
Package ‘googleAuthR’
January 9, 2026

Type Package

Version 2.0.2.1

Title Authenticate and Create Google APIs

Description Create R functions that interact with OAuth2 Google APIs
<https://developers.google.com/apis-explorer/> easily,
with auto-refresh and Shiny compatibility.

URL https://code.markedmondson.me/googleAuthR/

BugReports https://github.com/MarkEdmondson1234/googleAuthR/issues

Depends R (>= 3.3.0)

Imports assertthat (>= 0.2.0), cli (>= 2.0.2), digest, gargle (>=
1.2.0), httr (>= 1.4.0), jsonlite (>= 1.6), memoise (>= 1.1.0),
rlang, utils

Suggests covr, devtools (>= 1.12.0), formatR (>= 1.4),
googleAnalyticsR, knitr, miniUI (>= 0.1.1), rmarkdown, roxygen2
(>= 5.0.0), rstudioapi, shiny (>= 0.13.2), testthat, usethis
(>= 1.6.0)

License MIT + file LICENSE

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation no

Author Mark Edmondson [aut] (ORCID: <https://orcid.org/0000-0002-8434-3881>),
Erik Grönroos [cre],
Jennifer Bryan [ctb],
Johann deBoer [ctb],
Neal Richardson [ctb],
David Kulp [ctb],
Joe Cheng [ctb]

Maintainer Erik Grönroos <erik.gronroos@8-bit-sheep.com>

Repository CRAN

Date/Publication 2026-01-09 09:00:22 UTC

1

https://developers.google.com/apis-explorer/
https://code.markedmondson.me/googleAuthR/
https://github.com/MarkEdmondson1234/googleAuthR/issues
https://orcid.org/0000-0002-8434-3881

2 Contents

Contents
gar_api_generator . 3
gar_api_page . 4
gar_attach_auto_auth . 6
gar_auth . 7
gar_auth_configure . 9
gar_auth_service . 10
gar_auto_auth . 11
gar_batch . 12
gar_batch_walk . 13
gar_cache_get_loc . 16
gar_check_existing_token . 17
gar_create_api_objects . 18
gar_create_api_skeleton . 19
gar_create_package . 19
gar_deauth . 20
gar_debug_parsing . 21
gar_discovery_api . 21
gar_discovery_apis_list . 22
gar_gce_auth . 22
gar_gce_auth_default . 23
gar_gce_auth_email . 24
gar_has_token . 25
gar_scope_config . 26
gar_service_create . 26
gar_service_provision . 28
gar_setup_auth_check . 29
gar_setup_auth_key . 30
gar_setup_clientid . 31
gar_setup_edit_renviron . 31
gar_setup_env_check . 32
gar_setup_get_authenv . 33
gar_setup_menu . 33
gar_setup_menu_do . 34
gar_set_client . 35
gar_shiny_auth . 36
gar_shiny_auth_url . 38
gar_shiny_login_ui . 39
gar_shiny_ui . 39
gar_token . 41
gar_token_info . 42
googleAuthR . 42
googleSignIn . 43
googleSignInUI . 44
silent_auth . 44
skip_if_no_env_auth . 45

Index 46

gar_api_generator 3

gar_api_generator googleAuthR data fetch function generator

Description

This function generates other functions for use with Google APIs

Usage

gar_api_generator(
baseURI,
http_header = c("GET", "POST", "PUT", "DELETE", "PATCH"),
path_args = NULL,
pars_args = NULL,
data_parse_function = NULL,
customConfig = NULL,
simplifyVector = getOption("googleAuthR.jsonlite.simplifyVector"),
checkTrailingSlash = TRUE

)

Arguments

baseURI The stem of the API call.
http_header Type of http request.
path_args A named list with name=folder in request URI, value=the function variable.
pars_args A named list with name=parameter in request URI, value=the function variable.
data_parse_function

A function that takes a request response, parses it and returns the data you need.
customConfig list of httr options such as use_proxy or add_headers that will be added to the

request.
simplifyVector Passed to fromJSON for response parsing
checkTrailingSlash

Default TRUE will append a trailing slash to baseURI if missing

Details

path_args and pars_args add default values to the baseURI. NULL entries are removed. Use "" if
you want an empty argument.

You don’t need to supply access_token for OAuth2 requests in pars_args, this is dealt with in
gar_auth()

Add custom configurations to the request in this syntax: customConfig = list(httr::add_headers("From"
= "mark@example.com")

Value

A function that can fetch the Google API data you specify

4 gar_api_page

Examples

Not run:
library(googleAuthR)
change the native googleAuthR scopes to the one needed.
options("googleAuthR.scopes.selected" = "email")

get_email <- function(){
f <- gar_api_generator("https://openidconnect.googleapis.com/v1/userinfo",

"POST",
data_parse_function = function(x) x$email,
checkTrailingSlash = FALSE)

f()
}

To use the above functions:
library(googleAuthR)
go through authentication flow
gar_auth()
s <- get_email()
s

End(Not run)

gar_api_page Takes a generated API function and lets you page through results

Description

A helper function to help with the common task of paging through large API results.

Usage

gar_api_page(
f,
page_f = function(x) x$nextLink,
page_method = c("url", "param", "path", "body"),
page_arg = NULL,
body_list = NULL

)

Arguments

f a function created by gar_api_generator

page_f A function that will extract the next page information from f(). Should return
NULL if no paging is required, or the value for page_arg if it is.

gar_api_page 5

page_method Method of paging: url will fetch by changing the fetch URL; param will fetch
the next page via a parameter set in page_arg; path will change a path variable
set in page_arg

page_arg If page_method="param", you need to set this to the parameter that will change
for each API page.

body_list If page_method="body", you need to set the body that will be used in each
API call, including the top level parameter page_arg that will be modified by
page_f

Details

The page_f function operates on the object returned from the data_parse_function of the func-
tion f

If using page_method="url" then then page_f function needs to return the URL that will fetch
the next page of results. The default finds this via x$nextLink. This is the easiest to implement if
available and is recommended.

If using page_method = "param", then page_f needs to extract the parameter specified in page_arg
that will fetch the next page of the results, or NULL if no more pages are required. e.g. if response is
x, page_f should extract the next value for the parameter of page_arg that fetches the next results.
It should also return NULL if no (more) paging is necessary. See examples. Remember to add the
paging argument (e.g. start-index) to the generated function too, so it can be modified.

Value

A list of the API page responses, that you may need to process further into one object.

Examples

Not run:
demos the two methods for the same function.
The example is for the Google Analytics management API,
you need to authenticate with that to run them.

paging by using nextLink that is returned in API response
ga_segment_list1 <- function(){

this URL will be modified by using the url_override argument in the generated function
segs <- gar_api_generator("https://www.googleapis.com/analytics/v3/management/segments",

"GET",
pars_args = list("max-results"=10),
data_parse_function = function(x) x)

gar_api_page(segs,
page_method = "url",
page_f = function(x) x$nextLink)

}

6 gar_attach_auto_auth

paging by looking for the next start-index parameter

start by creating the function that will output the correct start-index
paging_function <- function(x){

next_entry <- x$startIndex + x$itemsPerPage

we have all results e.g. 1001 > 1000
if(next_entry > x$totalResults){
return(NULL)

}

next_entry
}

remember to add the paging argument (start-index) to the generated function too,
so it can be modified.
ga_segment_list2 <- function(){

segs <- gar_api_generator("https://www.googleapis.com/analytics/v3/management/segments",
"GET",
pars_args = list("start-index" = 1,

"max-results"=10),
data_parse_function = function(x) x)

gar_api_page(segs,
page_method = "param",
page_f = paging_function,
page_arg = "start-index")

}

identical(ga_segment_list1(), ga_segment_list2())

End(Not run)

gar_attach_auto_auth Auto Authentication function for use within .onAttach

Description

To be placed within .onAttach to auto load an authentication file from an environment variable.

Usage

gar_attach_auto_auth(required_scopes, environment_var = "GAR_AUTH_FILE")

gar_auth 7

Arguments

required_scopes

A character vector of minimum required scopes for this API library
environment_var

The name of the environment variable where the file path to the authentication
file is kept
This function works with gar_auto_auth. It is intended to be placed within the
.onAttach hook so that it loads when you load your library.
For auto-authentication to work, the environment variable needs to hold a file
path to an existing auth file such as created via gar_auth or a JSON file file
download from the Google API console.

Value

Invisible, used for its side effects of calling auto-authentication.

See Also

Other authentication functions: gar_auth(), gar_auth_service(), gar_auto_auth(), gar_gce_auth(),
get_google_token(), should_skip_token_checks(), token_exists()

Examples

Not run:

.onAttach <- function(libname, pkgname){

googleAuthR::gar_attach_auto_auth("https://www.googleapis.com/auth/urlshortener", "US_AUTH_FILE")

}

will only work if you have US_AUTH_FILE environment variable pointing to an auth file location
.Renviron example
US_AUTH_FILE="/home/mark/auth/urlshortnerauth.json"

End(Not run)

gar_auth Authorize googleAuthR

Description

Wrapper of token_fetch

8 gar_auth

Usage

gar_auth(
token = NULL,
email = NULL,
scopes = getOption("googleAuthR.scopes.selected"),
app = gar_oauth_app(),
cache = gargle::gargle_oauth_cache(),
use_oob = gargle::gargle_oob_default(),
package = "googleAuthR"

)

Arguments

token an actual token object or the path to a valid token stored as an .rds file

email An existing gargle cached email to authenticate with or TRUE to authenticate
with the only email available.

scopes Scope of the request

app app as specified by gar_auth_configure

cache Where to store authentication tokens

use_oob Whether to use OOB browserless authentication

package The name of the package authenticating

Value

an OAuth token object, specifically a Token2.0, invisibly

See Also

Other authentication functions: gar_attach_auto_auth(), gar_auth_service(), gar_auto_auth(),
gar_gce_auth(), get_google_token(), should_skip_token_checks(), token_exists()

Examples

Not run:

sets GCP project to auth through
gar_auth_configure(path="path/to/gcp-client.json")

starts auth process with defaults
gar_auth()

switching between auth scopes
first time new scope manual auth, then auto if supplied email
gar_auth(email = "your@email.com",

scopes = "https://www.googleapis.com/auth/drive")

... query Google Drive functions ...

gar_auth_configure 9

gar_auth(email = "your@email.com",
scopes = "https://www.googleapis.com/auth/bigquery")

..query BigQuery functions ...

End(Not run)

gar_auth_configure Edit and view auth configuration

Description

These functions give more control over and visibility into the auth configuration than [gar_auth()]
does. ‘gar_auth_configure()‘ lets the user specify their own: * OAuth client, which is used when
obtaining a user token. * API key. If googleAuthR is de-authorized via [gar_deauth()], all requests
are sent with an API key in lieu of a token.

See the ‘vignette("get-api-credentials", package = "gargle")‘ for more. If the user does not configure
these settings, internal defaults are used.

‘gar_oauth_client()‘ and ‘gar_api_key()‘ retrieve the currently configured OAuth client and API
key, respectively.

Usage

gar_auth_configure(app, path, api_key)

gar_api_key()

gar_oauth_app()

Arguments

app A Google OAuth client, presumably constructed via gargle_oauth_client_from_json.
Note, however, that it is preferred to specify the client with JSON, using the
‘path‘ argument.

path JSON downloaded from Google Cloud Console, containing a client id and se-
cret, in one of the forms supported for the txt argument of fromJSON (typically,
a file path or JSON string).

api_key API key.

Value

* ‘gar_auth_configure()‘: An object of R6 class [gargle::AuthState], invisibly. * ‘gar_oauth_client()‘:
the current user-configured OAuth client. * ‘gar_api_key()‘: the current user-configured API key.

https://console.cloud.google.com

10 gar_auth_service

See Also

Other auth functions: gar_deauth()

Examples

see and store the current user-configured OAuth app (probaby `NULL`)
(original_app <- gar_oauth_app())

see and store the current user-configured API key (probaby `NULL`)
(original_api_key <- gar_api_key())

if (require(httr)) {
bring your own app via client id (aka key) and secret
google_app <- httr::oauth_app(
"my-awesome-google-api-wrapping-package",
key = "123456789.apps.googleusercontent.com",
secret = "abcdefghijklmnopqrstuvwxyz"

)
google_key <- "the-key-I-got-for-a-google-API"
gar_auth_configure(app = google_app, api_key = google_key)

confirm the changes
gar_oauth_app()
gar_api_key()

}

Not run:
bring your own app via JSON downloaded from Google Developers Console
gar_auth_configure(

path = "/path/to/the/JSON/you/downloaded/from/google/dev/console.json"
)

End(Not run)

restore original auth config
gar_auth_configure(app = original_app, api_key = original_api_key)

gar_auth_service JSON service account authentication

Description

As well as OAuth2 authentication, you can authenticate without user interaction via Service ac-
counts. This involves downloading a secret JSON key with the authentication details.

To use, go to your Project in the https://console.developers.google.com/apis/credentials/serviceaccountkey

and select JSON Key type. Save the file to your computer and call it via supplying the file path to
the json_file parameter.

Navigate to it via: Google Dev Console > Credentials > New credentials > Service account Key >
Select service account > Key type = JSON

gar_auto_auth 11

Usage

gar_auth_service(json_file, scope = getOption("googleAuthR.scopes.selected"))

Arguments

json_file the JSON file downloaded from Google Developer Console

scope Scope of the JSON file auth if needed

Value

(Invisible) Sets authentication token

See Also

https://developers.google.com/identity/protocols/OAuth2ServiceAccount

https://developers.google.com/identity/protocols/OAuth2ServiceAccount

Other authentication functions: gar_attach_auto_auth(), gar_auth(), gar_auto_auth(), gar_gce_auth(),
get_google_token(), should_skip_token_checks(), token_exists()

gar_auto_auth Perform auto authentication

Description

This helper function lets you use environment variables to auto-authenticate on package load, in-
tended for calling by gar_attach_auto_auth

Usage

gar_auto_auth(required_scopes, environment_var = "GAR_AUTH_FILE")

Arguments

required_scopes

Required scopes needed to authenticate - needs to match at least one
environment_var

Name of environment var that contains auth file path
The authentication file can be a .httr-oauth file created via gar_auth or a
Google service JSON file downloaded from the Google API credential console,
with file extension .json.
You can use this in your code to authenticate from a file location specified in file,
but it is mainly intended to be called on package load via gar_attach_auto_auth.
environment_var This is the name that will be called via Sys.getenv on library
load. The environment variable will contain an absolute file path to the location
of an authentication file.

12 gar_batch

Value

an OAuth token object, specifically a Token2.0, invisibly

See Also

Help files for .onAttach

Other authentication functions: gar_attach_auto_auth(), gar_auth(), gar_auth_service(),
gar_gce_auth(), get_google_token(), should_skip_token_checks(), token_exists()

gar_batch Turn a list of gar_fetch_functions into batch functions

Description

Turn a list of gar_fetch_functions into batch functions

Usage

gar_batch(
function_list,
...,
batch_endpoint = getOption("googleAuthR.batch_endpoint", default =
"https://www.googleapis.com/batch")

)

Arguments

function_list a list of functions from gar_api_generator

... further arguments passed to the data parse function of f
batch_endpoint the batch API endpoint to send to

Details

This function will turn all the individual Google API functions into one POST request to /batch.

If you need to pass multiple data parse function arguments its probably best to do it in separate
batches to avoid confusion.

Value

A list of the Google API responses

See Also

https://developers.google.com/webmaster-tools/v3/how-tos/batch

Documentation on doing batch requests for the search console API. Other Google APIs are similar.

Walk through API calls changing parameters using gar_batch_walk

Other batch functions: gar_batch_walk()

gar_batch_walk 13

Examples

Not run:

usually set on package load
options(googleAuthR.batch_endpoint = "https://www.googleapis.com/batch/urlshortener/v1")

from goo.gl API
shorten_url <- function(url){

body = list(longUrl = url)
f <- gar_api_generator("https://www.googleapis.com/urlshortener/v1/url",

"POST",
data_parse_function = function(x) x$id)

f(the_body = body)
}

from goo.gl API
user_history <- function(){

f <- gar_api_generator("https://www.googleapis.com/urlshortener/v1/url/history",
"GET",
data_parse_function = function(x) x$items)

f()
}

gar_batch(list(shorten_url("http://markedmondson.me"), user_history()))

End(Not run)

gar_batch_walk Walk data through batches

Description

Convenience function for walking through data in batches

Usage

gar_batch_walk(
f,
walk_vector,
gar_pars = NULL,
gar_paths = NULL,
the_body = NULL,
pars_walk = NULL,
path_walk = NULL,
body_walk = NULL,

14 gar_batch_walk

batch_size = 10,
batch_function = NULL,
data_frame_output = TRUE,
...,
batch_endpoint = getOption("googleAuthR.batch_endpoint", default =
"https://www.googleapis.com/batch")

)

Arguments

f a function from gar_api_generator

walk_vector a vector of the parameter or path to change
gar_pars a list of parameter arguments for f
gar_paths a list of path arguments for f
the_body a list of body arguments for f
pars_walk a character vector of the parameter(s) to modify for each walk of f
path_walk a character vector of the path(s) to modify for each walk of f
body_walk a character vector of the body(s) to modify for each walk of f
batch_size size of each request to Google /batch API
batch_function a function that will act on the result list of each batch API call
data_frame_output

if the list of lists are dataframes, you can bind them all by setting to TRUE
... further arguments passed to the data parse function of f
batch_endpoint the batch API endpoint to send

Details

You can modify more than one parameter or path arg, but it must be the same walked vector e.g.
start = end = x

Many Google APIs have batch_size limits greater than 10, 1000 is common.

The ‘f‘ function needs to be a ‘gar_api_generator()‘ function that uses one of ‘path_args‘, ‘pars_args‘
or ‘body_args‘ to construct the URL (rather than say using ‘sprintf()‘ to create the API URL).

You don’t need to set the headers in the Google docs for batching API functions - those are done
for you.

The argument ‘walk_vector‘ needs to be a vector of the values of the arguments to walk over, which
you indicate will walk over the pars/path or body arguments on the function via on of the ‘*_walk‘
arguments e.g. if walking over id=1, id=2, for a path argument then it would be ‘path_walk="id"‘
and ‘walk_vector=c(1,2,3,4)‘

The ‘gar_*‘ parameter is required to pass intended for other arguments to the function ‘f‘ you may
need to pass through.

‘gar_batch_walk()‘ only supports changing one value at a time, for one or multiple arguments (I
think only changing the ‘start-date‘, ‘end-date‘ example would be the case when you walk through
more than one per call)

‘batch_size‘ should be over 1 for batching to be of any benefit at all

The ‘batch_function‘ argument gives you a way to operate on the parsed output of each call

gar_batch_walk 15

Value

if data_frame_output is FALSE: A list of lists. Outer list the length of number of batches required,
inner lists the results from the calls

if data_frame_output is TRUE: The list of lists will attempt to rbind all the results

See Also

Other batch functions: gar_batch()

Examples

Not run:

get a webproperty per account
getAccountInfo <- gar_api_generator(

"https://www.googleapis.com/analytics/v3/management/accounts",
"GET", data_parse_function = function(x) unique(x$items$id))

getWebpropertyInfo <- gar_api_generator(
"https://www.googleapis.com/analytics/v3/management/", # don't use sprintf to construct this
"GET",
path_args = list(accounts = "default", webproperties = ""),
data_parse_function = function(x) x$items)

walkData <- function(){

here due to R lazy evaluation
accs <- getAccountInfo()
gar_batch_walk(getWebpropertyInfo,

walk_vector = accs,
gar_paths = list("webproperties" = ""),
path_walk = "accounts",
batch_size = 100, data_frame_output = FALSE)
}

do the walk
walkData()

to walk body data, be careful to modify a top level body name:
changed_emails <- lapply(email, function(x){userRef = list(email = x)})

batched <- gar_batch_walk(users,
walk_vector = changed_emails,
the_body = list(

permissions = list(
local = list(permissions)

),
userRef = list(

email = email[[1]]
)

16 gar_cache_get_loc

),
body_walk = "userRef",
batch_size = 300,
data_frame_output = FALSE)

End(Not run)

gar_cache_get_loc Setup where to put cache

Description

To cache to a file system use memoise::cache_filesystem("cache_folder"), suitable for unit
testing and works between R sessions.

The cached API calls do not need authentication to be active, but need this function to set caching
first.

Usage

gar_cache_get_loc()

gar_cache_empty()

gar_cache_setup(
mcache = memoise::cache_memory(),
invalid_func = function(req) {

tryCatch(req$status_code == 200, error =
function(x) FALSE)

}
)

Arguments

mcache A cache method from memoise.

invalid_func A function that takes API response, and returns TRUE or FALSE whether caching
takes place. Default cache everything.

Value

TRUE if successful.

gar_check_existing_token 17

Examples

Not run:

demo function to cache within
shorten_url_cache <- function(url){

body = list(longUrl = url)
f <- gar_api_generator("https://www.googleapis.com/urlshortener/v1/url",

"POST",
data_parse_function = function(x) x)

f(the_body = body)

}

only cache if this URL
gar_cache_setup(invalid_func = function(req){

req$content$longUrl == "http://code.markedmondson.me/"
})

authentication
gar_auth()
caches
shorten_url_cache("http://code.markedmondson.me")

read cache
shorten_url("http://code.markedmondson.me")

..but dont cache me
shorten_url_cache("http://blahblah.com")

End(Not run)

gar_check_existing_token

Check a token vs options

Description

Useful for debugging authentication issues

Usage

gar_check_existing_token(token = .auth$cred)

Arguments

token A token to check, default current live session token

18 gar_create_api_objects

Details

Will compare the passed token’s settings and compare to set options. If these differ, then reauthen-
tication may be needed.

Value

FALSE if the options and current token do not match, TRUE if they do.

gar_create_api_objects

Create the API objects from the Discovery API

Description

Create the API objects from the Discovery API

Usage

gar_create_api_objects(filename, api_json, format = TRUE)

Arguments

filename File to write the objects to

api_json The json from gar_discovery_api

format If TRUE will use tidy_eval on content

Value

TRUE if successful, side-effect creating filename

See Also

Other Google Discovery API functions: gar_create_api_skeleton(), gar_create_package(),
gar_discovery_api(), gar_discovery_apis_list()

gar_create_api_skeleton 19

gar_create_api_skeleton

Create an API library skeleton

Description

This will create a file with the skeleton of the API functions for the specified library

Usage

gar_create_api_skeleton(filename, api_json, format = TRUE)

Arguments

filename R file to write skeleton to

api_json The json from gar_discovery_api

format If TRUE will use tidy_eval on content

Value

TRUE if successful, side effect will write a file

See Also

Other Google Discovery API functions: gar_create_api_objects(), gar_create_package(),
gar_discovery_api(), gar_discovery_apis_list()

gar_create_package Create a Google API package

Description

Create a Google API package

Usage

gar_create_package(
api_json,
directory,
rstudio = TRUE,
check = FALSE,
github = FALSE,
format = TRUE,
overwrite = TRUE

)

20 gar_deauth

Arguments

api_json json from gar_discovery_api

directory Where to build the package

rstudio Passed to create_package, creates RStudio project file

check Perform a check on the package once done

github If TRUE will upload package to your github

format If TRUE will use tidy_eval on content

overwrite Whether to overwrite an existing directory if it exists

Details

For github upload to work you need to have your github PAT setup. See use_github.

Uses usethis to create a package structure then gar_create_api_skeleton and gar_create_api_objects
to create starting files for a Google API package.

Value

If check is TRUE, the results of the CRAN check, else FALSE

See Also

https://developers.google.com/discovery/v1/reference/apis/list

A Github repository with 154 R packages examples generated by this function.

Other Google Discovery API functions: gar_create_api_objects(), gar_create_api_skeleton(),
gar_discovery_api(), gar_discovery_apis_list()

gar_deauth Suspend authorization

Description

Put googleAuthR into a de-authorized state. Instead of sending a token, googleAuthR will send an
API key. This can be used to access public resources for which no Google sign-in is required. This
is handy for using googleAuthR in a non-interactive setting to make requests that do not require
a token. It will prevent the attempt to obtain a token interactively in the browser. The user can
configure their own API key via [gar_auth_configure()] and retrieve that key via [gar_api_key()].
In the absence of a user-configured key, a built-in default key is used.

Usage

gar_deauth()

See Also

Other auth functions: gar_auth_configure()

https://developers.google.com/discovery/v1/reference/apis/list
https://github.com/MarkEdmondson1234/autoGoogleAPI

gar_debug_parsing 21

Examples

Not run:
gar_deauth()

End(Not run)

gar_debug_parsing Read the diagnostic object returned on API parse errors.

Description

Read the diagnostic object returned on API parse errors.

Usage

gar_debug_parsing(filename = "gar_parse_error.rds")

Arguments

filename The file created from API errors, usually called gar_parse_error.rds

Details

When googleAuthR API parsing fails, it will write a file called gar_parse_error.rds to the directory.
Feed that file into this function to help diagnose the problem.

gar_discovery_api Get meta data details for specified Google API

Description

Download the discovery document for an API

Usage

gar_discovery_api(api, version, a_url = NULL)

Arguments

api The API to fetch

version The API version to fetch

a_url Supply your own discovery URL, for private APIs only

Value

Details of the API

22 gar_gce_auth

See Also

https://developers.google.com/discovery/v1/getting_started

Other Google Discovery API functions: gar_create_api_objects(), gar_create_api_skeleton(),
gar_create_package(), gar_discovery_apis_list()

gar_discovery_apis_list

Get a list of Google API libraries

Description

Does not require authentication

Usage

gar_discovery_apis_list()

Value

List of Google APIs and their resources

See Also

https://developers.google.com/discovery/v1/reference/apis/list

Other Google Discovery API functions: gar_create_api_objects(), gar_create_api_skeleton(),
gar_create_package(), gar_discovery_api()

gar_gce_auth Authenticate on Google Compute Engine

Description

This takes the metadata auth token in a Google Compute Engine instance as authentication source

Usage

gar_gce_auth(
service_account = "default",
scopes = "https://www.googleapis.com/auth/cloud-platform"

)

Arguments

service_account

Specify a different service account from the default

scopes Scopes for the authentication

https://developers.google.com/discovery/v1/getting_started
https://developers.google.com/discovery/v1/reference/apis/list

gar_gce_auth_default 23

Details

service_account is default or the service account email e.g. "service-account-key-json@projectname.iam.gserviceaccount.com"

Google Compute Engine instances come with their own authentication tokens.

It has no refresh token so you need to call for a fresh token after approx. one hour. The metadata
token will refresh itself when it has about 60 seconds left.

You can only use for scopes specified when creating the instance.

If you want to use them make sure their service account email is added to accounts you want to get
data from.

Use options(gargle.gce.use_ip = TRUE) to activate this upon kubernetes for instance using fed-
erated identity

Value

A token

See Also

gar_gce_auth_email

Other authentication functions: gar_attach_auto_auth(), gar_auth(), gar_auth_service(),
gar_auto_auth(), get_google_token(), should_skip_token_checks(), token_exists()

gar_gce_auth_default Authenticate via gcloud’s application-default login

Description

This allows you to take gcloud’s application-default login token and turns it into one that can be
used by R

Usage

gar_gce_auth_default(
scopes = getOption("googleAuthR.scopes.selected",
"https://www.googleapis.com/auth/cloud-platform")

)

Arguments

scopes The scope you created the access_token with

24 gar_gce_auth_email

Details

When authenticating on Google Cloud Platform services, if you are using services that take the
cloud scopes you can use gar_gce_auth to generate authentication.

However, for other services that require a user login (such as Google Analytics API), you need a
method of authentication where you can use your own email login. You have two options - create
a token offline and upload it to the instance, or gcloud allows you to generate your own token online
via gcloud auth application-default login && gcloud auth application-default print-access-token

This function will then take the returned access token and put it within R so it can be used as normal
with googleAuthR functions.

See Also

gcloud reference

Examples

Not run:

in the terminal, issue this gcloud command specifying the scopes to authenticate with
gcloud auth application-default login \

--scopes=https://www.googleapis.com/auth/analytics.readonly

access the URL, login and create a verification code, paste in console.

view then copy-paste the access token, to be passed into the R function
gcloud auth application-default print-access-token

In R:
gar_gce_auth_default(<token-copy-pasted>,

scopes = 'https://www.googleapis.com/auth/analytics.readonly',
cache_file = 'my_ga.auth')

use token to authenticate as you would normally with library

End(Not run)

gar_gce_auth_email Get the service email via GCE metadata

Description

Get the service email via GCE metadata

Usage

gar_gce_auth_email(service_account = "default")

https://cloud.google.com/sdk/gcloud/reference/auth/application-default/print-access-token

gar_has_token 25

Arguments

service_account

Specify a different service account from the default

Useful if you don’t know the default email and need it for other uses

Value

the email address character string

See Also

gar_gce_auth

gar_has_token Is there a token on hand?

Description

Reports whether googleAuthR has stored a token, ready for use in downstream requests.

Usage

gar_has_token()

Value

Logical.

See Also

Other low-level API functions: gar_token()

Examples

gar_has_token()

26 gar_service_create

gar_scope_config Create or add scopes to configuration

Description

Helper for working with scopes

Usage

gar_scope_config(required_scopes)

Arguments

required_scopes

character vector of scopes to add

gar_service_create Work with service accounts via the API

Description

These functions let you create a service JSON key from an OAuth2 login. You can then assign it
roles and do a one time download of a service account key to use for authentication in other Google
APIs

Usage

gar_service_create(
accountId,
projectId,
serviceName = "googleAuthR::gar_service_create",
serviceDescription = "A service account created via googleAuthR"

)

gar_service_grant_roles(
accountIds,
roles,
projectId,
type = c("serviceAccount", "user", "group")

)

gar_service_get_roles(
projectId,
accountId = NULL,
type = c("serviceAccount", "user", "group")

gar_service_create 27

)

gar_service_key(
accountId,
projectId,
file = paste0(accountId, "-auth-key.json")

)

gar_service_key_list(accountId, projectId)

gar_service_list(projectId)

gar_service_get(accountId, projectId)

Arguments

accountId The service accountId

projectId The projectId containing the service account

serviceName Name of service account
serviceDescription

Description of service account

accountIds A vector of accountIds in the form accountId@projectid.iam.gserviceaccount.com

roles A character vector of roles to give the accountIds e.g. roles/editor - see list of
roles here https://cloud.google.com/iam/docs/understanding-roles#predefined_
roles or in your GCP console https://console.cloud.google.com/iam-admin/roles/details/roles

type The type of accountId to add role for - e.g. user:mark@me.com or serviceAccount:accountId@projectid.iam.gserviceaccount.com

file The file to download the private JSON key to

Details

It will download the existing roles, and append the role you add to it here.

If you supply an accountId to gar_service_get_roles then it will return only those roles that
accountId has.

Value

If it already exists, returns it via gar_service_get, else creates the service key

See Also

Combine these functions to provision emails in one step with gar_service_provision

https://cloud.google.com/resource-manager/reference/rest/v1/projects/setIamPolicy

https://cloud.google.com/resource-manager/reference/rest/v1/projects/setIamPolicy

https://cloud.google.com/iam/docs/reference/rest/v1/projects.serviceAccounts.keys/create

Other IAM functions: gar_service_provision()

https://cloud.google.com/iam/docs/understanding-roles#predefined_roles
https://cloud.google.com/iam/docs/understanding-roles#predefined_roles
https://cloud.google.com/resource-manager/reference/rest/v1/projects/setIamPolicy
https://cloud.google.com/resource-manager/reference/rest/v1/projects/setIamPolicy

28 gar_service_provision

Examples

Not run:

all roles
projectId <- gar_set_client(

json = Sys.getenv("GAR_CLIENT_JSON"),
scopes = "https://www.googleapis.com/auth/cloud-platform")

gar_service_get_roles(projectId)

roles for one accountId
gar_service_get_roles(

projectId,
accountId = "1080525199262@cloudbuild.gserviceaccount.com")

End(Not run)
Not run:
library(googleAuthR)
gar_set_client(scopes = "https://www.googleapis.com/auth/cloud-platform")
gar_auth()
gar_service_create("test12345678", "my-project")

gar_service_get("test12345678@my-project.iam.gserviceaccount.com",
projectId = "my-project")

gar_service_grant_roles("test12345678@my-project.iam.gserviceaccount.com",
role = "roles/editor",
projectId = "my-project")

gar_service_key("test12345678", "my-project", "my-auth.json")

gar_service_list("my-project")

gar_service_key_list("test12345678", "my-project")

End(Not run)

gar_service_provision Provision a service account

Description

This uses all the gar_service_create functions to enable creating service account roles more easily

Usage

gar_service_provision(
accountId,
roles,

gar_setup_auth_check 29

json = Sys.getenv("GAR_CLIENT_JSON"),
file = paste0(accountId, "-auth-key.json"),
email = Sys.getenv("GARGLE_EMAIL")

)

Arguments

accountId The service accountId

roles A character vector of roles to give the accountIds e.g. roles/editor - see list of
roles here https://cloud.google.com/iam/docs/understanding-roles#predefined_
roles or in your GCP console https://console.cloud.google.com/iam-admin/roles/details/roles

json The file location of an OAuth 2.0 client ID json file

file The file to download the private JSON key to

email An existing gargle cached email to authenticate with or TRUE to authenticate
with the only email available.

Details

You will need the OAuth2.0 Client ID JSON from your GCP project via menu icon > APIs &
Services > Credentials > Create Credentials > OAuth client ID

You need to authenticate with a user with permission iam.serviceAccounts.create for the project.
Most often the user is an Owner/Editor

See Also

https://cloud.google.com/iam/docs/creating-managing-service-accounts#iam-service-accounts-create-rest

Other IAM functions: gar_service_create()

Examples

Not run:

gar_service_provision("my-service-account",
c("roles/viewer", "roles/bigquery.jobUser"))

End(Not run)

gar_setup_auth_check Check service key works via environment argument

Description

Check service key works via environment argument

https://cloud.google.com/iam/docs/understanding-roles#predefined_roles
https://cloud.google.com/iam/docs/understanding-roles#predefined_roles
https://cloud.google.com/iam/docs/creating-managing-service-accounts#iam-service-accounts-create-rest

30 gar_setup_auth_key

Usage

gar_setup_auth_check(
env_arg = "GCE_AUTH_FILE",
scope = "https://www.googleapis.com/auth/cloud-platform"

)

Arguments

env_arg The authentication environment argument

scope The scope of the GCP request

See Also

Other setup functions: gar_setup_auth_key(), gar_setup_clientid(), gar_setup_edit_renviron(),
gar_setup_env_check(), gar_setup_menu(), gar_setup_menu_do()

gar_setup_auth_key Create a service account for googleCloudRunner

Description

This will use your Google OAuth2 user to create a suitable service account

Usage

gar_setup_auth_key(
email = Sys.getenv("GARGLE_EMAIL"),
file = "googleauthr-auth-key.json",
session_user = NULL,
client_json = "GAR_CLIENT_JSON",
roles = NULL,
default_key = "googleauthr"

)

Arguments

email What email to open OAuth2 with

file Where to save the authentication file

session_user 1 for user level, 2 for project level, leave NULL to be prompted

client_json The location of the env arg holding client json

roles Whether to assign roles to the service key

default_key The default name of the service key

Value

TRUE if the file is ready to be setup, FALSE if need to stop

gar_setup_clientid 31

See Also

Other setup functions: gar_setup_auth_check(), gar_setup_clientid(), gar_setup_edit_renviron(),
gar_setup_env_check(), gar_setup_menu(), gar_setup_menu_do()

gar_setup_clientid Check for a client JSON

Description

Check for a client JSON

Usage

gar_setup_clientid(session_user = NULL, client_json = "GAR_CLIENT_JSON")

Arguments

session_user 1 for user level, 2 for project level, leave NULL to be prompted

client_json The environment argument to be used for client_id/secret

Value

TRUE is client_id is ready, FALSE if it is not

See Also

Other setup functions: gar_setup_auth_check(), gar_setup_auth_key(), gar_setup_edit_renviron(),
gar_setup_env_check(), gar_setup_menu(), gar_setup_menu_do()

gar_setup_edit_renviron

Setup wizard help - asking users to edit .Renviron

Description

Setup wizard help - asking users to edit .Renviron

Usage

gar_setup_edit_renviron(to_paste, session_user)

gar_setup_check_session(session_user = NULL)

32 gar_setup_env_check

Arguments

to_paste The line to paste into .Renviron

session_user whether its a 1 = user level or 2=project level .Renviron file
Intended to get user input from a menu, 1 indicating user level, 2 project level
gar_setup_check_session creates a menu for the user to choose which

See Also

Other setup functions: gar_setup_auth_check(), gar_setup_auth_key(), gar_setup_clientid(),
gar_setup_env_check(), gar_setup_menu(), gar_setup_menu_do()

Examples

Not run:

choice <- gar_setup_check_session()
gar_setup_edit_renviron("ENV_ARG=blah", session_user = choice)

End(Not run)

gar_setup_env_check Setup wizard help - check if environment argument is set

Description

Setup wizard help - check if environment argument is set

Usage

gar_setup_env_check(env_arg, set_to, edit_option = FALSE, session_user)

Arguments

env_arg The environment argument to check

set_to NULL or a string to set in .Renviron

edit_option Pass edit_option = FALSE to edit an existing environment arg

session_user 1=user, 2=project scope of .Renviron

Details

Pass edit_option = FALSE to edit an existing environment arg, TRUE will check if it exists, and
will pass if its present.

Value

TRUE once changes made

gar_setup_get_authenv 33

See Also

Other setup functions: gar_setup_auth_check(), gar_setup_auth_key(), gar_setup_clientid(),
gar_setup_edit_renviron(), gar_setup_menu(), gar_setup_menu_do()

gar_setup_get_authenv Setup wizard helper - add authentication file to .Renviron

Description

Setup wizard helper - add authentication file to .Renviron

Usage

gar_setup_get_authenv(env_arg = "GCE_AUTH_FILE", ...)

Arguments

env_arg The environment argument to set
... Other arguments passed to gar_setup_auth_key

Value

A string to paste into an .Renviron, or NULL

gar_setup_menu Setup wizard - introduction helper

Description

Salutation and initial menu

Usage

gar_setup_menu(choices, package_name = "googleAuthR")

Arguments

choices A character vector of the choices passed to menu
package_name The package the setup menu is for

Value

The number option from the menu

See Also

Other setup functions: gar_setup_auth_check(), gar_setup_auth_key(), gar_setup_clientid(),
gar_setup_edit_renviron(), gar_setup_env_check(), gar_setup_menu_do()

34 gar_setup_menu_do

gar_setup_menu_do Setup wizard help - the functions that will execute on different menu
options

Description

Setup wizard help - the functions that will execute on different menu options

Usage

gar_setup_menu_do(menu_option, trigger, do_function, stop = FALSE, ...)

Arguments

menu_option The menu option chosen from menu or gar_setup_menu

trigger What option will trigger the do_function

do_function The function in the same order as the menu options

stop Whether to stop and exit if the function comes back FALSE

... arguments passed to do_function

Details

The functions should come back with TRUE or FALSE depending on if the setting was successful.

Value

FALSE if setting was not set, TRUE if it was

See Also

Other setup functions: gar_setup_auth_check(), gar_setup_auth_key(), gar_setup_clientid(),
gar_setup_edit_renviron(), gar_setup_env_check(), gar_setup_menu()

Examples

Not run:

op <- gar_setup_menu(c("Check all settings",
"Configure authentication",
"Configure env arg 1",
"Configure env arg 2",
"Configure something else"
),
package_name = "googleAuthR")

choice <- gar_setup_check_session()

custom_env_check_f <- function(choice){

gar_set_client 35

r <- readline("project-id:")
gar_setup_env_check("ARG2",

set_to = r,
edit_option = choice == 1, #allow editing of env arg
session_user = choice)

TRUE
}

gar_setup_menu_do(op, c(1,2), my_setup_auth_f, stop = TRUE)
gar_setup_menu_do(op, c(1,3), gar_setup_env_check,

env_arg = "ARG1", set_to = "BLAH",
edit_option = choice == 1, #allow editing of env arg
session_user = choice)

gar_setup_menu_do(op, c(1,4), custom_env_check_f)
gar_setup_menu_do(op, c(1,4), my_setup_something_f)

End(Not run)

gar_set_client Setup the clientId, clientSecret and scopes

Description

Help setup the client ID and secret with the OAuth 2.0 clientID. Do not confuse with Service
account keys.

Usage

gar_set_client(
json = Sys.getenv("GAR_CLIENT_JSON"),
web_json = Sys.getenv("GAR_CLIENT_WEB_JSON"),
scopes = NULL,
activate = c("offline", "web")

)

Arguments

json The file location of an OAuth 2.0 client ID json file

web_json The file location of client ID json file for web applications

scopes A character vector of scopes to set

activate Which credential to activate

36 gar_shiny_auth

Details

This function helps set the options(googleAuthR.client_id), options(googleAuthR.client_secret)
and options(googleAuthR.scopes.selected) for you.

You can also set the web application client IDs that are used in Shiny authentication, that are set via
the options options(googleAuthR.webapp.client_id), options(googleAuthR.webapp.client_secret)

Note that if you authenticate with a cache token with different values it will overwrite them.

For successful authentication, the API scopes can be browsed via the googleAuthR RStudio addin
or the Google API documentation.

Do not confuse this JSON file with the service account keys, that are used to authenticate a service
email. This JSON only sets up which app you are going to authenticate with - use gar_auth_service
with the Service account keys JSON to perform the actual authentication.

By default the JSON file will be looked for in the location specified by the "GAR_CLIENT_JSON"
environment argument, or via "GAR_CLIENT_WEB_JSON" for webapps.

Value

The project-id the app has been set for

Author(s)

Idea via @jennybc and @jimhester from gargle and gmailr libraries.

See Also

https://console.cloud.google.com/apis/credentials

Examples

Not run:

gar_set_client("google-client.json",
scopes = "http://www.googleapis.com/auth/webmasters")

gar_auth_service("google-service-auth.json")

End(Not run)

gar_shiny_auth Create Authentication within Shiny’s server.R

Description

This can be used at the top of the server function for authentication when you have used gar_shiny_ui
to create a login page for your ui function.

In some platforms the URL you are authenticating from will not match the Docker container the
script is running in (e.g. shinyapps.io or a kubernetes cluster) - in that case you can manually set it
via ‘options(googleAuthR.redirect = http://your-shiny-url‘). In other circumstances the Shiny app
should be able to detect this itself.

https://console.cloud.google.com/apis/credentials

gar_shiny_auth 37

Usage

gar_shiny_auth(session)

Arguments

session Shiny session argument

Details

If using gar_shiny_ui, put this at the top of your server.R function

Author(s)

Based on a gist by Joe Cheng, RStudio

See Also

Other pre-load shiny authentication: gar_shiny_auth_url(), gar_shiny_login_ui(), gar_shiny_ui(),
silent_auth()

Examples

Not run:
library(shiny)
library(googleAuthR)
gar_set_client()

fileSearch <- function(query) {
googleAuthR::gar_api_generator("https://www.googleapis.com/drive/v3/files/",

"GET",
pars_args=list(q=query),
data_parse_function = function(x) x$files)()

}

ui.R
ui <- fluidPage(title = "googleAuthR Shiny Demo",

textInput("query",
label = "Google Drive query",
value = "mimeType != 'application/vnd.google-apps.folder'"),
tableOutput("gdrive")
)

server.R
server <- function(input, output, session){

this is not reactive, no need as you only reach here authenticated
gar_shiny_auth(session)

output$gdrive <- renderTable({
req(input$query)

38 gar_shiny_auth_url

no need for with_shiny()
fileSearch(input$query)

})
}

gar_shiny_ui() needs to wrap the ui you have created above.
shinyApp(gar_shiny_ui(ui), server)

End(Not run)

gar_shiny_auth_url Make a Google Authorisation URL for Shiny

Description

Set this within your login_ui where you need the Google login.

Usage

gar_shiny_auth_url(
req,
state = getOption("googleAuthR.securitycode"),
client.id = getOption("googleAuthR.webapp.client_id"),
client.secret = getOption("googleAuthR.webapp.client_secret"),
scope = getOption("googleAuthR.scopes.selected"),
access_type = c("online", "offline"),
prompt = c("consent", "select_account", "both", "none")

)

Arguments

req a Rook request, do not set as this will be used by Shiny to generate URL

state URL state

client.id client.id

client.secret client.secret

scope API scopes

access_type whether to keep the token

prompt Auto-login if user is recognised or always force signin

See Also

Other pre-load shiny authentication: gar_shiny_auth(), gar_shiny_login_ui(), gar_shiny_ui(),
silent_auth()

gar_shiny_login_ui 39

gar_shiny_login_ui A login page for Shiny

Description

An alternative to the immediate login provided by default by gar_shiny_ui

Usage

gar_shiny_login_ui(req, title = "googleAuthR Login Demo")

Arguments

req Passed to gar_shiny_auth_url to generate login URL

title The title of the page

Details

Use gar_shiny_auth_url to create the login URL. You must leave the first argument free as this is
used to generate the login, but you can pass other arguments to customise your UI.

See Also

Other pre-load shiny authentication: gar_shiny_auth(), gar_shiny_auth_url(), gar_shiny_ui(),
silent_auth()

gar_shiny_ui Create a Google login before your Shiny UI launches

Description

A function that will turn your ui object into one that will look for Google authentication before
loading the main app. Use together with gar_shiny_auth

Usage

gar_shiny_ui(ui, login_ui = silent_auth)

Arguments

ui A Shiny ui object

login_ui A UI or HTML template that is seen before the main app and contains a login in
link generated by gar_shiny_auth_url

40 gar_shiny_ui

Details

Put this at the bottom of your ui.R or pass into shinyApp wrapping your created ui.

Author(s)

Based on this gist by Joe Cheng, RStudio

See Also

Other pre-load shiny authentication: gar_shiny_auth(), gar_shiny_auth_url(), gar_shiny_login_ui(),
silent_auth()

Examples

Not run:
library(shiny)
library(googleAuthR)
gar_set_client()

fileSearch <- function(query) {
googleAuthR::gar_api_generator("https://www.googleapis.com/drive/v3/files/",

"GET",
pars_args=list(q=query),
data_parse_function = function(x) x$files)()

}

ui.R
ui <- fluidPage(title = "googleAuthR Shiny Demo",

textInput("query",
label = "Google Drive query",
value = "mimeType != 'application/vnd.google-apps.folder'"),
tableOutput("gdrive")
)

server.R
server <- function(input, output, session){

this is not reactive, no need as you only reach here authenticated
gar_shiny_auth(session)

output$gdrive <- renderTable({
req(input$query)

no need for with_shiny()
fileSearch(input$query)

})
}

gar_shiny_ui() needs to wrap the ui you have created above.
shinyApp(gar_shiny_ui(ui), server)

https://gist.github.com/jcheng5/44bd750764713b5a1df7d9daf5538aea

gar_token 41

End(Not run)

gar_token Produce configured token

Description

For internal use or for those programming around the Google API. Returns a token pre-processed
with [httr::config()]. Most users do not need to handle tokens "by hand" or, even if they need
some control, [gar_auth()] is what they need. If there is no current token, [gar_auth()] is called to
either load from cache or initiate OAuth2.0 flow. If auth has been deactivated via [gar_deauth()],
‘gar_token()‘ returns ‘NULL‘.

Usage

gar_token()

Value

A ‘request‘ object (an S3 class provided by [httr][httr::httr]).

See Also

Other low-level API functions: gar_has_token()

Examples

Not run:
req <- request_generate(

"drive.files.get",
list(fileId = "abc"),
token = gar_token()

)
req

End(Not run)

42 googleAuthR

gar_token_info Get current token summary

Description

Get details on the current active auth token to help debug issues

Usage

gar_token_info(detail_level = getOption("googleAuthR.verbose", default = 3))

Arguments

detail_level How much info to show

googleAuthR googleAuthR: Easy Authentication with Google OAuth2 APIs

Description

Get more details on the googleAuthR website.

Default options

These are the default options that you can override via options()

• googleAuthR.batch_endpoint = "https://www.googleapis.com/batch"

• googleAuthR.rawResponse = FALSE

• googleAuthR.httr_oauth_cache = ".httr-oauth"

• googleAuthR.verbose = 3

• googleAuthR.client_id = NULL

• googleAuthR.client_secret = NULL

• googleAuthR.webapp.client_id = NULL

• googleAuthR.webapp.client_secret = NULL

• googleAuthR.webapp.port = 1221

• googleAuthR.jsonlite.simplifyVector = TRUE

• googleAuthR.scopes.selected = NULL

• googleAuthR.skip_token_checks = FALSE

• googleAuthR.ok_content_types=c("application/json; charset=UTF-8", ("text/html;
charset=UTF-8"))

• googleAuthR.securitycode = paste0(sample(c(1:9, LETTERS, letters), 20, replace
= T), collapse='')

• googleAuthR.tryAttempts = 5

https://code.markedmondson.me/googleAuthR/

googleSignIn 43

Author(s)

Maintainer: Erik Grönroos <erik.gronroos@8-bit-sheep.com>

Authors:

• Mark Edmondson <m@sunholo.com> (ORCID)

Other contributors:

• Jennifer Bryan <jenny@stat.ubc.ca> [contributor]

• Johann deBoer <johanndeboer@gmail.com> [contributor]

• Neal Richardson <neal.p.richardson@gmail.com> [contributor]

• David Kulp <dkulp@cs.umass.edu> [contributor]

• Joe Cheng <joe@rstudio.com> [contributor]

See Also

Useful links:

• https://code.markedmondson.me/googleAuthR/

• Report bugs at https://github.com/MarkEdmondson1234/googleAuthR/issues

googleSignIn Google SignIn [Server Module]

Description

Shiny Module for use with googleSignInUI. Use when you don’t need to call APIs, but would like
a login to Shiny.

Usage

googleSignIn(input, output, session)

Arguments

input shiny input (must contain g_id, g_name, g_email, g_image, g_signed_in)

output shiny output (passed by shiny but not used)

session shiny session

Details

Call via shiny::callModule(googleSignIn, "your_id").

Value

A reactive list with values $id, $name, $email, $image and $signed_in.

https://orcid.org/0000-0002-8434-3881
https://code.markedmondson.me/googleAuthR/
https://github.com/MarkEdmondson1234/googleAuthR/issues

44 silent_auth

Author(s)

Based on original code by David Kulp

googleSignInUI Google SignIn [UI Module]

Description

Shiny Module for use with googleSignIn. If you just want a login to a Shiny app, without API
tokens.

Usage

googleSignInUI(id, logout_name = "Sign Out", logout_class = "btn-danger")

Arguments

id Shiny id.

logout_name Character. Custom name of the logout button.

logout_class Character. Bootstrap class name for buttons, e.g. "btn-info", "btn-dark".

Value

Shiny UI

Author(s)

Based on original code by David Kulp

See Also

https://github.com/dkulp2/Google-Sign-In

silent_auth Silent auth

Description

The default for logging in via gar_shiny_ui, this creates no login page and just takes you straight to
authentication on Shiny app load.

Usage

silent_auth(req)

https://github.com/dkulp2/Google-Sign-In

skip_if_no_env_auth 45

Arguments

req What Shiny uses to check the URL parameters

See Also

Other pre-load shiny authentication: gar_shiny_auth(), gar_shiny_auth_url(), gar_shiny_login_ui(),
gar_shiny_ui()

skip_if_no_env_auth Skip test if not authenticated

Description

Use within tests to skip if a local authentication file isn’t available through an environment variable.

Usage

skip_if_no_env_auth(env_arg)

Arguments

env_arg The name of the environment argument pointing to the auth file

Index

∗ Google Discovery API functions
gar_create_api_objects, 18
gar_create_api_skeleton, 19
gar_create_package, 19
gar_discovery_api, 21
gar_discovery_apis_list, 22

∗ IAM functions
gar_service_create, 26
gar_service_provision, 28

∗ auth functions
gar_auth_configure, 9
gar_deauth, 20

∗ authentication functions
gar_attach_auto_auth, 6
gar_auth, 7
gar_auth_service, 10
gar_auto_auth, 11
gar_gce_auth, 22

∗ batch functions
gar_batch, 12
gar_batch_walk, 13

∗ cache functions
gar_cache_get_loc, 16

∗ low-level API functions
gar_has_token, 25
gar_token, 41

∗ pre-load shiny authentication
gar_shiny_auth, 36
gar_shiny_auth_url, 38
gar_shiny_login_ui, 39
gar_shiny_ui, 39
silent_auth, 44

∗ setup functions
gar_setup_auth_check, 29
gar_setup_auth_key, 30
gar_setup_clientid, 31
gar_setup_edit_renviron, 31
gar_setup_env_check, 32
gar_setup_menu, 33

gar_setup_menu_do, 34
.onAttach, 6, 7, 12

add_headers, 3

check, 20
create_package, 20

fromJSON, 3, 9

gar_api_generator, 3, 4, 12, 14
gar_api_key (gar_auth_configure), 9
gar_api_page, 4
gar_attach_auto_auth, 6, 8, 11, 12, 23
gar_auth, 7, 7, 11, 12, 23
gar_auth_configure, 8, 9, 20
gar_auth_service, 7, 8, 10, 12, 23, 36
gar_auto_auth, 7, 8, 11, 11, 23
gar_batch, 12, 15
gar_batch_walk, 12, 13
gar_cache_empty (gar_cache_get_loc), 16
gar_cache_get_loc, 16
gar_cache_setup (gar_cache_get_loc), 16
gar_check_existing_token, 17
gar_create_api_objects, 18, 19, 20, 22
gar_create_api_skeleton, 18, 19, 20, 22
gar_create_package, 18, 19, 19, 22
gar_deauth, 10, 20
gar_debug_parsing, 21
gar_discovery_api, 18–20, 21, 22
gar_discovery_apis_list, 18–20, 22, 22
gar_gce_auth, 7, 8, 11, 12, 22, 24, 25
gar_gce_auth_default, 23
gar_gce_auth_email, 23, 24
gar_has_token, 25, 41
gar_oauth_app (gar_auth_configure), 9
gar_scope_config, 26
gar_service_create, 26, 28, 29
gar_service_get, 27
gar_service_get (gar_service_create), 26

46

INDEX 47

gar_service_get_roles
(gar_service_create), 26

gar_service_grant_roles
(gar_service_create), 26

gar_service_key (gar_service_create), 26
gar_service_key_list

(gar_service_create), 26
gar_service_list (gar_service_create),

26
gar_service_provision, 27, 28
gar_set_client, 35
gar_setup_auth_check, 29, 31–34
gar_setup_auth_key, 30, 30, 31–34
gar_setup_check_session, 32
gar_setup_check_session

(gar_setup_edit_renviron), 31
gar_setup_clientid, 30, 31, 31, 32–34
gar_setup_edit_renviron, 30, 31, 31, 33,

34
gar_setup_env_check, 30–32, 32, 33, 34
gar_setup_get_authenv, 33
gar_setup_menu, 30–33, 33, 34
gar_setup_menu_do, 30–33, 34
gar_shiny_auth, 36, 38–40, 45
gar_shiny_auth_url, 37, 38, 39, 40, 45
gar_shiny_login_ui, 37, 38, 39, 40, 45
gar_shiny_ui, 36–39, 39, 44, 45
gar_token, 25, 41
gar_token_info, 42
gargle_oauth_client_from_json, 9
get_google_token, 7, 8, 11, 12, 23
googleAuthR, 42
googleAuthR-package (googleAuthR), 42
googleSignIn, 43, 44
googleSignInUI, 43, 44

memoise, 16
menu, 33, 34

shinyApp, 40
should_skip_token_checks, 7, 8, 11, 12, 23
silent_auth, 37–40, 44
skip_if_no_env_auth, 45
Sys.getenv, 11

tidy_eval, 18–20
Token2.0, 8, 12
token_exists, 7, 8, 11, 12, 23
token_fetch, 7

use_github, 20
use_proxy, 3

	gar_api_generator
	gar_api_page
	gar_attach_auto_auth
	gar_auth
	gar_auth_configure
	gar_auth_service
	gar_auto_auth
	gar_batch
	gar_batch_walk
	gar_cache_get_loc
	gar_check_existing_token
	gar_create_api_objects
	gar_create_api_skeleton
	gar_create_package
	gar_deauth
	gar_debug_parsing
	gar_discovery_api
	gar_discovery_apis_list
	gar_gce_auth
	gar_gce_auth_default
	gar_gce_auth_email
	gar_has_token
	gar_scope_config
	gar_service_create
	gar_service_provision
	gar_setup_auth_check
	gar_setup_auth_key
	gar_setup_clientid
	gar_setup_edit_renviron
	gar_setup_env_check
	gar_setup_get_authenv
	gar_setup_menu
	gar_setup_menu_do
	gar_set_client
	gar_shiny_auth
	gar_shiny_auth_url
	gar_shiny_login_ui
	gar_shiny_ui
	gar_token
	gar_token_info
	googleAuthR
	googleSignIn
	googleSignInUI
	silent_auth
	skip_if_no_env_auth
	Index

