zero otherwise).

When alpha=0.5, then the distribution becomes Symmetric Laplace, where scale = 1/2 MAE.

This distribution function aligns with the quantile estimates of parameters (Geraci & Bottai, 2007).

Finally, both palaplace and qalaplace are returned for the lower tail of the distribution.

Value

Depending on the function, various things are returned (usually either vector or scalar):

• dalaplace returns the density function value for the provided parameters.

• palaplace returns the value of the cumulative function for the provided parameters.

• qalaplace returns quantiles of the distribution. Depending on what was provided in p, mu and
scale, this can be either a vector or a matrix, or an array.

• ralaplace returns a vector of random variables generated from the Laplace distribution. De-
pending on what was provided in mu and scale, this can be either a vector or a matrix or an
array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

dbcnorm 21

References

• Geraci Marco, Bottai Matteo (2007). Quantile regression for longitudinal data using the asym-
metric Laplace distribution. Biostatistics (2007), 8, 1, pp. 140-154 doi:10.1093/biostatistics/
kxj039

• Yu, K., & Zhang, J. (2005). A three-parameter asymmetric laplace distribution and its ex-
tension. Communications in Statistics - Theory and Methods, 34, 1867-1879. doi:10.1080/
03610920500199018

See Also

Distributions

Examples

x <- dalaplace(c(-100:100)/10, 0, 1, 0.2)
plot(x, type="l")

x <- palaplace(c(-100:100)/10, 0, 1, 0.2)
plot(x, type="l")

qalaplace(c(0.025,0.975), 0, c(1,2), c(0.2,0.3))

x <- ralaplace(1000, 0, 1, 0.2)
hist(x)

dbcnorm Box-Cox Normal Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the distribu-
tion that becomes normal after the Box-Cox transformation. Note that this is based on the original
Box-Cox paper.

Usage

dbcnorm(q, mu = 0, sigma = 1, lambda = 0, log = FALSE)

pbcnorm(q, mu = 0, sigma = 1, lambda = 0)

qbcnorm(p, mu = 0, sigma = 1, lambda = 0)

rbcnorm(n = 1, mu = 0, sigma = 1, lambda = 0)

https://doi.org/10.1093/biostatistics/kxj039
https://doi.org/10.1093/biostatistics/kxj039
https://doi.org/10.1080/03610920500199018
https://doi.org/10.1080/03610920500199018

22 dbcnorm

Arguments

q vector of quantiles.

mu vector of location parameters (means).

sigma vector of scale parameters.

lambda the value of the Box-Cox transform parameter.

log if TRUE, then probabilities are returned in logarithms.

p vector of probabilities.

n number of observations. Should be a single number.

Details

The distribution has the following density function:

f(y) = y^(lambda-1) 1/sqrt(2 pi) exp(-((y^lambda-1)/lambda -mu)^2 / (2 sigma^2))

Both pbcnorm and qbcnorm are returned for the lower tail of the distribution.

In case of lambda=0, the values of the log normal distribution are returned. In case of lambda=1,
the values of the normal distribution are returned with mu=mu+1.

All the functions are defined for non-negative values only.

Value

Depending on the function, various things are returned (usually either vector or scalar):

• dbcnorm returns the density function value for the provided parameters.

• pbcnorm returns the value of the cumulative function for the provided parameters.

• qbcnorm returns quantiles of the distribution. Depending on what was provided in p, mu and
sigma, this can be either a vector or a matrix, or an array.

• rbcnorm returns a vector of random variables generated from the bcnorm distribution. De-
pending on what was provided in mu and sigma, this can be either a vector or a matrix or an
array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Box, G. E., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statis-
tical Society. Series B (Methodological), 26(2), 211–252. Retrieved from https://www.jstor.org/stable/2984418

See Also

Distributions

detectdst 23

Examples

x <- dbcnorm(c(-1000:1000)/200, 0, 1, 1)
plot(c(-1000:1000)/200, x, type="l")

x <- pbcnorm(c(-1000:1000)/200, 0, 1, 1)
plot(c(-1000:1000)/200, x, type="l")

qbcnorm(c(0.025,0.975), 0, c(1,2), 1)

x <- rbcnorm(1000, 0, 1, 1)
hist(x)

detectdst DST and Leap year detector functions

Description

Functions to detect, when Daylight Saving Time and leap year start and finish

Usage

detectdst(object)

detectleap(object)

Arguments

object Either a zoo / xts object or a vector of dates / times in POSIXt / Date class.
Note that in order for detectdst() to work correctly, your data should not have
missing observations. Otherwise it might not be possible to locate, when DST
happens.

Details

The detectdst function detects, when the change for the DST starts and ends. It assumes that the
frequency of data is not lower than hourly. The detectleap function does similar for the leap year,
but flagging the 29th of February as a starting and to the 28th of February next year as the ending
dates.

In order for the methods to work, the object needs to be of either zoo / xts or POSIXt class and
should contain valid dates.

Value

List containing:

• start - data frame with id (number of observation) and the respective dates, when the DST /
leap year start;

• end - data frame with id and dates, when DST / leap year end.

24 determination

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

xregExpander, temporaldummy,outlierdummy

Examples

Generate matrix with monthly dummies for a zoo object
x <- as.POSIXct("2004-01-01")+0:(365*24*8)*60*60
detectdst(x)
detectleap(x)

determination Coefficients of determination

Description

Function produces coefficients of determination for the provided data

Usage

determination(xreg, bruteforce = TRUE, ...)

determ(object, ...)

Arguments

xreg Data frame or a matrix, containing the exogenous variables.
bruteforce If TRUE, then all the variables will be used for the regression construction (sink

regression). If the number of observations is smaller than the number of series,
the function will use stepwise function and select only meaningful variables. So
the reported values will be based on stepwise regressions for each variable.

... Other values passed to cor function.
object The object, for which to calculate the coefficients of determination.

Details

The function calculates coefficients of determination (aka R^2) between all the provided variables.
The higher the coefficient for a variable is, the higher the potential multicollinearity effect in the
model with the variable will be. Coefficients of determination are connected directly to Variance
Inflation Factor (VIF): VIF = 1 / (1 - determination). Arguably it is easier to interpret, because it is
restricted with (0, 1) bounds. The multicollinearity can be considered as serious, when determina-
tion > 0.9 (which corresponds to VIF > 10).

The method determ can be applied to wide variety of classes, including lm, glm and alm.

See details in the vignette "Marketing analytics with greybox": vignette("maUsingGreybox","greybox")

dfnorm 25

Value

Function returns the vector of determination coefficients.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

cor, mcor, stepwise

Examples

Simple example
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("x1","x2","x3","Noise")
determination(xreg)

dfnorm Folded Normal Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the folded
normal distribution with the location parameter mu and the scale sigma (which corresponds to
standard deviation in normal distribution).

Usage

dfnorm(q, mu = 0, sigma = 1, log = FALSE)

pfnorm(q, mu = 0, sigma = 1)

qfnorm(p, mu = 0, sigma = 1)

rfnorm(n = 1, mu = 0, sigma = 1)

Arguments

q vector of quantiles.

mu vector of location parameters (means).

sigma vector of scale parameters.

log if TRUE, then probabilities are returned in logarithms.

p vector of probabilities.

n number of observations. Should be a single number.

26 dfnorm

Details

The distribution has the following density function:

f(x) = 1/sqrt(2 pi) (exp(-(x-mu)^2 / (2 sigma^2)) + exp(-(x+mu)^2 / (2 sigma^2)))

Both pfnorm and qfnorm are returned for the lower tail of the distribution.

Value

Depending on the function, various things are returned (usually either vector or scalar):

• dfnorm returns the density function value for the provided parameters.

• pfnorm returns the value of the cumulative function for the provided parameters.

• qfnorm returns quantiles of the distribution. Depending on what was provided in p, mu and
sigma, this can be either a vector or a matrix, or an array.

• rfnorm returns a vector of random variables generated from the fnorm distribution. Depending
on what was provided in mu and sigma, this can be either a vector or a matrix or an array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Wikipedia page on folded normal distribution: https://en.wikipedia.org/wiki/Folded_
normal_distribution.

See Also

Distributions

Examples

x <- dfnorm(c(-1000:1000)/200, 0, 1)
plot(x, type="l")

x <- pfnorm(c(-1000:1000)/200, 0, 1)
plot(x, type="l")

qfnorm(c(0.025,0.975), 0, c(1,2))

x <- rfnorm(1000, 0, 1)
hist(x)

https://en.wikipedia.org/wiki/Folded_normal_distribution
https://en.wikipedia.org/wiki/Folded_normal_distribution

dgnorm 27

dgnorm The generalized normal distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the Gener-
alised Normal distribution with the location mu, a scale and a shape parameters.

Usage

dgnorm(q, mu = 0, scale = 1, shape = 1, log = FALSE)

pgnorm(q, mu = 0, scale = 1, shape = 1, lower.tail = TRUE,
log.p = FALSE)

qgnorm(p, mu = 0, scale = 1, shape = 1, lower.tail = TRUE,
log.p = FALSE)

rgnorm(n, mu = 0, scale = 1, shape = 1)

Arguments

q vector of quantiles

mu location parameter

scale scale parameter

shape shape parameter

log, log.p logical; if TRUE, probabilities p are given as log(p)

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise P [X > x]

p vector of probabilities

n number of observations

Details

A generalized normal random variable x with parameters location µ, scale s > 0 and shape β > 0
has density:

p(x) = βexp−(|x− µ|/s)β/(2sΓ(1/β)).

The mean and variance of x are µ and s2Γ(3/β)/Γ(1/β), respectively.

The function are based on the functions from gnorm package of Maryclare Griffin (package has
been abandoned since 2018).

The quantile and cumulative functions use uniform approximation for cases shape>100. This is
needed, because otherwise it is not possible to calculate the values correctly due to scale^(shape)=Inf
in R.

28 dgnorm

Author(s)

Maryclare Griffin and Ivan Svetunkov

Source

dgnorm, pgnorm, qgnorm andrgnorm are all parametrized as in Version 1 of the Generalized Nor-
mal Distribution Wikipedia page, which uses the parametrization given by in Nadarajah (2005).
The same distribution was described much earlier by Subbotin (1923) and named the exponential
power distribution by Box and Tiao (1973).

References

• Box, G. E. P. and G. C. Tiao. "Bayesian inference in Statistical Analysis." Addison-Wesley
Pub. Co., Reading, Mass (1973).

• Nadarajah, Saralees. "A generalized normal distribution." Journal of Applied Statistics 32.7
(2005): 685-694.

• Subbotin, M. T. "On the Law of Frequency of Error." Matematicheskii Sbornik 31.2 (1923):
206-301.

See Also

Distributions

Examples

Density function values for standard normal distribution
x <- dgnorm(seq(-1, 1, length.out = 100), 0, sqrt(2), 2)
plot(x, type="l")

#CDF of standard Laplace
x <- pgnorm(c(-100:100), 0, 1, 1)
plot(x, type="l")

Quantiles of S distribution
qgnorm(c(0.025,0.975), 0, 1, 0.5)

Random numbers from a distribution with shape=10000 (approximately uniform)
x <- rgnorm(1000, 0, 1, 1000)
hist(x)

https://en.wikipedia.org/wiki/Generalized_normal_distribution
https://en.wikipedia.org/wiki/Generalized_normal_distribution

Distributions 29

Distributions Distribution functions of the greybox package

Description

The greybox package implements several distribution functions. In this document, I list the main
functions and provide links to related resources.

Details

• Generalised normal distribution (with a kurtosis parameter by Nadarajah, 2005): qgnorm,
dgnorm, pgnorm, rgnorm.

• S distribution (a special case of Generalised Normal with shape=0.5): qs, ds, ps, rs.

• Laplace distribution (special case of Generalised Normal with shape=1): qlaplace, dlaplace,
plaplace, rlaplace.

• Asymmetric Laplace distribution (Yu & Zhang, 2005): qalaplace, dalaplace, palaplace, ralaplace.

• Logit Normal distribution (Mead, 1965): qlogitnorm, dlogitnorm, plogitnorm, rlogitnorm.

• Box-Cox Normal distribution (Box & Cox, 1964): qbcnorm, dbcnorm, pbcnorm, rbcnorm.

• Folded Normal distribution: qfnorm, dfnorm, pfnorm, rfnorm.

• Rectified Normal distribution: qrectnorm, drectnorm, prectnorm, rrectnorm.

• Three parameter Log Normal distribution (Sangal & Biswas, 1970): qtplnorm, dtplnorm, pt-
plnorm, rtplnorm.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.ru>

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Nadarajah, Saralees. "A generalized normal distribution." Journal of Applied Statistics 32.7
(2005): 685-694.

• Wikipedia page on Laplace distribution: https://en.wikipedia.org/wiki/Laplace_distribution.

• Yu, K., & Zhang, J. (2005). A three-parameter asymmetric laplace distribution and its ex-
tension. Communications in Statistics - Theory and Methods, 34, 1867-1879. doi:10.1080/
03610920500199018

• Mead, R. (1965). A Generalised Logit-Normal Distribution. Biometrics, 21 (3), 721–732.
doi: 10.2307/2528553

• Box, G. E., & Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statis-
tical Society. Series B (Methodological), 26(2), 211–252. Retrieved from https://www.jstor.org/stable/2984418

• Sangal, B. P., & Biswas, A. K. (1970). The 3-Parameter Distribution Applications in Hydrol-
ogy. Water Resources Research, 6(2), 505–515. doi:10.1029/WR006i002p00505

https://en.wikipedia.org/wiki/Laplace_distribution
https://doi.org/10.1080/03610920500199018
https://doi.org/10.1080/03610920500199018
https://doi.org/10.1029/WR006i002p00505

30 dlaplace

See Also

Distributions from the stats package.

dlaplace Laplace Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the Laplace
distribution with the location parameter mu and the scale parameter (which is equal to Mean Abso-
lute Error, aka Mean Absolute Deviation).

Usage

dlaplace(q, mu = 0, scale = 1, log = FALSE)

plaplace(q, mu = 0, scale = 1)

qlaplace(p, mu = 0, scale = 1)

rlaplace(n = 1, mu = 0, scale = 1)

Arguments

q vector of quantiles.

mu vector of location parameters (means).

scale vector of mean absolute errors.

log if TRUE, then probabilities are returned in logarithms.

p vector of probabilities.

n number of observations. Should be a single number.

Details

When mu=0 and scale=1, the Laplace distribution becomes standardized. The distribution has the
following density function:

f(x) = 1/(2 scale) exp(-abs(x-mu) / scale)

Both plaplace and qlaplace are returned for the lower tail of the distribution.

Value

Depending on the function, various things are returned (usually either vector or scalar):

• dlaplace returns the density function value for the provided parameters.

• plaplace returns the value of the cumulative function for the provided parameters.

dlogitnorm 31

• qlaplace returns quantiles of the distribution. Depending on what was provided in p, mu and
scale, this can be either a vector or a matrix, or an array.

• rlaplace returns a vector of random variables generated from the Laplace distribution. De-
pending on what was provided in mu and scale, this can be either a vector or a matrix or an
array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Wikipedia page on Laplace distribution: https://en.wikipedia.org/wiki/Laplace_distribution.

See Also

Distributions

Examples

x <- dlaplace(c(-100:100)/10, 0, 1)
plot(x, type="l")

x <- plaplace(c(-100:100)/10, 0, 1)
plot(x, type="l")

qlaplace(c(0.025,0.975), 0, c(1,2))

x <- rlaplace(1000, 0, 1)
hist(x)

dlogitnorm Logit Normal Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the distribu-
tion that becomes normal after the Logit transformation.

Usage

dlogitnorm(q, mu = 0, sigma = 1, log = FALSE)

plogitnorm(q, mu = 0, sigma = 1)

qlogitnorm(p, mu = 0, sigma = 1)

rlogitnorm(n = 1, mu = 0, sigma = 1)

https://en.wikipedia.org/wiki/Laplace_distribution

32 dlogitnorm

Arguments

q vector of quantiles.

mu vector of location parameters (means).

sigma vector of scale parameters.

log if TRUE, then probabilities are returned in logarithms.

p vector of probabilities.

n number of observations. Should be a single number.

Details

The distribution has the following density function:

f(y) = 1/(sqrt(2 pi) y (1-y)) exp(-(logit(y) -mu)^2 / (2 sigma^2))

where y is in (0, 1) and logit(y) =log(y/(1-y)).

Both plogitnorm and qlogitnorm are returned for the lower tail of the distribution.

All the functions are defined for the values between 0 and 1.

Value

Depending on the function, various things are returned (usually either vector or scalar):

• dlogitnorm returns the density function value for the provided parameters.

• plogitnorm returns the value of the cumulative function for the provided parameters.

• qlogitnorm returns quantiles of the distribution. Depending on what was provided in p, mu
and sigma, this can be either a vector or a matrix, or an array.

• rlogitnorm returns a vector of random variables generated from the logitnorm distribution.
Depending on what was provided in mu and sigma, this can be either a vector or a matrix or
an array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Mead, R. (1965). A Generalised Logit-Normal Distribution. Biometrics, 21 (3), 721–732.
doi: 10.2307/2528553

See Also

Distributions

drectnorm 33

Examples

x <- dlogitnorm(c(-1000:1000)/200, 0, 1)
plot(c(-1000:1000)/200, x, type="l")

x <- plogitnorm(c(-1000:1000)/200, 0, 1)
plot(c(-1000:1000)/200, x, type="l")

qlogitnorm(c(0.025,0.975), 0, c(1,2))

x <- rlogitnorm(1000, 0, 1)
hist(x)

drectnorm Rectified Normal Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the Rectified
Normal distribution.

Usage

drectnorm(q, mu = 0, sigma = 1, log = FALSE)

prectnorm(q, mu = 0, sigma = 1)

qrectnorm(p, mu = 0, sigma = 1)

rrectnorm(n = 1, mu = 0, sigma = 1)

Arguments

q vector of quantiles.

mu vector of location parameters (means).

sigma vector of scale parameters.

log if TRUE, then probabilities are returned in logarithms.

p vector of probabilities.

n number of observations. Should be a single number.

Details

If x~N(mu, sigma^2) then y = max(0, x) follows Rectified Normal distribution: y~RectN(mu,
sigma^2), which can be written as:

f_y = 1(x<=0) F_x(mu, sigma) + 1(x>0) f_x(x, mu, sigma),

34 ds

where F_x is the cumulative distribution function and f_x is the probability density function of
normal distribution.

Both prectnorm and qrectnorm are returned for the lower tail of the distribution.

All the functions are defined for non-negative values only.

Value

Depending on the function, various things are returned (usually either vector or scalar):

• drectnorm returns the density function value for the provided parameters.

• prectnorm returns the value of the cumulative function for the provided parameters.

• qrectnorm returns quantiles of the distribution. Depending on what was provided in p, mu and
sigma, this can be either a vector or a matrix, or an array.

• rrectnorm returns a vector of random variables generated from the RectN distribution. De-
pending on what was provided in mu and sigma, this can be either a vector or a matrix or an
array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

Distributions

Examples

x <- drectnorm(c(-1000:1000)/200, 0, 1)
plot(c(-1000:1000)/200, x, type="l")

x <- prectnorm(c(-1000:1000)/200, 0, 1)
plot(c(-1000:1000)/200, x, type="l")

qrectnorm(c(0.025,0.975), 0, c(1,2))

x <- rrectnorm(1000, 0, 1)
hist(x)

ds S Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the S distri-
bution with the location parameter mu and a scaling parameter scale.

ds 35

Usage

ds(q, mu = 0, scale = 1, log = FALSE)

ps(q, mu = 0, scale = 1)

qs(p, mu = 0, scale = 1)

rs(n = 1, mu = 0, scale = 1)

Arguments

q vector of quantiles.

mu vector of location parameters (means).

scale vector of scaling parameter (which are equal to ham/2).

log if TRUE, then probabilities are returned in logarithms.

p vector of probabilities.

n number of observations. Should be a single number.

Details

When mu=0 and ham=2, the S distribution becomes standardized with scale=1 (this is because
scale=ham/2). The distribution has the following density function:

f(x) = 1/(4 scale^2) exp(-sqrt(abs(x-mu)) / scale)

The S distribution has fat tails and large excess.

Both ps and qs are returned for the lower tail of the distribution.

Value

Depending on the function, various things are returned (usually either vector or scalar):

• ds returns the density function value for the provided parameters.

• ps returns the value of the cumulative function for the provided parameters.

• qs returns quantiles of the distribution. Depending on what was provided in p, mu and scale,
this can be either a vector or a matrix, or an array.

• rs returns a vector of random variables generated from the S distribution. Depending on what
was provided in mu and scale, this can be either a vector or a matrix or an array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

Distributions

36 dsrboot

Examples

x <- ds(c(-1000:1000)/10, 0, 1)
plot(x, type="l")

x <- ps(c(-1000:1000)/10, 0, 1)
plot(x, type="l")

qs(c(0.025,0.975), 0, 1)

x <- rs(1000, 0, 1)
hist(x)

dsrboot Data Shape Replication Bootstrap

Description

The function implements a bootstrap inspired by the Maximum Entropy Bootstrap

Usage

dsrboot(y, nsim = 100, intermittent = FALSE, type = c("multiplicative",
"additive"), kind = c("nonparametric", "parametric"), lag = frequency(y),
sd = NULL, scale = TRUE)

S3 method for class 'dsrboot'
plot(x, sorted = FALSE, legend = TRUE, ...)

Arguments

y The original time series

nsim Number of iterations (simulations) to run.

intermittent Whether to treat the demand as intermittent or not.

type Type of bootstrap to use. "additive" means that the randomness is added,
while "multiplicative" implies the multiplication.

kind A kind of the bootstrap to do: nonparametric or parametric. The latter relies
on the normal distribution, while the former uses the empirical distribution of
differences of the data.

lag The lag to use in the calculation of differences. Should be 1 for non-seasonal
data.

sd Standard deviation to use in the normal distribution. Estimated as mean absolute
differences of the data if omitted.

scale Whether or not to do scaling of time series to the bootstrapped ones to have
similar variance to the original data.

dsrboot 37

x The object of the class dsrboot.

sorted Whether the sorted (TRUE) or the original (FALSE) data should be used.

legend Whether to produce the legend on the plot.

... Other parameters passed to the plot function.

Details

The "Data Shape Replication" bootstrap reproduces the shape of the original time series by creating
randomness around it. It is done in the following steps:

1. Sort the data in the ascending order, recording the original order of elements; 2. Take first
differences of the original data and sort them; 3. Generate random numbers from the uniform dis-
tribution between 0 and 1; 4. Get the smoothed differences that correspond to the random numbers
(randomly extract empirical quantiles). This way we take the empirical density into account when
selecting the differences; 5. Add the random differences to the sorted series from (1) to get a new
time series; 6. Sort the new time series in the ascending order; 7. Reorder (6) based on the initial
order of series; 8. Centre the data around the original series; 9. Scale the data to make sure that the
variance is constant over time.

If the multiplicative bootstrap is used then logarithms of the sorted series are used and at the very
end, the exponent of the resulting data is taken. This way the discrepancies in the data have similar
scale no matter what the level of the original series is. In case of the additive bootstrap, the trended
series will be noisier when the level of series is low.

Value

The function returns:

• call - the call that was used originally;

• data - the original data used in the function;

• boot - the matrix with the new series in columns and observations in rows.

• type - type of the bootstrap used.

• sd - the value of sd used in case of parameteric bootstrap.

• scale - whether the scaling was needed.

• smooth - the smoothed ordered actual data.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

Vinod HD, López-de-Lacalle J (2009). "Maximum Entropy Bootstrap for Time Series: The meboot
R Package." Journal of Statistical Software, 29(5), 1–19. doi:10.18637/jss.v029.i05.

Examples

plot(dsrboot(AirPassengers))

https://doi.org/10.18637/jss.v029.i05

38 dtplnorm

dtplnorm Three Parameter Log Normal Distribution

Description

Density, cumulative distribution, quantile functions and random number generation for the 3 pa-
rameter log normal distribution with the location parameter mu, scale sigma (which corresponds to
standard deviation in normal distribution) and shifting parameter shift.

Usage

dtplnorm(q, mu = 0, sigma = 1, shift = 0, log = FALSE)

ptplnorm(q, mu = 0, sigma = 1, shift = 0)

qtplnorm(p, mu = 0, sigma = 1, shift = 0)

rtplnorm(n = 1, mu = 0, sigma = 1, shift = 0)

Arguments

q vector of quantiles.

mu vector of location parameters (means).

sigma vector of scale parameters.

shift vector of shift parameters.

log if TRUE, then probabilities are returned in logarithms.

p vector of probabilities.

n number of observations. Should be a single number.

Details

The distribution has the following density function:

f(x) = 1/(x-a) 1/sqrt(2 pi) exp(-(log(x-a)-mu)^2 / (2 sigma^2))

Both ptplnorm and qtplnorm are returned for the lower tail of the distribution.

The function is based on the lnorm functions from stats package, introducing the shift parameter.

Value

Depending on the function, various things are returned (usually either vector or scalar):

• dtplnorm returns the density function value for the provided parameters.

• ptplnorm returns the value of the cumulative function for the provided parameters.

• qtplnorm returns quantiles of the distribution. Depending on what was provided in p, mu and
sigma, this can be either a vector or a matrix, or an array.

errorType 39

• rtplnorm returns a vector of random variables generated from the tplnorm distribution. De-
pending on what was provided in mu and sigma, this can be either a vector or a matrix or an
array.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Sangal, B. P., & Biswas, A. K. (1970). The 3-Parameter Distribution Applications in Hydrol-
ogy. Water Resources Research, 6(2), 505–515. doi:10.1029/WR006i002p00505

See Also

Distributions

Examples

x <- dtplnorm(c(-1000:1000)/200, 0, 1, 1)
plot(c(-1000:1000)/200, x, type="l")

x <- ptplnorm(c(-1000:1000)/200, 0, 1, 1)
plot(c(-1000:1000)/200, x, type="l")

qtplnorm(c(0.025,0.975), 0, c(1,2), 1)

x <- rtplnorm(1000, 0, 1, 1)
hist(x)

errorType Functions that extracts type of error from the model

Description

This function allows extracting error type from any model.

Usage

errorType(object, ...)

Arguments

object Model estimated using one of the functions of smooth package.

... Currently nothing is accepted via ellipsis.

https://doi.org/10.1029/WR006i002p00505

40 extractScale

Details

errorType extracts the type of error from the model (either additive or multiplicative).

Value

Either "A" for additive error or "M" for multiplicative. All the other functions return strings of
character.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

Examples

xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
ourModel <- alm(y~x1+x2,as.data.frame(xreg))

errorType(ourModel)

extractScale Functions to extract scale and standard error from a model

Description

Functions extract scale and the standard error of the residuals. Mainly needed for the work with the
model estimated via sm.

Usage

extractScale(object, ...)

Default S3 method:
extractScale(object, ...)

S3 method for class 'greybox'
extractScale(object, ...)

extractSigma(object, ...)

Default S3 method:
extractSigma(object, ...)

S3 method for class 'greybox'
extractSigma(object, ...)

extractScale 41

Arguments

object The model estimated using lm / alm / etc.

... Other parameters (currently nothing).

Details

In case of a simpler model, the functions will return the scalar using sigma() method. If the scale
model was estimated, extractScale() and extractSigma() will return the conditional scale and
the conditional standard error of the residuals respectively.

Value

One of the two is returned, depending on the type of estimated model:

• Scalar from sigma() method if the variance is assumed to be constant.

• Vector of values if the scale model was estimated

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

sm

Examples

Generate the data
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+sqrt(exp(0.8+0.2*xreg[,1]))*rnorm(100,0,1),

xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

Estimate the location and scale model
ourModel <- alm(y~., xreg, scale=~x1+x2)

Extract scale
extractScale(ourModel)
Extract standard error
extractSigma(ourModel)

42 graphmaker

graphmaker Linear graph construction function

Description

The function makes a standard linear graph using the provided actuals and forecasts.

Usage

graphmaker(actuals, forecast, fitted = NULL, lower = NULL, upper = NULL,
level = NULL, legend = TRUE, vline = TRUE, parReset = TRUE, ...)

Arguments

actuals The vector of actual values

forecast The vector of forecasts. Should be ts object that starts at the end of fitted
values.

fitted The vector of fitted values.

lower The vector of lower bound values of a prediction interval. Should be ts object
that start at the end of fitted values.

upper The vector of upper bound values of a prediction interval. Should be ts object
that start at the end of fitted values.

level The width of the prediction interval.

legend If TRUE, the legend is drawn.

vline Whether to draw the vertical line, splitting the in-sample and the holdout sample.

parReset Whether to reset par() after plotting things or not. If FALSE then you can add
elements to the plot (e.g. additional lines).

... Other parameters passed to plot() function.

Details

Function uses the provided data to construct a linear graph. It is strongly advised to use ts objects
to define the start of each of the vectors. Otherwise the data may be plotted incorrectly. The colours
can be changed by defining a different palette via the palette() function. The function then would
use colours 1 - 6 in the palette.

Value

Function does not return anything.

Author(s)

Ivan Svetunkov

greybox 43

See Also

ts

Examples

xreg <- cbind(y=rnorm(100,100,10),x=rnorm(100,10,10))
almModel <- alm(y~x, xreg, subset=c(1:90))
values <- predict(almModel, newdata=xreg[-c(1:90),], interval="prediction")

graphmaker(xreg[,1],values$mean,fitted(values))
graphmaker(xreg[,1],values$mean,fitted(values),legend=FALSE)
graphmaker(xreg[,1],values$mean,fitted(values),legend=FALSE,lower=values$lower,upper=values$upper)

Produce the necessary ts objects from an arbitrary vectors
actuals <- ts(c(1:10), start=c(2000,1), frequency=4)
forecast <- ts(c(11:15),start=end(actuals)[1]+end(actuals)[2]*deltat(actuals),

frequency=frequency(actuals))
graphmaker(actuals,forecast)

This should work as well
graphmaker(c(1:10),c(11:15))

This way you can add additional elements to the plot
graphmaker(c(1:10),c(11:15), parReset=FALSE)
points(c(1:15))
But don't forget to do dev.off() in order to reset the plotting area afterwards

greybox Grey box

Description

Toolbox for working with univariate models for purposes of analysis and forecasting

Details

Package: greybox
Type: Package
Date: 2018-02-13 - Inf
License: GPL-2

The following functions are included in the package:

• AICc and BICc - AIC / BIC corrected for the sample size.

• pointLik - point likelihood of the function.

44 greybox

• pAIC, pAICc, pBIC, pBICc - point versions of respective information criteria.

• coefbootstrap - Method that uses a simple implementation of the case resampling to get boot-
strapped estimates of parameters of the model.

• dsrboot - Bootstrap inspired by the meboot package, that creates bootstraped series based on
the provided one.

• determination - Coefficients of determination between different exogenous variables.

• temporaldummy - Matrix with seasonal dummy variables.

• outlierdummy - Matrix with dummies for outliers.

• alm - Advanced Linear Model - regression, estimated using likelihood with specified distribu-
tion (e.g. Laplace or Chi-Squared).

• sm - Scale Model - Regression model for scale of distribution (e.g. for Variance of Normal
distribution). Requires an lm() or alm() model.

• stepwise - Stepwise based on information criteria and partial correlations. Efficient and fast.

• xregExpander - Function that expands the provided data into the data with lags and leads.

• xregTransformer - Function produces mathematical transformations of the variables, such as
taking logarithms, square roots etc.

• xregMultiplier - Function produces cross-products of the matrix of the provided variables.

• lmCombine - Function combines lm models from the estimated based on information criteria
weights.

• lmDynamic - Dynamic regression based on point AIC.

• ro - Rolling origin evaluation.

• Distributions - document explaining the distribution functions of the greybox package.

• spread - function that produces scatterplots / boxplots / tableplots, depending on the types of
variables.

• assoc - function that calculates measures of association, depending on the types of variables.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

stepwise, lmCombine

Examples

xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

stepwise(xreg)

hm 45

hm Half moment of a distribution and its derivatives.

Description

hm() function estimates half moment from some predefined constant C. ham() estimates the Half
Absolute Moment. asymmetry() function returns Asymmetry coefficient, while extremity() re-
turns the coefficient of Extremity, both based on hm(). Finally, cextremity() returns the Complex
Extremity coefficient, based on hm().

Usage

hm(x, C = mean(x, na.rm = TRUE), ...)

ham(x, C = mean(x, na.rm = TRUE), ...)

asymmetry(x, C = mean(x, na.rm = TRUE), ...)

extremity(x, C = mean(x, na.rm = TRUE), ...)

cextremity(x, C = mean(x, na.rm = TRUE), ...)

Arguments

x A variable based on which HM is estimated.

C Centring parameter.

... Other parameters passed to mean function.

Details

NA values of x are excluded on the first step of calculation.

Value

A complex variable is returned for the hm() and cextremity() functions, and real values are re-
turned for ham(), asymmetry() and extremity().

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov I., Kourentzes N., Svetunkov S. "Half Central Moment for Data Analysis". Work-
ing Paper of Department of Management Science, Lancaster University, 2023:3, 1–21.

46 implant

Examples

x <- rnorm(100,0,1)
hm(x)
ham(x)
asymmetry(x)
extremity(x)
cextremity(x)

implant Implant the scale model in the location model

Description

The function implants the scale model into the location model. It currently works with alm / adam
and sm() method.

Usage

implant(location, scale, ...)

Arguments

location Model estimated using either alm or adam.

scale The scale model, estimate with sm method.

... Currently nothing. Implemented for flexibility.

Details

The function is needed in order to treat the scale of model correctly in the methods like forecast().

Value

The model of the same class as the location model, but with scale from the estimated model via
sm(). This is needed to produce appropriate forecasts in case of scale model and to take into
account the correct number of estimated parameters.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

alm, adam, sm

is.greybox 47

Examples

xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+sqrt(exp(0.8+0.2*xreg[,1]))*rnorm(100,0,1),

xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

Estimate the location model
ourModel <- alm(y~.,xreg)
Estimate the scale model
ourScale <- sm(ourModel,formula=~x1+x2)
Implant scale into location
ourModel <- implant(ourModel, ourScale)

is.greybox Greybox classes checkers

Description

Functions to check if an object is of the specified class

Usage

is.greybox(x)

is.alm(x)

is.occurrence(x)

is.greyboxC(x)

is.greyboxD(x)

is.rollingOrigin(x)

is.rmc(x)

is.scale(x)

Arguments

x The object to check.

Details

The list of functions includes:

• is.greybox() tests if the object was produced by a greybox function (e.g. alm / stepwise /
lmCombine / lmDynamic);

48 lmCombine

• is.alm() tests if the object was produced by alm() function;

• is.occurrence() tests if an occurrence part of the model was produced;

• is.greyboxC() tests if the object was produced by lmCombine() function;

• is.greyboxD() tests if the object was produced by lmDynamic() function;

• is.rmc() tests if the object was produced by rmc() function;

• is.rollingOrigin() tests if the object was produced by ro() function;

• is.scale() tests if the object is of the class "scale" (produced by alm or sm in case of het-
eroscedastic model);

Value

TRUE if this is the specified class and FALSE otherwise.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

Examples

xreg <- cbind(rlaplace(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rlaplace(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

ourModel <- alm(y~x1+x2, xreg, distribution="dnorm")

is.alm(ourModel)
is.greybox(ourModel)
is.greyboxC(ourModel)
is.greyboxD(ourModel)

lmCombine Combine regressions based on information criteria

Description

Function combines parameters of linear regressions of the first variable on all the other provided
data.

Usage

lmCombine(data, ic = c("AICc", "AIC", "BIC", "BICc"), bruteforce = FALSE,
silent = TRUE, formula = NULL, subset = NULL,
distribution = c("dnorm", "dlaplace", "ds", "dgnorm", "dlogis", "dt",
"dalaplace", "dlnorm", "dllaplace", "dls", "dlgnorm", "dbcnorm", "dinvgauss",
"dgamma", "dexp", "dfnorm", "drectnorm", "dpois", "dnbinom", "dbeta",
"dlogitnorm", "plogis", "pnorm"), parallel = FALSE, ...)

lmCombine 49

Arguments

data Data frame containing dependent variable in the first column and the others in
the rest.

ic Information criterion to use.
bruteforce If TRUE, then all the possible models are generated and combined. Otherwise

the best model is found and then models around that one are produced and then
combined.

silent If FALSE, then nothing is silent, everything is printed out. TRUE means that
nothing is produced.

formula If provided, then the selection will be done from the listed variables in the for-
mula after all the necessary transformations.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

distribution Distribution to pass to alm(). See alm for details.
parallel If TRUE, then the model fitting is done in parallel. WARNING! Packages foreach

and either doMC (Linux and Mac only) or doParallel are needed in order to run
the function in parallel.

... Other parameters passed to alm().

Details

The algorithm uses alm() to fit different models and then combines the models based on the selected
IC. The parameters are combined so that if they are not present in some of models, it is assumed
that they are equal to zero. Thus, there is a shrinkage effect in the combination.

Some details and examples of application are also given in the vignette "Greybox": vignette("greybox","greybox")

Value

Function returns model - the final model of the class "greyboxC". The list of variables:

• coefficients - combined parameters of the model,
• vcov - combined covariance matrix of the model,
• fitted - the fitted values,
• residuals - residual of the model,
• distribution - distribution used in the estimation,
• logLik - combined log-likelihood of the model,
• IC - the values of the combined information criterion,
• ICType - the type of information criterion used,
• df.residual - number of degrees of freedom of the residuals of the combined model,
• df - number of degrees of freedom of the combined model,
• importance - importance of the parameters,
• combination - the table, indicating which variables were used in every model construction and

what were the weights for each model,
• timeElapsed - the time elapsed for the estimation of the model.

50 lmCombine

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Burnham Kenneth P. and Anderson David R. (2002). Model Selection and Multimodel In-
ference. A Practical Information-Theoretic Approach. Springer-Verlag New York. DOI:
[10.1007/b97636](http://dx.doi.org/10.1007/b97636).

• McQuarrie, A. D. (1999). A small-sample correction for the Schwarz SIC model selection
criterion. Statistics & Probability Letters, 44(1), 79–86. [10.1016/S0167-7152(98)00294-
6](https://doi.org/10.1016/S0167-7152(98)00294-6).

See Also

step, xregExpander,stepwise

Examples

Simple example
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
inSample <- xreg[1:80,]
outSample <- xreg[-c(1:80),]
Combine all the possible models
ourModel <- lmCombine(inSample,bruteforce=TRUE)
predict(ourModel,outSample)
plot(predict(ourModel,outSample))

Fat regression example
xreg <- matrix(rnorm(5000,10,3),50,100)
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(50,0,3),xreg,rnorm(50,300,10))
colnames(xreg) <- c("y",paste0("x",c(1:100)),"Noise")
inSample <- xreg[1:40,]
outSample <- xreg[-c(1:40),]
Combine only the models close to the optimal
ourModel <- lmCombine(inSample, ic="BICc",bruteforce=FALSE)
summary(ourModel)
plot(predict(ourModel, outSample))

Combine in parallel - should increase speed in case of big data
Not run: ourModel <- lmCombine(inSample, ic="BICc", bruteforce=TRUE, parallel=TRUE)
summary(ourModel)
plot(predict(ourModel, outSample))
End(Not run)

lmDynamic 51

lmDynamic Combine regressions based on point information criteria

Description

Function combines parameters of linear regressions of the first variable on all the other provided
data using pAIC weights. This is an extension of the lmCombine function, which relies upon the
idea that the combination weights might change over time.

Usage

lmDynamic(data, ic = c("AICc", "AIC", "BIC", "BICc"), bruteforce = FALSE,
silent = TRUE, formula = NULL, subset = NULL,
distribution = c("dnorm", "dlaplace", "ds", "dgnorm", "dlogis", "dt",
"dalaplace", "dlnorm", "dllaplace", "dls", "dlgnorm", "dbcnorm", "dfnorm",
"dinvgauss", "dgamma", "dpois", "dnbinom", "dlogitnorm", "plogis", "pnorm"),
parallel = FALSE, lowess = TRUE, f = NULL, ...)

Arguments

data Data frame containing dependent variable in the first column and the others in
the rest.

ic Information criterion to use.

bruteforce If TRUE, then all the possible models are generated and combined. Otherwise
the best model is found and then models around that one are produced and then
combined.

silent If FALSE, then nothing is silent, everything is printed out. TRUE means that
nothing is produced.

formula If provided, then the selection will be done from the listed variables in the for-
mula after all the necessary transformations.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

distribution Distribution to pass to alm(). See alm for details.

parallel If TRUE, then the model fitting is done in parallel. WARNING! Packages foreach
and either doMC (Linux and Mac only) or doParallel are needed in order to run
the function in parallel.

lowess Logical defining, whether LOWESS should be used to smooth the dynamic
weights. By default it is TRUE.

f the smoother span for LOWESS. This gives the proportion of points in the plot
which influence the smooth at each value. Larger values give more smoothness.
If NULL the parameter will be optimised by minimising ic.

... Other parameters passed to alm().

52 lmDynamic

Details

The algorithm uses alm() to fit different models and then combines the models based on the selected
point IC. The combination weights are calculated for each observation based on the point IC and
then smoothed via LOWESS if the respective parameter (lowess) is set to TRUE.

Some details and examples of application are also given in the vignette "Greybox": vignette("greybox","greybox")

Value

Function returns model - the final model of the class "greyboxD", which includes time varying
parameters and dynamic importance of each variable. The list of variables:

• coefficients - the mean (over time) parameters of the model,
• vcov - the combined covariance matrix of the model,
• fitted - the fitted values,
• residuals - the residuals of the model,
• distribution - the distribution used in the estimation,
• logLik - the mean (over time) log-likelihood of the model,
• IC - dynamic values of the information criterion (pIC),
• ICType - the type of information criterion used,
• df.residual - mean number of degrees of freedom of the residuals of the model,
• df - mean number of degrees of freedom of the model,
• importance - dynamic importance of the parameters,
• call - call used in the function,
• rank - rank of the combined model,
• data - the data used in the model,
• mu - the location value of the distribution,
• scale - the scale parameter if alm() was used,
• coefficientsDynamic - table with parameters of the model, varying over the time,
• df.residualDynamic - dynamic df.residual,
• dfDynamic - dynamic df,
• weights - the dynamic weights for each model under consideration,
• timeElapsed - the time elapsed for the estimation of the model.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Burnham Kenneth P. and Anderson David R. (2002). Model Selection and Multimodel In-
ference. A Practical Information-Theoretic Approach. Springer-Verlag New York. DOI:
[10.1007/b97636](http://dx.doi.org/10.1007/b97636).

• McQuarrie, A. D. (1999). A small-sample correction for the Schwarz SIC model selection
criterion. Statistics & Probability Letters, 44(1), 79–86. [10.1016/S0167-7152(98)00294-
6](https://doi.org/10.1016/S0167-7152(98)00294-6).

mcor 53

See Also

stepwise, lmCombine

Examples

Simple example
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
inSample <- xreg[1:80,]
outSample <- xreg[-c(1:80),]
Combine all the possible models
ourModel <- lmDynamic(inSample,bruteforce=TRUE)
predict(ourModel,outSample)
plot(predict(ourModel,outSample))

mcor Multiple correlation

Description

Function calculates multiple correlation between y and x, constructing a linear regression model

Usage

mcor(x, y, use = c("na.or.complete", "complete.obs", "everything",
"all.obs"))

Arguments

x Either data.frame or a matrix

y The numerical variable.

use What observations to use. See cor function for details. The only option that is
not available here is "pairwise.complete.obs".

Details

This is based on the linear regression model with the set of variables in x. The returned value is just
a coefficient of multiple correlation from regression, the F-statistics of the model (thus testing the
null hypothesis that all the parameters are equal to zero), the associated p-value and the degrees of
freedom.

See details in the vignette "Marketing analytics with greybox": vignette("maUsingGreybox","greybox")

54 ME

Value

The following list of values is returned:

• value - The value of the coefficient;

• statistic - The value of F-statistics associated with the parameter;

• p.value - The p-value of F-statistics associated with the parameter;

• df.residual - The number of degrees of freedom for the residuals;

• df - The number of degrees of freedom for the data.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

table, tableplot, spread,cramer, association

Examples

mcor(mtcars$am, mtcars$mpg)

ME Error measures

Description

Functions allow to calculate different types of error metrics for point and interval forecasts:

1. ME - Mean Error,

2. MAE - Mean Absolute Error,

3. MSE - Mean Squared Error,

4. MRE - Mean Root Error (Kourentzes, 2014),

5. MIS - Mean Interval Score (Gneiting & Raftery, 2007),

6. MPE - Mean Percentage Error,

7. MAPE - Mean Absolute Percentage Error (See Svetunkov, 2017 for the critique),

8. MASE - Mean Absolute Scaled Error (Hyndman & Koehler, 2006),

9. RMSSE - Root Mean Squared Scaled Error (used in M5 Competition),

10. SAME - Scaled Absolute Mean Error (similar to MASE, but measures bias),

11. rMAE - Relative Mean Absolute Error (Davydenko & Fildes, 2013),

12. rRMSE - Relative Root Mean Squared Error,

13. rAME - Relative Absolute Mean Error,

14. rMIS - Relative Mean Interval Score,

ME 55

15. sMSE - Scaled Mean Squared Error (Petropoulos & Kourentzes, 2015),

16. sPIS- Scaled Periods-In-Stock (Wallstrom & Segerstedt, 2010),

17. sCE - Scaled Cumulative Error,

18. sMIS - Scaled Mean Interval Score,

19. GMRAE - Geometric Mean Relative Absolute Error.

Usage

ME(holdout, forecast, na.rm = TRUE)

MAE(holdout, forecast, na.rm = TRUE)

MSE(holdout, forecast, na.rm = TRUE)

MRE(holdout, forecast, na.rm = TRUE)

MIS(holdout, lower, upper, level = 0.95, na.rm = TRUE)

MPE(holdout, forecast, na.rm = TRUE)

MAPE(holdout, forecast, na.rm = TRUE)

MASE(holdout, forecast, scale, na.rm = TRUE)

RMSSE(holdout, forecast, scale, na.rm = TRUE)

rMAE(holdout, forecast, benchmark, na.rm = TRUE)

rRMSE(holdout, forecast, benchmark, na.rm = TRUE)

rAME(holdout, forecast, benchmark, na.rm = TRUE)

rMIS(holdout, lower, upper, benchmarkLower, benchmarkUpper, level = 0.95,
na.rm = TRUE)

sMSE(holdout, forecast, scale, na.rm = TRUE)

sPIS(holdout, forecast, scale, na.rm = TRUE)

sCE(holdout, forecast, scale, na.rm = TRUE)

sMIS(holdout, lower, upper, scale, level = 0.95, na.rm = TRUE)

GMRAE(holdout, forecast, benchmark, na.rm = TRUE)

SAME(holdout, forecast, scale, na.rm = TRUE)

56 ME

Arguments

holdout The vector or matrix of holdout values.

forecast The vector or matrix of forecasts values.

na.rm Logical, defining whether to remove the NAs from the provided data or not.

lower The lower bound of the prediction interval.

upper The upper bound of the prediction interval.

level The confidence level of the constructed interval.

scale The value that should be used in the denominator of MASE. Can be anything but
advised values are: mean absolute deviation of in-sample one step ahead Naive
error or mean absolute value of the in-sample actuals.

benchmark The vector or matrix of the forecasts of the benchmark model.

benchmarkLower The lower bound of the prediction interval of the benchmark model.

benchmarkUpper The upper bound of the prediction interval of the benchmark model.

Details

In case of sMSE, scale needs to be a squared value. Typical one – squared mean value of in-sample
actuals.

If all the measures are needed, then measures function can help.

There are several other measures, see details of pinball and hm.

Value

All the functions return the scalar value.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Kourentzes N. (2014). The Bias Coefficient: a new metric for forecast bias https://kourentzes.
com/forecasting/2014/12/17/the-bias-coefficient-a-new-metric-for-forecast-bias/

• Svetunkov, I. (2017). Naughty APEs and the quest for the holy grail. https://openforecast.
org/2017/07/29/naughty-apes-and-the-quest-for-the-holy-grail/

• Fildes R. (1992). The evaluation of extrapolative forecasting methods. International Journal
of Forecasting, 8, pp.81-98.

• Hyndman R.J., Koehler A.B. (2006). Another look at measures of forecast accuracy. Interna-
tional Journal of Forecasting, 22, pp.679-688.

• Petropoulos F., Kourentzes N. (2015). Forecast combinations for intermittent demand. Journal
of the Operational Research Society, 66, pp.914-924.

• Wallstrom P., Segerstedt A. (2010). Evaluation of forecasting error measurements and tech-
niques for intermittent demand. International Journal of Production Economics, 128, pp.625-
636.

https://kourentzes.com/forecasting/2014/12/17/the-bias-coefficient-a-new-metric-for-forecast-bias/
https://kourentzes.com/forecasting/2014/12/17/the-bias-coefficient-a-new-metric-for-forecast-bias/
https://openforecast.org/2017/07/29/naughty-apes-and-the-quest-for-the-holy-grail/
https://openforecast.org/2017/07/29/naughty-apes-and-the-quest-for-the-holy-grail/

ME 57

• Davydenko, A., Fildes, R. (2013). Measuring Forecasting Accuracy: The Case Of Judgmental
Adjustments To Sku-Level Demand Forecasts. International Journal of Forecasting, 29(3),
510-522. doi:10.1016/j.ijforecast.2012.09.002

• Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and esti-
mation. Journal of the American Statistical Association, 102(477), 359–378. doi:10.1198/
016214506000001437

See Also

pinball, hm, measures

Examples

y <- rnorm(100,10,2)
testForecast <- rep(mean(y[1:90]),10)

MAE(y[91:100],testForecast)
MSE(y[91:100],testForecast)

MPE(y[91:100],testForecast)
MAPE(y[91:100],testForecast)

Measures from Petropoulos & Kourentzes (2015)
MASE(y[91:100],testForecast,mean(abs(y[1:90])))
sMSE(y[91:100],testForecast,mean(abs(y[1:90]))^2)
sPIS(y[91:100],testForecast,mean(abs(y[1:90])))
sCE(y[91:100],testForecast,mean(abs(y[1:90])))

Original MASE from Hyndman & Koehler (2006)
MASE(y[91:100],testForecast,mean(abs(diff(y[1:90]))))

testForecast2 <- rep(y[91],10)
Relative measures, from and inspired by Davydenko & Fildes (2013)
rMAE(y[91:100],testForecast2,testForecast)
rRMSE(y[91:100],testForecast2,testForecast)
rAME(y[91:100],testForecast2,testForecast)
GMRAE(y[91:100],testForecast2,testForecast)

Measures for the prediction intervals
An example with mtcars data
ourModel <- alm(mpg~., mtcars[1:30,], distribution="dnorm")
ourBenchmark <- alm(mpg~1, mtcars[1:30,], distribution="dnorm")

Produce predictions with the interval
ourForecast <- predict(ourModel, mtcars[-c(1:30),], interval="p")
ourBenchmarkForecast <- predict(ourBenchmark, mtcars[-c(1:30),], interval="p")

MIS(mtcars$mpg[-c(1:30)],ourForecast$lower,ourForecast$upper,0.95)
sMIS(mtcars$mpg[-c(1:30)],ourForecast$lower,ourForecast$upper,mean(mtcars$mpg[1:30]),0.95)
rMIS(mtcars$mpg[-c(1:30)],ourForecast$lower,ourForecast$upper,

ourBenchmarkForecast$lower,ourBenchmarkForecast$upper,0.95)

https://doi.org/10.1016/j.ijforecast.2012.09.002
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437

58 measures

Also, see pinball function for other measures for the intervals

measures Error measures for the provided forecasts

Description

Function calculates several error measures using the provided forecasts and the data for the holdout
sample.

Usage

measures(holdout, forecast, actual, digits = NULL, benchmark = c("naive",
"mean"))

Arguments

holdout The vector of the holdout values.

forecast The vector of forecasts produced by a model.

actual The vector of actual in-sample values.

digits Number of digits of the output. If NULL then no rounding is done.

benchmark The character variable, defining what to use as benchmark for relative measures.
Can be either "naive" or "mean" (arithmetic mean of the whole series. The
latter can be useful when dealing with intermittent data.

Value

The functions returns the named vector of errors:

• ME,

• MAE,

• MSE

• MPE,

• MAPE,

• MASE,

• sMAE,

• RMSSE,

• SAME,

• sMSE,

• sCE,

• rMAE,

nparam 59

• rRMSE,

• rAME,

• asymmetry,

• sPIS.

For the details on these errors, see Errors.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov, I. (2017). Naughty APEs and the quest for the holy grail. https://openforecast.
org/2017/07/29/naughty-apes-and-the-quest-for-the-holy-grail/

• Fildes R. (1992). The evaluation of extrapolative forecasting methods. International Journal
of Forecasting, 8, pp.81-98.

• Hyndman R.J., Koehler A.B. (2006). Another look at measures of forecast accuracy. Interna-
tional Journal of Forecasting, 22, pp.679-688.

• Petropoulos F., Kourentzes N. (2015). Forecast combinations for intermittent demand. Journal
of the Operational Research Society, 66, pp.914-924.

• Wallstrom P., Segerstedt A. (2010). Evaluation of forecasting error measurements and tech-
niques for intermittent demand. International Journal of Production Economics, 128, pp.625-
636.

• Davydenko, A., Fildes, R. (2013). Measuring Forecasting Accuracy: The Case Of Judgmental
Adjustments To Sku-Level Demand Forecasts. International Journal of Forecasting, 29(3),
510-522. doi:10.1016/j.ijforecast.2012.09.002

Examples

y <- rnorm(100,10,2)
ourForecast <- rep(mean(y[1:90]),10)

measures(y[91:100],ourForecast,y[1:90],digits=5)

nparam Number of parameters and number of variates in the model

Description

nparam() returns the number of estimated parameters in the model, while nvariate() returns
number of variates for the response variable.

https://openforecast.org/2017/07/29/naughty-apes-and-the-quest-for-the-holy-grail/
https://openforecast.org/2017/07/29/naughty-apes-and-the-quest-for-the-holy-grail/
https://doi.org/10.1016/j.ijforecast.2012.09.002

60 outlierdummy

Usage

nparam(object, ...)

nvariate(object, ...)

Arguments

object Time series model.

... Some other parameters passed to the method.

Details

nparam() is a very basic and a simple function which does what it says: extracts number of esti-
mated parameters in the model. nvariate() returns number of variates (dimensions, columns) for
the response variable (1 for the univariate regression).

Value

Both functions return numeric values.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

nobs, logLik

Examples

Simple example
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
ourModel <- lm(y~.,data=as.data.frame(xreg))

nparam(ourModel)
nvariate(ourModel)

outlierdummy Outlier detection and matrix creation

Description

Function detects outliers and creates a matrix with dummy variables. Only point outliers are con-
sidered (no level shifts).

outlierdummy 61

Usage

outlierdummy(object, ...)

Default S3 method:
outlierdummy(object, level = 0.999, type = c("rstandard",
"rstudent"), ...)

S3 method for class 'alm'
outlierdummy(object, level = 0.999, type = c("rstandard",
"rstudent"), ...)

Arguments

object Model estimated using one of the functions of smooth package.

... Other parameters. Not used yet.

level Confidence level to use. Everything that is outside the constructed bounds based
on that is flagged as outliers.

type Type of residuals to use: either standardised or studentised. Ignored if count
distributions used.

Details

The detection is done based on the type of distribution used and confidence level specified by user.

Value

The class "outlierdummy", which contains the list:

• outliers - the matrix with the dummy variables, flagging outliers;

• statistic - the value of the statistic for the normalised variable;

• id - the ids of the outliers (which observations have them);

• level - the confidence level used in the process;

• type - the type of the residuals used;

• errors - the errors used in the detection. In case of count distributions, probabilities are re-
turned.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

influence.measures

62 pAIC

Examples

Generate the data with S distribution
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rs(100,0,3),xreg)
colnames(xreg) <- c("y","x1","x2")

Fit the normal distribution model
ourModel <- alm(y~x1+x2, xreg, distribution="dnorm")

Detect outliers
xregOutlierDummy <- outlierdummy(ourModel)

pAIC Point AIC

Description

This function returns a vector of AIC values for the in-sample observations

Usage

pAIC(object, ...)

pAICc(object, ...)

pBIC(object, ...)

pBICc(object, ...)

Arguments

object Time series model.

... Some stuff.

Details

This is based on pointLik function. The formula for this is: pAIC_t = 2 * k - 2 * T * l_t , where k is
the number of parameters, T is the number of observations and l_t is the point likelihood. This way
we preserve the property that AIC = mean(pAIC).

Value

The function returns the vector of point AIC values.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

pcor 63

See Also

pointLik

Examples

xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
ourModel <- alm(y~x1+x2,as.data.frame(xreg))

pAICValues <- pAIC(ourModel)

mean(pAICValues)
AIC(ourModel)

pcor Partial correlations

Description

Function calculates partial correlations between the provided variables

Usage

pcor(x, y = NULL, use = c("na.or.complete", "complete.obs", "everything",
"all.obs"), method = c("pearson", "spearman", "kendall"))

Arguments

x Either data.frame or a matrix with numeric values.

y The numerical variable.

use What observations to use. See cor function for details. The only option that is
not available here is "pairwise.complete.obs".

method Which method to use for the calculation of the partial correlations. This can be
either Pearson’s, Spearman’s or Kendall’s coefficient. See cor for details.

Details

The calculation is done based on multiple linear regressions. The function calculates them for each
pair of variables based on the residuals of linear models of those variables from the other variables
in the dataset.

64 pinball

Value

The following list of values is returned:

• value - Matrix of the coefficients of partial correlations;

• p.value - The p-values for the parameters;

• method - The method used in the calculations.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

mcor, cramer, association

Examples

pcor(mtcars)

pinball Pinball function

Description

The function returns the value from the pinball function for the specified level and the type of loss

Usage

pinball(holdout, forecast, level, loss = 1, na.rm = TRUE)

Arguments

holdout The vector or matrix of the holdout values.

forecast The forecast of a distribution (e.g. quantile or expectile). It should be the same
length as the holdout.

level The level associated with the forecast (e.g. level of quantile).

loss The type of loss to use. The number which corresponds to L1, L2 etc. L1 implies
the loss for quantiles, while L2 is for the expectile.

na.rm Logical, defining whether to remove the NAs from the provided data or not.

Value

The function returns the scalar value.

plot.greybox 65

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

Examples

An example with mtcars data
ourModel <- alm(mpg~., mtcars[1:30,], distribution="dnorm")

Produce predictions with the interval
ourForecast <- predict(ourModel, mtcars[-c(1:30),], interval="p")

Pinball with the L1 (quantile value)
pinball(mtcars$mpg[-c(1:30)],ourForecast$upper,level=0.975,loss=1)
pinball(mtcars$mpg[-c(1:30)],ourForecast$lower,level=0.025,loss=1)

Pinball with the L2 (expectile value)
pinball(mtcars$mpg[-c(1:30)],ourForecast$upper,level=0.975,loss=2)
pinball(mtcars$mpg[-c(1:30)],ourForecast$lower,level=0.025,loss=2)

plot.greybox Plots of the fit and residuals

Description

The function produces diagnostics plots for a greybox model

Usage

S3 method for class 'greybox'
plot(x, which = c(1, 2, 4, 6), level = 0.95,
legend = FALSE, ask = prod(par("mfcol")) < length(which) &&
dev.interactive(), lowess = TRUE, ...)

Arguments

x Estimated greybox model.

which Which of the plots to produce. The possible options (see details for explana-
tions):

1. Actuals vs Fitted values;
2. Standardised residuals vs Fitted;
3. Studentised residuals vs Fitted;
4. Absolute residuals vs Fitted;
5. Squared residuals vs Fitted;
6. Q-Q plot with the specified distribution;
7. Fitted over time;

66 plot.greybox

8. Standardised residuals over observations;
9. Studentised residuals over observations;

10. ACF of the residuals;
11. PACF of the residuals;
12. Cook’s distance over observations with 0.5, 0.75 and 0.95 quantile lines

from Fisher’s distribution;
13. Absolute standardised residuals vs Fitted;
14. Squared standardised residuals vs Fitted;
15. ACF of the squared residuals;
16. PACF of the squared residuals.

level Confidence level. Defines width of confidence interval. Used in plots (2), (3),
(7), (8), (9), (10) and (11).

legend If TRUE, then the legend is produced on plots (2), (3) and (7).

ask Logical; if TRUE, the user is asked to press Enter before each plot.

lowess Logical; if TRUE, LOWESS lines are drawn on scatterplots, see lowess.

... The parameters passed to the plot functions. Recommended to use with separate
plots.

Details

The list of produced plots includes:

1. Actuals vs Fitted values. Allows analysing, whether there are any issues in the fit. Does the
variability of actuals increase with the increase of fitted values? Is the relation well captured?
They grey line on the plot corresponds to the perfect fit of the model.

2. Standardised residuals vs Fitted. Plots the points and the confidence bounds (red lines) for the
specified confidence level. Useful for the analysis of outliers;

3. Studentised residuals vs Fitted. This is similar to the previous plot, but with the residuals
divided by the scales with the leave-one-out approach. Should be more sensitive to outliers;

4. Absolute residuals vs Fitted. Useful for the analysis of heteroscedasticity;

5. Squared residuals vs Fitted - similar to (3), but with squared values;

6. Q-Q plot with the specified distribution. Can be used in order to see if the residuals follow the
assumed distribution. The type of distribution depends on the one used in the estimation (see
distribution parameter in alm);

7. Fitted over time. Plots actuals (black line), fitted values (purple line) and prediction interval
(red lines) of width level, but only in the case, when there are some values lying outside of
it. Can be used in order to make sure that the model did not miss any important events over
time;

8. Standardised residuals vs Time. Useful if you want to see, if there is autocorrelation or if there
is heteroscedasticity in time. This also shows, when the outliers happen;

9. Studentised residuals vs Time. Similar to previous, but with studentised residuals;

10. ACF of the residuals. Are the residuals autocorrelated? See acf for details;

11. PACF of the residuals. No, really, are they autocorrelated? See pacf for details;

pointLik 67

12. Cook’s distance over time. Shows influential observations. 0.5, 0.75 and 0.95 quantile lines
from Fisher’s distribution are also plotted. If the value is above them then the observation is
influencial. This does not work well for non-normal distributions;

13. Absolute standardised residuals vs Fitted. Similar to the previous, but with absolute values.
This is more relevant to the models where scale is calculated as an absolute value of something
(e.g. Laplace);

14. Squared standardised residuals vs Fitted. This is an additional plot needed to diagnose het-
eroscedasticity in a model with varying scale. The variance on this plot will be constant if
the adequate model for scale was constructed. This is more appropriate for normal and the
related distributions.

Which of the plots to produce, is specified via the which parameter. The plots 2, 3, 7, 8 and 9 also
use the parameters level, which specifies the confidence level for the intervals.

Value

The function produces the number of plots, specified in the parameter which.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

plot.lm, rstandard, rstudent

Examples

xreg <- cbind(rlaplace(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rlaplace(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

ourModel <- alm(y~x1+x2, xreg, distribution="dnorm")

par(mfcol=c(4,4))
plot(ourModel, c(1:14))

pointLik Point likelihood values

Description

This function returns a vector of logarithms of likelihoods for each observation

Usage

pointLik(object, log = TRUE, ...)

68 pointLik

Arguments

object Time series model.

log Whether to take logarithm of likelihoods.

... Some stuff.

Details

Instead of taking the expected log-likelihood for the whole series, this function calculates the indi-
vidual value for each separate observation. Note that these values are biased, so you would possibly
need to take number of degrees of freedom into account in order to have an unbiased estimator.

This value is based on the general likelihood (not its concentrated version), so the sum of these
values may slightly differ from the output of logLik.

Value

This function returns a vector.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

AIC, BIC

Examples

xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
ourModel <- alm(y~x1+x2,as.data.frame(xreg))

pointLik(ourModel)

Bias correction
pointLik(ourModel) - nparam(ourModel)

Bias correction in AIC style
2*(nparam(ourModel)/nobs(ourModel) - pointLik(ourModel))

BIC calculation based on pointLik
log(nobs(ourModel))*nparam(ourModel) - 2*sum(pointLik(ourModel))

polyprod 69

polyprod This function calculates parameters for the polynomials

Description

The function accepts two vectors with the parameters for the polynomials and returns the vector of
parameters after their multiplication. This can be especially useful, when working with ARIMA
models.

Usage

polyprod(x, y)

Arguments

x The vector of parameters of the first polynomial.

y The vector of parameters of the second polynomial.

Value

The function returns a matrix with one column with the parameters for the polynomial, starting
from the 0-order.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

convolve

Examples

Not run: polyprod(c(1,-2,-1),c(1,0.5,0.3))

70 predict.alm

predict.alm Forecasting using greybox functions

Description

The functions allow producing forecasts based on the provided model and newdata.

Usage

S3 method for class 'alm'
predict(object, newdata = NULL, interval = c("none",
"confidence", "prediction"), level = 0.95, side = c("both", "upper",
"lower"), occurrence = NULL, ...)

S3 method for class 'greybox'
predict(object, newdata = NULL, interval = c("none",
"confidence", "prediction"), level = 0.95, side = c("both", "upper",
"lower"), ...)

S3 method for class 'scale'
predict(object, newdata = NULL, interval = c("none",
"confidence", "prediction"), level = 0.95, side = c("both", "upper",
"lower"), ...)

S3 method for class 'greybox'
forecast(object, newdata = NULL, h = NULL, ...)

S3 method for class 'alm'
forecast(object, newdata = NULL, h = NULL, ...)

Arguments

object Time series model for which forecasts are required.
newdata The new data needed in order to produce forecasts.
interval Type of intervals to construct: either "confidence" or "prediction". Can be ab-

breviated
level Confidence level. Defines width of prediction interval.
side What type of interval to produce: "both" - produces both lower and upper

bounds of the interval, "upper" - upper only, "lower" - respectively lower
only. In the "both" case the probability is split into two parts: ((1-level)/2,
(1+level)/2). When "upper" is specified, then the intervals for (0, level) are
constructed Finally, with "lower" the interval for (1-level, 1) is returned.

occurrence If occurrence was provided, then a user can provide a vector of future values via
this variable.

... Other arguments passed to vcov function (see coef.alm for details).
h The forecast horizon.

predict.alm 71

Details

predict produces predictions for the provided model and newdata. If newdata is not provided,
then the data from the model is extracted and the fitted values are reproduced. This might be useful
when confidence / prediction intervals are needed for the in-sample values.

forecast function produces forecasts for h steps ahead. There are four scenarios in this function:

1. If the newdata is not provided, then it will produce forecasts of the explanatory variables to
the horizon h (using es from smooth package or using Naive if smooth is not installed) and
use them as newdata.

2. If h and newdata are provided, then the number of rows to use will be regulated by h.

3. If h is NULL, then it is set equal to the number of rows in newdata.

4. If both h and newdata are not provided, then it will use the data from the model itself, repro-
ducing the fitted values.

After forming the newdata the forecast function calls for predict, so you can provide parameters
interval, level and side in the call for forecast.

Value

predict.greybox() returns object of class "predict.greybox", which contains:

• model - the estimated model.

• mean - the expected values.

• fitted - fitted values of the model.

• lower - lower bound of prediction / confidence intervals.

• upper - upper bound of prediction / confidence intervals.

• level - confidence level.

• newdata - the data provided in the call to the function.

• variances - conditional variance for the holdout sample. In case of interval="prediction"
includes variance of the error.

predict.alm() is based on predict.greybox() and returns object of class "predict.alm", which
in addition contains:

• location - the location parameter of the distribution.

• scale - the scale parameter of the distribution.

• distribution - name of the fitted distribution.

forecast() functions return the same "predict.alm" and "predict.greybox" classes, with the same
set of output variables.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

predict.lm

72 rmcb

Examples

xreg <- cbind(rlaplace(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rlaplace(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
inSample <- xreg[1:80,]
outSample <- xreg[-c(1:80),]

ourModel <- alm(y~x1+x2, inSample, distribution="dlaplace")

predict(ourModel,outSample)
predict(ourModel,outSample,interval="c")

plot(predict(ourModel,outSample,interval="p"))
plot(forecast(ourModel,h=10,interval="p"))

rmcb Regression for Multiple Comparison with the Best

Description

RMCB stands for "Regression for Multiple Comparison with the Best", referring to the comparison
of forecasting methods. This is a regression-based version of the Nemenyi / MCB test relies on the
ranks of variables. This test is based on Nemenyi / MCB test (Demsar, 2006). It transforms the data
into ranks and then constructs a regression on them of the type:

Usage

rmcb(data, level = 0.95, outplot = c("mcb", "lines", "none"),
select = NULL, ...)

S3 method for class 'rmcb'
plot(x, outplot = c("mcb", "lines"), select = NULL, ...)

Arguments

data Matrix or data frame with observations in rows and variables in columns.

level The width of the confidence interval. Default is 0.95.

outplot What type of plot to use after the calculations. This can be either "MCB"
("mcb"), or "Vertical lines" ("lines"), or nothing ("none"). You can also use
plot method on the produced object in order to get the same effect.

select What column of data to highlight on the plot. If NULL, then the method with
the lowest value is selected.

... Other parameters passed to rank function. distribution parameter can also be
passed here to alter the behaviour of the function.

x The produced rmcb model.

rmcb 73

Details

y = b’ X + e,

where y is the vector of the ranks of provided data (as.vector(data)), X is the matrix of dummy
variables for each column of the data (forecasting method), b is the vector of coefficients for the
dummies and e is the error term of the model. Given that the data is ranked, it test the differences
in medians between the methods and then produces plots based on that.

The critical distances by default are calculated based on the Studentised range statistics, so the test
gives exactly the same result as the Nemenyi test. However, there are several options with the
"distribution" parameter, which would fit a regression and extract standard errors from it to produce
critical distances. e.g. distribution="dnorm" would rely on the Student’s distribution and the
covariance matrix of the parameters. On large datasets, this performs similar to the default option
of distribution="tukey". If any other distribution is used, the function would call alm() and fit
a model on the original data with the assumed distribution (e.g. comparing the locations for each of
the methods).

There is also a plot() method that allows producing either "mcb" or "lines" style of plot. This can
be regulated via plot(x, outplot="lines").

Value

If outplot!="none", then the function plots the results after all the calculations using plot.rmcb()
function.

Function returns a list of a class "rmcb", which contains the following variables:

• mean Mean values for each method.

• interval Confidence intervals for each method.

• vlines Coordinates used for outplot="l", marking the groups of methods.

• groups The table containing the groups. TRUE - methods are in the same group, FALSE - they
are not.

• methods Similar to group parameter, but with a slightly different presentation.

• p.value p-value for the test of the significance of the model. This is the value from the F test
of the linear regression.

• level Confidence level.

• model lm model produced for the calculation of the intervals.

• outplot Style of the plot to produce.

• select The selected variable to highlight.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Demsar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. Jour-
nal of Machine Learning Research, 7, 1-30. https://www.jmlr.org/papers/volume7/
demsar06a/demsar06a.pdf

https://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf
https://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf

74 ro

Examples

N <- 50
M <- 4
ourData <- matrix(rnorm(N*M,mean=0,sd=1), N, M)
ourData[,2] <- ourData[,2]+4
ourData[,3] <- ourData[,3]+3
ourData[,4] <- ourData[,4]+2
colnames(ourData) <- c("Method A","Method B","Method C - long name","Method D")
ourTest <- rmcb(ourData, level=0.95)

See the mean ranks:
ourTest$mean
The same is for the intervals:
ourTest$interval

You can also reproduce plots in different styles:
plot(ourTest, outplot="lines")

Or you can use the default "mcb" style and set additional parameters for the plot():
par(mar=c(2,2,4,0)+0.1)
plot(ourTest, main="Four methods")

ro Rolling Origin

Description

The function does rolling origin for any forecasting function

Usage

ro(data, h = 10, origins = 10, call, value = NULL, step = 1,
ci = FALSE, co = TRUE, silent = TRUE, parallel = FALSE, ...)

Arguments

data Data vector or ts object with the response variable passed to the function.

h The forecasting horizon.

origins The number of rolling origins.

call The call that is passed to the function. The call must be in quotes. Exam-
ple: "forecast(ets(data),h)". Here data shows where the data is and h
defines where the horizon should be passed in the call. Some hidden parame-
ters can also be specified in the call. For example, parameters counti, counto
and countf are used in the inner loop and can be used for the regulation of
exogenous variables sizes. See examples for the details.

ro 75

value The variable or set of variables returned by the call. For example, mean for
functions of forecast package. This can also be a vector of variables. See
examples for the details. If the parameter is NULL, then all the values from the
call are returned (could be really messy!). Note that if your function returns a
list with matrices, then ro will return an array. If your function returns a list,
then you will have a list of lists in the end. So it makes sense to understand what
you want to get before running the function.

step Number of observations to skip between origins when moving to the next one.
For example, could be useful if forecast should be produced every week on
Sunday, in which case, for daily data, step=7.

ci The parameter defines if the in-sample window size should be constant. If TRUE,
then with each origin one observation is added at the end of series and another
one is removed from the beginning.

co The parameter defines whether the holdout sample window size should be con-
stant. If TRUE, the rolling origin will stop when less than h observations are left
in the holdout.

silent If TRUE, nothing is printed out in the console.
parallel If TRUE, then the model fitting is done in parallel. WARNING! Packages foreach

and either doMC (Linux and Mac only) or doParallel are needed in order to run
the function in parallel.

... This is temporary and is needed in order to capture "silent" parameter if it is
provided.

Details

This function produces rolling origin forecasts using the data and a call passed as parameters.
The function can do all of that either in serial or in parallel, but it needs foreach and either doMC
(Linux only) or doParallel packages installed in order to do the latter.

This is a dangerous function, so be careful with the call that you pass to it, and make sure that it
is well formulated before the execution. Also, do not forget to provide the value that needs to be
returned or you might end up with very messy results.

For more details and more examples of usage, please see vignette for the function. In order to do
that, just run the command: vignette("ro","greybox")

Value

Function returns the following variables:

• actuals - the data provided to the function.
• holdout - the matrix of actual values corresponding to the produced forecasts from each

origin.
• value - the matrices / array / lists with the produced data from each origin. Name of each

object corresponds to the names in the parameter value.

Author(s)

Yves Sagaert

Ivan Svetunkov, <ivan@svetunkov.com>

76 ro

References

• Tashman, (2000) Out-of-sample tests of forecasting accuracy: an analysis and review Interna-
tional Journal of Forecasting, 16, pp. 437-450. doi:10.1016/S01692070(00)000650.

Examples

y <- rnorm(100,0,1)
ourCall <- "predict(arima(x=data,order=c(0,1,1)),n.ahead=h)"
NOTE that the "data" needs to be used in the call, not "y".
This way we tell the function, where "y" should be used in the call of the function.

The default call and values
ourValue <- "pred"
ourRO <- ro(y, h=5, origins=5, ourCall, ourValue)

We can now plot the results of this evaluation:
plot(ourRO)

You can also use dollar sign
ourValue <- "$pred"
And you can have constant in-sample size
ro(y, h=5, origins=5, ourCall, ourValue, ci=TRUE)

You can ask for several values
ourValue <- c("pred","se")
And you can have constant holdout size
ro(y, h=5, origins=20, ourCall, ourValue, ci=TRUE, co=TRUE)

The following code will give exactly the same result as above,
but computed in parallel using all but 1 core of CPU:
Not run: ro(y, h=5, origins=20, ourCall, ourValue, ci=TRUE, co=TRUE, parallel=TRUE)

If you want to use functions from forecast package, please note that you need to
set the values that need to be returned explicitly. There are two options for this.
Example 1:
Not run: ourCall <- "forecast(ets(data), h=h, level=95)"
ourValue <- c("mean", "lower", "upper")
ro(y,h=5,origins=5,ourCall,ourValue)
End(Not run)

Example 2:
Not run: ourCall <- "forecast(ets(data), h=h, level=c(80,95))"
ourValue <- c("mean", "lower[,1]", "upper[,1]", "lower[,2]", "upper[,2]")
ro(y,h=5,origins=5,ourCall,ourValue)
End(Not run)

A more complicated example using the for loop and
several time series
x <- matrix(rnorm(120*3,0,1), 120, 3)

Form an array for the forecasts we will produce
We will have 4 origins with 6-steps ahead forecasts

https://doi.org/10.1016/S0169-2070%2800%2900065-0

sm 77

ourForecasts <- array(NA,c(6,4,3))

Define models that need to be used for each series
ourModels <- list(c(0,1,1), c(0,0,1), c(0,1,0))

This call uses specific models for each time series
ourCall <- "predict(arima(data, order=ourModels[[i]]), n.ahead=h)"
ourValue <- "pred"

Start the loop. The important thing here is to use the same variable 'i' as in ourCall.
for(i in 1:3){

ourData <- x[,i]
ourForecasts[,,i] <- ro(data=ourData,h=6,origins=4,call=ourCall,

value=ourValue,co=TRUE,silent=TRUE)$pred
}

ourForecasts array now contains rolling origin forecasts from specific
models.

An example with exogenous variables
x <- rnorm(100,0,1)
xreg <- matrix(rnorm(200,0,1),100,2,dimnames=list(NULL,c("x1","x2")))

'counti' is used to define in-sample size of xreg,
'counto' - the size of the holdout sample of xreg

ourCall <- "predict(arima(x=data, order=c(0,1,1), xreg=xreg[counti,,drop=FALSE]),
n.ahead=h, newxreg=xreg[counto,,drop=FALSE])"

ourValue <- "pred"
ro(x,h=5,origins=5,ourCall,ourValue)

Poisson regression with alm
x <- rpois(100,2)
xreg <- cbind(x,matrix(rnorm(200,0,1),100,2,dimnames=list(NULL,c("x1","x2"))))
ourCall <- "predict(alm(x~., data=xreg[counti,,drop=FALSE], distribution='dpois'),

newdata=xreg[counto,,drop=FALSE])"
ourValue <- "mean"
testRO <- ro(xreg[,1],h=5,origins=5,ourCall,ourValue,co=TRUE)
plot(testRO)

'countf' is used to take xreg of the size corresponding to the whole
sample on each iteration
This is useful when working with functions from smooth package.
The following call will return the forecasts from es() function of smooth.
Not run: ourCall <- "es(data=data, h=h, xreg=xreg[countf,,drop=FALSE])"
ourValue <- "forecast"
ro(x,h=5,origins=5,ourCall,ourValue)
End(Not run)

sm Scale Model

78 sm

Description

This method produces a model for scale of distribution for the provided pre-estimated model. The
model can be estimated either via lm or alm.

Usage

sm(object, ...)

Default S3 method:
sm(object, formula = NULL, data = NULL,
parameters = NULL, ...)

S3 method for class 'lm'
sm(object, formula = NULL, data = NULL, parameters = NULL,
...)

S3 method for class 'alm'
sm(object, formula = NULL, data = NULL, parameters = NULL,
...)

Arguments

object The pre-estimated alm or lm model.

... Other parameters to pass to the method, including those explained in alm (e.g.
parameters for optimiser).

formula The formula for scale. It should start with ~ and contain all variables that should
impact the scale.

data The data, on which the scale model needs to be estimated. If not provided, then
the one used in the object is used.

parameters The parameters to use in the model. Only needed if you know the parameters in
advance or want to test yours.

Details

This function is useful, when you suspect a heteroscedasticity in your model and want to fit a model
for the scale of the pre-specified distribution. This function is complementary for lm or alm.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

Examples

xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+sqrt(exp(0.8+0.2*xreg[,1]))*rnorm(100,0,1),

xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")

spread 79

Estimate the location model
ourModel <- alm(y~.,xreg)
Estimate the scale model
ourScale <- sm(ourModel,formula=~x1+x2)
Summary of the scale model
summary(ourScale)

spread Construct scatterplot / boxplots for the data

Description

Function constructs the plots depending on the types of variables in the provided matrix / data
frame.

Usage

spread(data, histograms = FALSE, log = FALSE, lowess = FALSE, ...)

Arguments

data Either matrix or data frame with the data.

histograms If TRUE, then the histograms and barplots are produced on the diagonal of the
matrix. Otherwise the names of the variables are written there.

log If TRUE, then the logarithms of all numerical variables are taken.

lowess If TRUE, then LOWESS lines are added to scatterplots and means are connected
with lines on boxplots, see lowess for details.

... Other parameters passed to the plot function. Currently only "main" parameter
is accepted.

Details

If both variables are in metric scale, then the classical scatterplot is constructed. If one of them is
either integer (up to 10 values) or categorical (aka ’factor’), then boxplots (with grey dots corre-
sponding to mean values) are constructed. Finally, for the two categorical variables the tableplot is
returned (see tableplot function for the details). All of this is packed in a matrix. The colours in
the plot can be changed by defining a different palette via the palette() function, in which case
spread() will use the first four colours in the pallete.

See details in the vignette "Marketing analytics with greybox": vignette("maUsingGreybox","greybox")

Value

Function does not return anything. It just plots things.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

80 stepwise

See Also

plot, table, tableplot

Examples

Simple example
spread(mtcars)
spread(mtcars,log=TRUE)

stepwise Stepwise selection of regressors

Description

Function selects variables that give linear regression with the lowest information criteria. The se-
lection is done stepwise (forward) based on partial correlations. This should be a simpler and faster
implementation than step() function from ‘stats’ package.

Usage

stepwise(data, ic = c("AICc", "AIC", "BIC", "BICc"), silent = TRUE,
df = NULL, formula = NULL, subset = NULL, method = c("pearson",
"kendall", "spearman"), distribution = c("dnorm", "dlaplace", "ds",
"dgnorm", "dlogis", "dt", "dalaplace", "dlnorm", "dllaplace", "dls",
"dlgnorm", "dbcnorm", "dinvgauss", "dgamma", "dexp", "dfnorm", "drectnorm",
"dpois", "dnbinom", "dbeta", "dlogitnorm", "plogis", "pnorm"),
occurrence = c("none", "plogis", "pnorm"), ...)

Arguments

data Data frame containing dependant variable in the first column and the others in
the rest.

ic Information criterion to use.

silent If silent=FALSE, then nothing is silent, everything is printed out. silent=TRUE
means that nothing is produced.

df Number of degrees of freedom to add (should be used if stepwise is used on
residuals).

formula If provided, then the selection will be done from the listed variables in the for-
mula after all the necessary transformations.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

method Method of correlations calculation. The default is Pearson’s correlation, which
should be applicable to a wide range of data in different scales.

distribution Distribution to pass to alm(). See alm for details.

stepwise 81

occurrence what distribution to use for occurrence part. See alm for details.

... This is temporary and is needed in order to capture "silent" parameter if it is
provided.

Details

The algorithm uses alm() to fit different models and cor() to select the next regressor in the sequence.

Some details and examples of application are also given in the vignette "Greybox": vignette("greybox","greybox")

Value

Function returns model - the final model of the class "alm". See alm for details of the output.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Burnham Kenneth P. and Anderson David R. (2002). Model Selection and Multimodel In-
ference. A Practical Information-Theoretic Approach. Springer-Verlag New York. DOI:
[10.1007/b97636](http://dx.doi.org/10.1007/b97636).

• McQuarrie, A. D. (1999). A small-sample correction for the Schwarz SIC model selection
criterion. Statistics & Probability Letters, 44(1), 79–86. [10.1016/S0167-7152(98)00294-
6](https://doi.org/10.1016/S0167-7152(98)00294-6).

See Also

step, xregExpander,lmCombine

Examples

Simple example
xreg <- cbind(rnorm(100,10,3),rnorm(100,50,5))
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y","x1","x2","Noise")
stepwise(xreg)

Mixture distribution of Log Normal and Cumulative Logit
xreg[,1] <- xreg[,1] * round(exp(xreg[,1]-70) / (1 + exp(xreg[,1]-70)),0)
colnames(xreg) <- c("y","x1","x2","Noise")
ourModel <- stepwise(xreg, distribution="dlnorm",

occurrence=stepwise(xreg, distribution="plogis"))
summary(ourModel)

Fat regression example
xreg <- matrix(rnorm(20000,10,3),100,200)
xreg <- cbind(100+0.5*xreg[,1]-0.75*xreg[,2]+rnorm(100,0,3),xreg,rnorm(100,300,10))
colnames(xreg) <- c("y",paste0("x",c(1:200)),"Noise")
ourModel <- stepwise(xreg,ic="AICc")

82 tableplot

plot(ourModel$ICs,type="l",ylim=range(min(ourModel$ICs),max(ourModel$ICs)+5))
points(ourModel$ICs)
text(c(1:length(ourModel$ICs))+0.1,ourModel$ICs+5,names(ourModel$ICs))

tableplot Construct a plot for categorical variable

Description

Function constructs a plot for two categorical variables based on table function

Usage

tableplot(x, y = NULL, labels = TRUE, legend = FALSE, points = TRUE,
...)

Arguments

x First categorical variable. Can be either vector, factor, matrix or a data frame. If
y is NULL and x is either matrix of a data frame, then the first two variables of
the data will be plotted against each other.

y Second categorical variable. If not provided, then only x will be plotted.

labels Whether to print table labels inside the plot or not.

legend If TRUE, then the legend for the tableplot is drawn. The plot is then produced on
a separate canvas (new par()).

points Whether to plot points in the areas. They help in understanding how many values
lie in specific categories.

... Other parameters passed to the plot function.

Details

The function produces the plot of the table() function with colour densities corresponding to the
respective frequencies of appearance. If the value appears more often than the other (e.g. 0.5 vs
0.15), then it will be darker. By default, the frequency of 0 corresponds to the white colour, the
frequency of 1 corresponds to the black. The colours can be changed by defining a different palette
via the palette() function. In that case only two first colours are used, where the colour intensity
changes from the first one to the second one. The function also adds the number of dots (points)
proportional to the number of values in each category to simplify the reading of plots.

See details in the vignette "Marketing analytics with greybox": vignette("maUsingGreybox","greybox")

Value

Function does not return anything. It just plots things.

temporaldummy 83

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

plot, table, spread

Examples

palette("Tableau")
tableplot(mtcars$am, mtcars$gear)

temporaldummy Dummy variables for provided seasonality type

Description

Function generates the matrix of dummy variables for the months / weeks / days / hours / minutes /
seconds of year / month / week / day / hour / minute.

Usage

temporaldummy(object, ...)

Default S3 method:
temporaldummy(object, type = c("month", "quarter", "week",

"day", "hour", "halfhour", "minute", "second"), of = c("year", "quarter",
"month", "week", "day", "hour", "minute"), factors = FALSE, h = 0, ...)

S3 method for class 'ts'
temporaldummy(object, type = c("month", "quarter", "week",
"day", "hour", "halfhour", "minute", "second"), of = c("year", "quarter",
"month", "week", "day", "hour", "minute"), factors = FALSE, h = 0, ...)

S3 method for class 'Date'
temporaldummy(object, type = c("month", "quarter", "week",
"day", "hour", "halfhour", "minute", "second"), of = c("year", "quarter",
"month", "week", "day", "hour", "minute"), factors = FALSE, h = 0, ...)

S3 method for class 'POSIXt'
temporaldummy(object, type = c("month", "quarter", "week",
"day", "hour", "halfhour", "minute", "second"), of = c("year", "quarter",
"month", "week", "day", "hour", "minute"), factors = FALSE, h = 0, ...)

S3 method for class 'zoo'
temporaldummy(object, type = c("month", "quarter", "week",

84 temporaldummy

"day", "hour", "halfhour", "minute", "second"), of = c("year", "quarter",
"month", "week", "day", "hour", "minute"), factors = FALSE, h = 0, ...)

Arguments

object Either a ts / msts / zoo / xts / tsibble object or a vector of dates.

... Other parameters.

type Specifies what type of frequency to produce. For example, if type="month",
then the matrix with dummies for months of the year will be created.

of Specifies the frequency of what is needed. Used together with type e.g. type="day"
and of="month" will produce a matrix with dummies for days of month (31
dummies).

factors If TRUE, the function will return the categorical variable instead of the matrix
with dummies.

h If not NULL, then the function will produce dummies for this set of observations
ahead as well, binding them to the original matrix.

Details

The function extracts dates from the provided object and returns a matrix with dummy variables
for the specified frequency type, with the number of rows equal to the length of the object + the
specified horizon. If a numeric vector is provided then it will produce dummies based on typical
values (e.g. 30 days in month). So it is recommended to use proper classes with this method.

Several notes on how the dummies are calculated in some special cases:

• In case of weeks of years, the first week is defined according to ISO 8601.

Note that not all the combinations of type and of are supported. For example, there is no such thing
as dummies for months of week. Also note that some combinations are not very useful and would
take a lot of memory (e.g. minutes of year).

The function will return all the dummy variables. If you want to avoid the dummy variables trap,
you will need to exclude one of them manually.

If you want to have a different type of dummy variables, let me know, I will implement it.

Value

One of the two is returned, depending on the value of factors variable:

• factors=FALSE: Class "dgCMatrix" with all the dummy variables is returned in case of nu-
meric variable. Feel free to drop one (making it a reference variable) or convert the object into
matrix (this will consume more memory than the returned class). In other cases the object of
the same class as the provided is returned.

• factors=TRUE: The categorical variable (factor) containing specific values for each observa-
tion.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

xregExpander 85

See Also

xregExpander, xregMultiplier,outlierdummy

Examples

Generate matrix with dummies for a ts object
x <- ts(rnorm(100,100,1),frequency=12)
temporaldummy(x)

Generate matrix with monthly dummies for a zoo object
x <- as.Date("2003-01-01")+0:99
temporaldummy(x, type="month", of="year", h=10)

xregExpander Exogenous variables expander

Description

Function expands the provided matrix or vector of variables, producing values with lags and leads
specified by lags variable.

Usage

xregExpander(xreg, lags = c(-frequency(xreg):frequency(xreg)),
silent = TRUE, gaps = c("auto", "NAs", "zero", "naive", "extrapolate"))

Arguments

xreg Vector / matrix / data.frame, containing variables that need to be expanded. In
case of vector / matrix it is recommended to provide ts object, so the frequency
of the data is taken into account.

lags Vector of lags / leads that we need to have. Negative values mean lags, positive
ones mean leads.

silent If silent=FALSE, then the progress is printed out. Otherwise the function won’t
print anything in the console.

gaps Defines how to fill in the gaps in the data. "NAs" will leave missing values,
"zero" will substitute them by zeroes, "naive" will use the last / the first ac-
tual value, while "extrapolate" will use es function from smooth package (if
present, otherwise - naive) in order to fill in values. Finally, "auto" will let the
function select between "extrapolate" and "naive" depending on the length
of series.

Details

This function could be handy when you want to check if lags and leads of a variable influence the
dependent variable. Can be used together with xregDo="select" in adam, es, ces and ssarima. All
the missing values in the beginning and at the end of lagged series are substituted by mean forecasts
produced using adam.

86 xregMultiplier

Value

ts matrix with the expanded variables is returned.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

es, stepwise

Examples

Create matrix of two variables, make it ts object and expand it
x <- cbind(rnorm(100,100,1),rnorm(100,50,3))
x <- ts(x,frequency=12)
xregExpander(x)

xregMultiplier Exogenous variables cross-products

Description

Function generates the cross-products of the provided exogenous variables.

Usage

xregMultiplier(xreg, silent = TRUE)

Arguments

xreg matrix or data.frame, containing variables that need to be expanded. This matrix
needs to contain at least two columns.

silent If silent=FALSE, then the progress is printed out. Otherwise the function won’t
print anything in the console.

Details

This function might be useful if you have several variables and want to introduce their cross-
products. This might be useful when introducing the interactions between dummy and continuous
variables.

Value

ts matrix with the transformed and the original variables is returned.

xregTransformer 87

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

es, stepwise,xregExpander, xregTransformer

Examples

Create matrix of two variables and expand it
x <- cbind(rnorm(100,100,1),rnorm(100,50,3))
xregMultiplier(x)

xregTransformer Exogenous variables transformer

Description

Function transforms each variable in the provided matrix or vector, producing non-linear values,
depending on the selected pool of functions.

Usage

xregTransformer(xreg, functions = c("log", "exp", "inv", "sqrt", "square"),
silent = TRUE)

Arguments

xreg Vector / matrix / data.frame, containing variables that need to be expanded. In
case of vector / matrix it is recommended to provide ts object, so the frequency
of the data is taken into account.

functions Vector of names for functions used.

silent If silent=FALSE, then the progress is printed out. Otherwise the function won’t
print anything in the console.

Details

This function could be useful when you want to automatically select the necessary transformations
of the variables. This can be used together with xregDo="select" in es, ces, gum and ssarima.
However, this might be dangerous, as it might lead to the overfitting the data. So be reasonable
when you produce the transformed variables.

Value

ts matrix with the transformed and the original variables is returned.

88 xregTransformer

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

es, stepwise,xregExpander

Examples

Create matrix of two variables and expand it
x <- cbind(rnorm(100,100,1),rnorm(100,50,3))
xregTransformer(x)

Index

∗ distribution
dalaplace, 19
dbcnorm, 21
dfnorm, 25
dgnorm, 27
Distributions, 29
dlaplace, 30
dlogitnorm, 31
drectnorm, 33
ds, 34
dtplnorm, 38

∗ graph
graphmaker, 42
spread, 79
tableplot, 82

∗ htest
AICc, 5
association, 13
cramer, 18
mcor, 53
nparam, 59
pAIC, 62
pcor, 63
pointLik, 67
rmcb, 72

∗ linear
graphmaker, 42

∗ models
aid, 6
alm, 8
coef.greybox, 15
coefbootstrap, 16
detectdst, 23
determination, 24
dsrboot, 36
errorType, 39
extractScale, 40
greybox, 43
implant, 46

lmCombine, 48
lmDynamic, 51
sm, 78
stepwise, 80
temporaldummy, 83
xregExpander, 85
xregMultiplier, 86
xregTransformer, 87

∗ nonlinear
aid, 6
alm, 8
coef.greybox, 15
coefbootstrap, 16
detectdst, 23
dsrboot, 36
errorType, 39
extractScale, 40
greybox, 43
implant, 46
lmCombine, 48
lmDynamic, 51
sm, 78
stepwise, 80
temporaldummy, 83
xregExpander, 85
xregMultiplier, 86
xregTransformer, 87

∗ plots
graphmaker, 42
spread, 79
tableplot, 82

∗ regression
aid, 6
alm, 8
coef.greybox, 15
coefbootstrap, 16
detectdst, 23
dsrboot, 36
errorType, 39

89

90 INDEX

extractScale, 40
greybox, 43
implant, 46
lmCombine, 48
lmDynamic, 51
sm, 78
stepwise, 80
temporaldummy, 83
xregExpander, 85
xregMultiplier, 86
xregTransformer, 87

∗ ts
aid, 6
alm, 8
coef.greybox, 15
coefbootstrap, 16
detectdst, 23
dsrboot, 36
errorType, 39
extractScale, 40
greybox, 43
implant, 46
is.greybox, 47
lmCombine, 48
lmDynamic, 51
plot.greybox, 65
predict.alm, 70
ro, 74
sm, 78
stepwise, 80
temporaldummy, 83
xregExpander, 85
xregMultiplier, 86
xregTransformer, 87

∗ univar
is.greybox, 47
plot.greybox, 65
predict.alm, 70

accuracy.greybox, 3
accuracy.predict.greybox

(accuracy.greybox), 3
acf, 66
actuals, 4
adam, 46, 85
AIC, 6, 68
AICc, 5, 43
aid, 6
aidCat (aid), 6

ALaplace (dalaplace), 19
alm, 7, 8, 16, 18, 44, 46–49, 51, 66, 78, 80, 81
assoc, 44
assoc (association), 13
association, 13, 19, 54, 64
asymmetry (hm), 45

BCNormal (dbcnorm), 21
BIC, 6, 68
BICc, 43
BICc (AICc), 5

ces, 85, 87
cextremity (hm), 45
coef.alm, 70
coef.alm (coef.greybox), 15
coef.greybox, 15
coefbootstrap, 15, 16, 16, 44
confint.alm (coef.greybox), 15
confint.scale (coef.greybox), 15
convolve, 69
cor, 14, 18, 25, 53, 63
cramer, 14, 15, 18, 54, 64

dalaplace, 10, 19, 29
dbcnorm, 11, 21, 29
dbeta, 11
dbinom, 11
detectdst, 23
detectleap (detectdst), 23
determ (determination), 24
determination, 24, 44
dexp, 11
dfnorm, 10, 25, 29
dgamma, 11
dgeom, 11
dgnorm, 10, 27, 29
dinvgauss, 11
Distributions, 21, 22, 26, 28, 29, 30–32, 34,

35, 39, 44
dlaplace, 10, 29, 30
dlnorm, 10
dlogis, 10
dlogitnorm, 11, 29, 31
dnbinom, 11
dnorm, 8, 10
dpois, 11
drectnorm, 10, 29, 33
ds, 10, 29, 34

INDEX 91

dsrboot, 17, 36, 44
dt, 10
dtplnorm, 29, 38

Errors, 59
Errors (ME), 54
errorType, 39
es, 85–88
extractScale, 40
extractSigma (extractScale), 40
extremity (hm), 45

FNormal (dfnorm), 25
forecast.alm (predict.alm), 70
forecast.greybox (predict.alm), 70

glm, 11
GMRAE (ME), 54
graphmaker, 42
greybox, 43
greybox-package (greybox), 43
gum, 87

ham (hm), 45
hm, 45, 56, 57

implant, 46
influence.measures, 61
is.alm (is.greybox), 47
is.greybox, 47
is.greyboxC (is.greybox), 47
is.greyboxD (is.greybox), 47
is.occurrence (is.greybox), 47
is.rmc (is.greybox), 47
is.rollingOrigin (is.greybox), 47
is.scale (is.greybox), 47

Laplace (dlaplace), 30
lm, 10
lmCombine, 12, 44, 47, 48, 51, 53, 81
lmDynamic, 44, 47, 51
LogitNormal (dlogitnorm), 31
logLik, 60
lowess, 66, 79

MAE (ME), 54
MAPE (ME), 54
MASE (ME), 54
mcor, 14, 15, 19, 25, 53, 64
ME, 54

measures, 3, 56, 57, 58
MIS (ME), 54
MPE (ME), 54
MRE (ME), 54
MSE (ME), 54

na.exclude, 8
na.fail, 8
na.omit, 8
nloptr.print.options, 10
nobs, 60
nparam, 59
nvariate (nparam), 59

options, 8
outlierdummy, 24, 44, 60, 85

pacf, 66
pAIC, 44, 62
pAICc, 44
pAICc (pAIC), 62
palaplace, 29
palaplace (dalaplace), 19
pbcnorm, 29
pbcnorm (dbcnorm), 21
pBIC, 44
pBIC (pAIC), 62
pBICc, 44
pBICc (pAIC), 62
pcor, 63
pfnorm, 29
pfnorm (dfnorm), 25
pgnorm, 29
pgnorm (dgnorm), 27
pinball, 56, 57, 64
plaplace, 29
plaplace (dlaplace), 30
plogis, 11
plogitnorm, 29
plogitnorm (dlogitnorm), 31
plot, 80, 83
plot.alm (plot.greybox), 65
plot.dsrboot (dsrboot), 36
plot.greybox, 65
plot.lm, 67
plot.rmcb (rmcb), 72
pnorm, 11
pointLik, 43, 62, 63, 67
polyprod, 69

92 INDEX

prectnorm, 29
prectnorm (drectnorm), 33
predict.alm, 70
predict.greybox (predict.alm), 70
predict.lm, 71
predict.scale (predict.alm), 70
ps, 29
ps (ds), 34
ptplnorm, 29
ptplnorm (dtplnorm), 38

qalaplace, 29
qalaplace (dalaplace), 19
qbcnorm, 29
qbcnorm (dbcnorm), 21
qfnorm, 29
qfnorm (dfnorm), 25
qgnorm, 29
qgnorm (dgnorm), 27
qlaplace, 29
qlaplace (dlaplace), 30
qlogitnorm, 29
qlogitnorm (dlogitnorm), 31
qrectnorm, 29
qrectnorm (drectnorm), 33
qs, 29
qs (ds), 34
qtplnorm, 29
qtplnorm (dtplnorm), 38

ralaplace, 29
ralaplace (dalaplace), 19
rAME (ME), 54
rank, 72
rbcnorm, 29
rbcnorm (dbcnorm), 21
rectNormal (drectnorm), 33
rfnorm, 29
rfnorm (dfnorm), 25
rgnorm, 29
rgnorm (dgnorm), 27
rlaplace, 29
rlaplace (dlaplace), 30
rlogitnorm, 29
rlogitnorm (dlogitnorm), 31
rMAE (ME), 54
rmcb, 72
rMIS (ME), 54
RMSSE (ME), 54

ro, 44, 74
rrectnorm, 29
rrectnorm (drectnorm), 33
rRMSE (ME), 54
rs, 29
rs (ds), 34
rstandard, 67
rstudent, 67
rtplnorm, 29
rtplnorm (dtplnorm), 38

SAME (ME), 54
sample, 17
sCE (ME), 54
SDistribution (ds), 34
sm, 40, 41, 44, 46, 48, 77
sMIS (ME), 54
sMSE (ME), 54
sPIS (ME), 54
spread, 15, 19, 44, 54, 79, 83
ssarima, 85, 87
step, 50, 81
stepwise, 12, 24, 25, 44, 47, 50, 53, 80, 86–88
summary.alm (coef.greybox), 15

table, 15, 19, 54, 80, 83
tableplot, 15, 19, 54, 79, 80, 82
temporaldummy, 24, 44, 83
TPLNormal (dtplnorm), 38
ts, 43

vcov, 10
vcov.alm (coef.greybox), 15
vcov.scale (coef.greybox), 15

xregExpander, 24, 44, 50, 81, 85, 85, 87, 88
xregMultiplier, 44, 85, 86
xregTransformer, 12, 44, 87, 87

	accuracy.greybox
	actuals
	AICc
	aid
	alm
	association
	coef.greybox
	coefbootstrap
	cramer
	dalaplace
	dbcnorm
	detectdst
	determination
	dfnorm
	dgnorm
	Distributions
	dlaplace
	dlogitnorm
	drectnorm
	ds
	dsrboot
	dtplnorm
	errorType
	extractScale
	graphmaker
	greybox
	hm
	implant
	is.greybox
	lmCombine
	lmDynamic
	mcor
	ME
	measures
	nparam
	outlierdummy
	pAIC
	pcor
	pinball
	plot.greybox
	pointLik
	polyprod
	predict.alm
	rmcb
	ro
	sm
	spread
	stepwise
	tableplot
	temporaldummy
	xregExpander
	xregMultiplier
	xregTransformer
	Index

