Package 'gamsel'

October 13, 2022

Type Package

Title Fit Regularization Path for Generalized Additive Models
Version 1.8-2
Date 2022-02-03
Description Using overlap grouped-lasso penalties, 'gamsel' selects whether a term in a 'gam' is nonzero, linear, or a non-linear spline (up to a specified max df per variable). It fits the entire regularization path on a grid of values for the overall penalty lambda, both for gaussian and binomial families.
License GPL-2
Imports foreach, mda, splines
URL https://arxiv.org/abs/1506.03850
Encoding UTF-8
RoxygenNote 7.1.2
Depends R (>= 3.6)
NeedsCompilation yes
Author Alexandra Chouldechova [aut], Trevor Hastie [aut, cre],
Balasubramanian Narasimhan [ctb], Vitalie Spinu [ctb]
Maintainer Trevor Hastie hastie@stanford.edu
Repository CRAN
Date/Publication 2022-02-04 13:50:02 UTC

R topics documented:

gamsel-package 2
basis.gen 2
cv.gamsel 3
gamsel 5
getActive 8
plot.cv.gamsel 9
plot.gamsel 10
predict.gamsel 11
print.gamsel 12
pseudo.bases 13
summary.gamsel 14
Index 16
gamsel-package Fit Regularization Path for Generalized Additive Models

Description

Using overlap grouped lasso penalties, gamsel selects whether a term in a gam is nonzero, linear, or a non-linear spline (up to a specified max df per variable). It fits the entire regularization path on a grid of values for the overall penalty lambda, both for gaussian and binomial families. Key functions are gamsel, predict.gamsel, plot.gamsel, print.gamsel, summary.gamsel, cv.gamsel, plot.cv.gamsel

Author(s)

Alexandra Chouldechova, Trevor Hastie Maintainer: Trevor Hastie <hastie@stanford. edu>
basis.gen Generate basis

Description

Generate basis

Usage

basis.gen(x, df = 6, thresh = 0.01, degree = 8, parms = NULL, ...)

Arguments

$x \quad$ A vector of values for basis.gen, or a matrix for pseudo. bases
df The degrees of freedom of the smoothing spline.
thresh If the next eigenvector improves the approximation by less than threshold, a truncated bases is returned. For pseudo. bases this can be a single value or a vector of values, which are recycled sequentially for each column of x
degree The nominal number of basis elements. The basis returned has no more than degree columns. For pseudo.bases this can be a single value or a vector of values, which are recycled sequentially for each column of x
parms A parameter set. If included in the call, these are used to define the basis. This is used for prediction.
... other arguments

Value

the basis

```
cv.gamsel Cross-validation Routine for Gamsel
```


Description

A routine for performing K-fold cross-validation for gamsel.

Usage

```
cv.gamsel(
    x,
    y,
    lambda = NULL,
    family = c("gaussian", "binomial"),
    degrees = rep(10, p),
    dfs = rep(5, p),
    bases = pseudo.bases(x, degrees, dfs, parallel = parallel, ...),
    type.measure = c("mse", "mae", "deviance", "class"),
    nfolds = 10,
    foldid,
    keep = FALSE,
    parallel = FALSE,
    ...
)
```


Arguments

x
$y \quad$ response y as in gamsel

Optional use-supplied lambda sequence. If NULL, default behaviour is for gamsel routine to automatically select a good lambda sequence.
family family as in gamsel
degrees degrees as in gamsel
dfs dfs as in gamsel
bases bases as in gamsel
type.measure Loss function for cross-validated error calculation. Currently there are four options: mse (mean squared error), mae (mean absolute error), deviance (deviance, same as mse for family="gaussian"), class (misclassification error, for use with family="binomial").
nfolds \quad Numer of folds (default is 10). Maximum value is nobs. Small values of nfolds are recommended for large data sets.

foldid	Optional vector of length nobs with values between 1 and nfolds specifying what fold each observation is in.
keep	If keep=TRUE, a prevalidated array is returned containing fitted values for each observation and each value of lambda. This means these fits are computed with this observation and the rest of its fold omitted. The folid vector is also re- turned. Default is keep=FALSE
parallel	If TRUE, use parallel foreach to fit each fold. See the example below for usage details.
\ldots	Other arguments that can be passed to gamsel.

Details

This function has the effect of running gamsel nfolds+1 times. The initial run uses all the data and gets the lambda sequence. The remaining runs fit the data with each of the folds omitted in turn. The error is accumulated, and the average error and standard deviation over the folds is computed. Note that cv.gamsel does NOT search for values for gamma. A specific value should be supplied, else gamma=. 4 is assumed by default. If users would like to cross-validate gamma as well, they should call cv.gamsel with a pre-computed vector foldid, and then use this same fold vector in separate calls to cv.gamsel with different values of gamma. Note also that the results of cv.gamsel are random, since the folds are selected at random. Users can reduce this randomness by running cv .gamsel many times, and averaging the error curves.

Value

an object of class "cv.gamsel" is returned, which is a list with the ingredients of the crossvalidation fit.
lambda the values of lambda used in the fits.
cvm The mean cross-validated error - a vector of length length(lambda).
cvsd estimate of standard error of cvm.
cvup upper curve $=c v m+c v s d$.
cvlo lower curve $=c v m-c v s d$.
nzero number of non-zero coefficients at each lambda.
name a text string indicating type of measure (for plotting purposes).
gamsel.fit a fitted gamsel object for the full data.
lambda.min value of lambda that gives minimum cvm.
lambda.1se largest value of lambda such that error is within 1 standard error of the minimum.
fit.preval if keep=TRUE, this is the array of prevalidated fits. Some entries can be NA, if that and subsequent values of lambda are not reached for that fold
foldid if keep=TRUE, the fold assignments used
index.min the sequence number of the minimum lambda.
index.1se the sequence number of the 1 se lambda value.

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie hastie@stanford.edu

References

Chouldechova, A. and Hastie, T. (2015) Generalized Additive Model Selection

See Also

gamsel, plot function for cv.gamsel object.

Examples

```
##data=gamsel:::gendata(n=500,p=12,k.lin=3,k.nonlin=3, deg=8,sigma=0.5)
data = readRDS(system.file("extdata/gamsel_example.RDS", package = "gamsel"))
attach(data)
bases=pseudo.bases(X, degree=10,df=6)
# Gaussian gam
gamsel.out=gamsel (X, y, bases=bases)
par(mfrow=c(1, 2),mar=c (5,4,3,1))
summary(gamsel.out)
gamsel.cv=cv.gamsel(X, y,bases=bases)
par(mfrow=c(1,1))
plot(gamsel.cv)
par(mfrow=c(3,4))
plot(gamsel.out, newx=X,index=20)
```

gamsel Fit Regularization Path for Gaussian or Binomial Generalized Additive Model

Description

Using overlap grouped lasso penalties, gamsel selects whether a term in a gam is nonzero, linear, or a non-linear spline (up to a specified max df per variable). It fits the entire regularization path on a grid of values for the overall penalty lambda, both for gaussian and binomial families.

Usage

gamsel(
x ,
y,
num_lambda = 50,
lambda = NULL,
family = c("gaussian", "binomial"),

```
    degrees = rep(10, p),
    gamma = 0.4,
    dfs = rep(5, p),
    bases = pseudo.bases(x, degrees, dfs, parallel = parallel, ...),
    tol = 1e-04,
    max_iter = 2000,
    traceit = FALSE,
    parallel = FALSE,
)
```


Arguments

x	Input (predictor) matrix of dimension nobs x nvars. Each observation is a row.
y	Response variable. Quantitative for family="gaussian" and with values in $\{0,1\}$ for family="binomial"
num_lambda	Number of lambda values to use. (Length of lambda sequence.)
lambda	User-supplied lambda sequence. For best performance, leave as NULL and allow the routine to automatically select lambda. Otherwise, supply a (preferably gradually) decreasing sequence.
family	Response type. "gaussian" for linear model (default). "binomial" for logistic model.
degrees	An integer vector of length nvars specifying the maximum number of spline basis functions to use for each variable.
gamma	Penalty mixing parameter $0 \leq \gamma \leq 1$. Values $\gamma<0.5$ penalize linear fit less than non-linear fit. The default is $\gamma=0.4$, which encourages a linear term over a nonlinear term.
dfs	Numeric vector of length nvars specifying the maximum (end-of-path) degrees of freedom for each variable.
bases	A list of orthonormal bases for the non-linear terms for each variable. The function pseudo.bases generates these, using the parameters dfs and degrees. See the documentation for pseudo. bases.
tol	Convergence threshold for coordinate descent. The coordinate descent loop continues until the total change in objective after a pass over all variables is less than tol. Default is $1 \mathrm{e}-4$.
max_iter	Maximum number of coordinate descent iterations over all the variables for each lambda value. Default is 2000.
traceit	If TRUE, various information is printed during the fitting process.
parallel	passed on to the pseudo.bases() function. Uses multiple process if available.
	additional arguments passed on to pseudo.bases()

Details

The sequence of models along the lambda path is fit by (block) cordinate descent. In the case of logistic regression the fitting routine may terminate before all num_lambda values of lambda have
been used. This occurs when the fraction of null deviance explained by the model gets too close to 1 , at which point the fit becomes numerically unstable. Each of the smooth terms is computed using an approximation to the Demmler-Reinsch smoothing spline basis for that variable, and the accompanying diagonal pernalty matrix.

Value

An object with S3 class gamsel. \%\% If it is a LIST, use
intercept Intercept sequence of length num_lambda
alphas nvars x num_lambda matrix of linear coefficient estimates
betas sum(degrees) x num_lambda matrix of non-linear coefficient estimates
lambdas The sequence of lambda values used
degrees \quad Number of basis functions used for each variable
parms A set of parameters that capture the bases used. This allows for efficient generation of the bases elements for predict.gamsel
, the predict method for this class.
family "gaussian" or "binomial"
nulldev Null deviance (deviance of the intercept model)
dev.ratio Vector of length num_lambda giving fraction of (null) deviance explained by each model along the lambda sequence
call The call that produced this object
\% \% ...

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie hastie@stanford.edu

References

Chouldechova, A. and Hastie, T. (2015) Generalized Additive Model Selection, https://arxiv. org/abs/1506. 03850

See Also

predict.gamsel, cv.gamsel, plot.gamsel, summary.gamsel, basis.gen,

Examples

```
##data=gamsel:::gendata(n=500,p=12,k.lin=3,k.nonlin=3, deg=8,sigma=0.5)
data = readRDS(system.file("extdata/gamsel_example.RDS", package = "gamsel"))
attach(data)
bases=pseudo.bases(X, degree=10,df=6)
# Gaussian gam
```

```
    gamsel.out=gamsel(X, y, bases=bases)
    par(mfrow=c(1,2),mar=c(5,4,3,1))
    summary(gamsel.out)
    gamsel.cv=cv.gamsel(X, y, bases=bases)
    par(mfrow=c(1,1))
    plot(gamsel.cv)
    par(mfrow=c(3,4))
    plot(gamsel.out,newx=X, index=20)
    # Binomial model
    gamsel.out=gamsel(X,yb,family="binomial")
    par(mfrow=c(1,2),mar=c(5,4,3,1))
    summary (gamsel.out)
    par(mfrow=c(3,4))
    plot(gamsel.out,newx=X,index=30)
```

 getActive Returns active variables

Description

Extract active variables of different kinds from a gamsel object

Usage

```
getActive(
    object,
    index = NULL,
    type = c("nonzero", "linear", "nonlinear"),
    EPS = 0
)
```


Arguments

object	gamsel object
index	index or vector of indices at which to obtain active information. NULL returns all.
type	type of active variables to report. One of c("nonzero", "linear", "nonlinear")
EPS	threshold for what is nonzero; default is 0

Details

Returns a vector of variables indices of variables having the desired properties.

Value

vector of indices

```
plot.cv.gamsel Plotting Routine for Gamsel Cross-Validation Object
```


Description

Produces a cross-validation curve with standard errors for a fitted gamsel objecty.

Usage

```
## S3 method for class 'cv.gamsel'
```

plot(x, sign.lambda = 1, ...)

Arguments

x
cv.gamsel object
sign.lambda

Either plot against log(lambda) (default) against -lambda if sign. lambda=-1.
Optional graphical parameters to plot.

Details

A plot showing cross-validation error is produced. Nothing is returned.

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie hastie@stanford.edu

References

Chouldechova, A. and Hastie, T. (2015) Generalized Additive Model Selection

Examples

```
##data=gamsel:::gendata(n=500,p=12,k.lin=3,k.nonlin=3, deg=8,sigma=0.5)
data = readRDS(system.file("extdata/gamsel_example.RDS", package = "gamsel"))
attach(data)
bases=pseudo.bases(X, degree=10,df=6)
# Gaussian gam
gamsel.out=gamsel (X, y, bases=bases)
gamsel.cv=cv.gamsel(X,y,bases=bases)
par(mfrow=c(1,1))
plot(gamsel.cv)
```


Description

Produces plots of the estimated functions for specified variables at a given value of lambda.

Usage

```
## S3 method for class 'gamsel'
    plot(x, newx, index, which = 1:p, rugplot = TRUE, ylims, ...)
```


Arguments

$x \quad$ Fitted gamsel object.
newx nobs_new x p matrix giving values of each predictor at which to plot.
index Index of lambda value (i.e., model) for which plotting is desired.
which Which values to plot. Default is all variables, i.e. $\{1,2, \ldots$, nvars $\}$. Besides indices, which can take two special values: "nonzero" will plot only the nonzero functions, and "nonlinear" only the nonlinear functions.
rugplot If TRUE, a rugplot showing values of x is shown at the bottom of each fitted function plot.
ylims $\quad y l i m$ argument for plotting each curve, which overides the default which is the range of all the functions.
... Optional graphical parameters to plot.

Details

A plot of the specified fitted functions is produced. Nothing is returned.

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie hastie@stanford.edu

References

Chouldechova, A. and Hastie, T. (2015) Generalized Additive Model Selection

See Also

gamsel, and print.gamsel, summary.gamsel

Examples

```
##set.seed(1211)
##data=gamsel:::gendata(n=500,p=12,k.lin=3,k.nonlin=3,deg=8,sigma=0.5)
data = readRDS(system.file("extdata/gamsel_example.RDS", package = "gamsel"))
attach(data)
bases=pseudo.bases(X, degree=10,df=6)
# Gaussian gam
gamsel.out=gamsel (X, y, bases=bases)
par(mfrow=c(3,4))
plot(gamsel.out,newx=X, index=20)
```

```
predict.gamsel Gamsel Prediction Routine
```


Description

Make predictions from a gamsel object.

Usage

```
    ## S3 method for class 'gamsel'
    predict(
        object,
        newdata,
        index = NULL,
        type = c("link", "response", "terms", "nonzero"),
    )
```


Arguments

object	Fitted gamsel object.
newdata	
index	Index of model in the sequence for which plotting is desired. Note, this is NOT a lambda value.
type	Type of prediction desired. Type link gives the linear predictors for "binomial", and fitted values for "gaussian". Type response gives fitted probabilities for "binomial" and fitted values for "gaussian". Type "terms" returns a matrix of fitted functions, with as many columns as there are variables. Type nonzero returns a list of the indices of nonzero coefficients at the given lambda index.
	Not used

Value

Either a vector aor a matrix is returned, depending on type.

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie hastie@stanford.edu

References

Chouldechova, A. and Hastie, T. (2015) Generalized Additive Model Selection

See Also

gamsel, cv.gamsel, summary.gamsel, basis.gen

Examples

```
##data=gamsel:::gendata(n=500,p=12,k.lin=3,k.nonlin=3, deg=8,sigma=0.5)
data = readRDS(system.file("extdata/gamsel_example.RDS", package = "gamsel"))
attach(data)
bases=pseudo.bases(X, degree=10,df=6)
# Gaussian gam
gamsel.out=gamsel (X, y,bases=bases)
preds=predict(gamsel.out, X, index=20, type="terms")
```

```
print.gamsel print a gamsel object
```


Description

Print a summary of the gamsel path at each step along the path

Usage

\#\# S3 method for class 'gamsel'
print(x, digits $=\max (3$, getOption("digits") - 3), ...)

Arguments

x
fitted gamsel object
digits significant digits in printout
... additional print arguments

Details

The call that produced the object x is printed, followed by a five-column matrix with columns NonZero, Lin, NonLin, \%Dev and Lambda. The first three columns say how many nonzero, linear and nonlinear terms there are. \%Dev is the percent deviance explained (relative to the null deviance).

Value

The matrix above is silently returned

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie hastie@stanford.edu

References

Chouldechova, A. and Hastie, T. (2015) Generalized Additive Model Selection

See Also

predict.gamsel, cv.gamsel, plot.gamsel, summary.gamsel, basis.gen

```
pseudo.bases Generate pseudo-spline bases
```


Description

Generate an approximation to the Demmler-Reinsch orthonormal bases for smoothing splines, using orthogonal polynomials. basis.gen generates a basis for a single x, and pseudo.bases generates a list of bases for each column of the matrix x .

Usage

pseudo. bases(x, degree $=8$, $\mathrm{df}=6$, parallel $=$ FALSE, \ldots)

Arguments

x
degree
df
parallel
...

A vector of values for basis.gen, or a matrix for pseudo. bases
The nominal number of basis elements. The basis returned has no more than degree columns. For pseudo.bases this can be a single value or a vector of values, which are recycled sequentially for each column of x
df The degrees of freedom of the smoothing spline.
if TRUE, parallelize
other arguments for basis.gen can be passed through to [basis.gen]

Details

basis.gen starts with a basis of orthogonal polynomials of total degree. These are each smoothed using a smoothing spline, which allows for a one-step approximation to the Demmler-Reinsch basis for a smoothing spline of rank equal to the degree. See the reference for details. The function also approximates the appropriate diagonal penalty matrix for this basis, so that the a approximate smoothing spline (generalized ridge regression) has the target df.

Value

An orthonormal basis is returned (a list for pseudo.bases). This has an attribute parms, which has elements coefsCoefficients needed to generate the orthogonal polynomials rotateTransformation matrix for transforming the polynomial basis dpenalty values for the diagonal penalty dfdf used degreenumber of columns

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie hastie@stanford.edu

References

T. Hastie Pseudosplines. (1996) JRSSB 58(2), 379-396.

Chouldechova, A. and Hastie, T. (2015) Generalized Additive Model Selection

Examples

```
##data=gamsel:::gendata(n=500,p=12,k.lin=3,k.nonlin=3, deg=8, sigma=0.5)
data = readRDS(system.file("extdata/gamsel_example.RDS", package = "gamsel"))
attach(data)
bases=pseudo.bases(X, degree=10,df=6)
## Not run:
    require(doMC)
    registerDoMC(cores=4)
    bases=pseudo.bases(X, degree=10,df=6,parallel=TRUE)
## End(Not run)
```

summary.gamsel

Gamsel summary routine

Description

This makes a two-panel plot of the gamsel object.

Usage

\#\# S3 method for class 'gamsel'
summary (object, label = FALSE, ...)

Arguments

object gamsel object
label if TRUE, annotate the plot with variable labels. Default is FALSE
... additional arguments to summary

Details

A two panel plot is produced, that summarizes the linear components and the nonlinear components, as a function of lambda. For the linear components, it is the coefficient for each variable. For the nonlinear, we see the norm of the nonlinear coefficients.

Value

Nothing is returned.

Author(s)

Alexandra Chouldechova and Trevor Hastie
Maintainer: Trevor Hastie hastie@stanford.edu

References

Chouldechova, A. and Hastie, T. (2015) Generalized Additive Model Selection

See Also

gamsel, and methods plot, print and predict for cv.gamsel object.

Examples

```
##data=gamsel:::gendata(n=500,p=12,k.lin=3,k.nonlin=3,deg=8,sigma=0.5)
data = readRDS(system.file("extdata/gamsel_example.RDS", package = "gamsel"))
attach(data)
bases=pseudo.bases(X, degree=10,df=6)
# Gaussian gam
gamsel.out=gamsel(X,y,bases=bases)
par(mfrow=c(1,2),mar=c(5,4,3,1))
summary(gamsel.out)
```


Index

```
* additive
    gamsel-package, 2
* generalized
    gamsel-package, 2
* models
    gamsel-package, 2
* nonparametric
        cv.gamsel, 3
        gamsel, 5
        plot.cv.gamsel,9
        plot.gamsel, 10
        predict.gamsel,11
        print.gamsel,12
        pseudo.bases,13
        summary.gamsel,14
* package
        gamsel-package, 2
* regression
        cv.gamsel, 3
        gamsel, 5
        gamsel-package, 2
        plot.cv.gamsel,9
        plot.gamsel,10
        predict.gamsel,11
        print.gamsel, 12
        pseudo.bases,13
        summary.gamsel,14
* smooth
        cv.gamsel, 3
        gamsel, 5
        plot.cv.gamsel,9
        plot.gamsel, 10
        predict.gamsel,11
        print.gamsel,12
        pseudo.bases,13
        summary.gamsel,14
basis.gen, 2, 7, 12, 13
cv.gamsel, 2, 3, 7, 12, 13
```

