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COMDistribution Conway-Maxwell-Poisson (COM) Distribution
Description

These functions provide the density function, distribution function, quantile function, and random
number generation for the Conway-Maxwell-Poisson (COM) Distribution

Usage

dcom(x, mu = NULL, lambda = 1, nu = 1, log = FALSE)

pcom(q, mu = NULL, lambda = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)

gcom(p, mu = NULL, lambda = 1, nu = 1)

rcom(n, mu = NULL, lambda = 1, nu = 1)

Arguments

X numeric value or a vector of values.

mu optional. Numeric value or vector of mean values for the distribution (the values
have to be greater than 0).

lambda optional. Numeric value or vector of values for the rate parameter of the distri-
bution (the values have to be greater than 0). If ‘mu‘ is provided, ‘lambda‘ is
ignored.

nu optional. Numeric value or vector of values for the decay parameter of the dis-
tribution ((the values have to be greater than 0).

log logical; if TRUE, probabilities p are given as log(p).

q quantile or a vector of quantiles.
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lower.tail logical; if TRUE, probabilities p are P[X < z] otherwise, P[X > x].
log.p logical; if TRUE, probabilities p are given as log(p).
p probability or a vector of probabilities.
n the number of random numbers to generate.
Details

dcom computes the density (PDF) of the COM Distribution.

pcom computes the CDF of the COM Distribution.

gcom computes the quantile function of the COM Distribution.

rcom generates random numbers from the COM Distribution.

The Probability Mass Function (PMF) for the Conway-Maxwell-Poisson distribution is:

A.’I)
f@v) = oz

Where A and v are distribution parameters with A > 0 and v > 0, and Z(\, v) is the normalizing
constant.

The normalizing constant is given by:
oo )\"
Z(\v) = —
( ’ V) ngo (n')y
The mean and variance of the distribution are given by:

Bla] = j = A2 loa(Z(\,v))

4]
V =\~
ar(x) 6)\u

When the mean value is given, the rate parameter (\) is computed using the mean and the decay
parameter (v). This is useful to allow the calculation of the rate parameter when the mean is known
(e.g., in regression))

Value

dcom gives the density, pcom gives the distribution function, qcom gives the quantile function, and
rcom generates random deviates.

The length of the result is determined by n for rcom, and is the maximum of the lengths of the
numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.

Examples

dcom(1, mu=0.75, nu=3)
pcom(c(0,1,2,3,5,7,9,10), lambda=0.75, nu=0.75)
qcom(c(0.1,0.3,0.5,0.9,0.95), mu=0.75, nu=0.75)
rcom(30, mu=0.75, nu=0.5)
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cor2cov Generate a covariance matrix using a correlation matrix and vector
of standard deviations

Description

Generate a covariance matrix using a correlation matrix and vector of standard deviations

Usage

cor2cov(C, S)

Arguments

C A correlation matrix.

S A vector of standard deviations.
Value

A covariance matrix

Examples

C <- matrix(c(1,-0.3,0.7,-0.3,1,-0.2,0.7,-0.2,1), 3, 3)
S <- c(0.5, 2, 1.25)
cor2cov(C,S)

corr_haltons Generate Correlated Random Variables Using Halton or Scrambled
Halton Draws

Description

This function generates N correlated random variables using Halton or scrambled Halton draws.
The function supports normal and truncated normal distributions.

Usage

corr_haltons(
means,
cholesky = NULL,
stdev = NULL,
correlations = NULL,
hdraws = NULL,
ndraws = 500,
scrambled = FALSE,
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dist = "normal”,
lower = -Inf,
upper = Inf
)
Arguments
means A numeric vector of means for each variable.
cholesky A Cholesky decomposition matrix to introduce correlation.
stdev A numeric vector of standard deviations for each variable. If provided, the func-
tion will use these values instead of the Cholesky decomposition matrix (must
also provide a correlation matrix if providing standard deviations). Default is
NULL.
correlations A correlation matrix to introduce correlation. If provided, the function will use
these values instead of the Cholesky decomposition matrix (must also provide
standard deviations). Default is NULL.
hdraws A matrix of Halton or scrambled Halton draws. If provided, the function will
use these draws instead of generating new ones. Default is NULL.
ndraws An integer specifying the number of values to simulate for each variable. Default
is 500.
scrambled A logical value indicating whether to use scrambled Halton draws. Default is
FALSE.
dist A character string specifying the distribution type. Options are "normal" and
"truncated_normal". Default is "normal".
lower A numeric value specifying the lower bound for truncated normal distribution.
Default is -Inf.
upper A numeric value specifying the upper bound for truncated normal distribution.
Default is Inf.
Value

A matrix with N columns and ndraws rows containing the simulated values for the correlated random

variables.

Examples

# Define mean, correlation, and standard deviations

means <- c(3, 2, 0.9)

sdevs <- ¢(0.25,1.5,0.8)

CORR <- matrix(c(1, -0.3, 0.5, -0.3, 1, -0.2, 0.5, -0.2, 1), 3, 3)

# Create the Cholesky decomposition matrix and set values for ndraws, etc.

ndraws <- 5000

scrambled <- TRUE

dist <- "normal”

# simulated the data
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simulated_data <- corr_haltons(means, stdev=sdevs, correlations=CORR,
ndraws=ndraws, scrambled=scrambled,
dist=dist)

# look at the mean, standard deviation, and correlation of the simulated data
apply(simulated_data, 2, mean)

apply(simulated_data, 2, sd)

cor(simulated_data)

# providing a cholesky decomposition matrix

dist <- "normal”

cholesky <- chol(cor2cov(CORR, sdevs))

simulated_data <- corr_haltons(means, cholesky=cholesky, ndraws=ndraws,
scrambled=scrambled, dist=dist)

apply(simulated_data, 2, mean)

apply(simulated_data, 2, sd)

cor(simulated_data)

# Truncated normal

dist <- "truncated_normal”

lower <- @

upper <- 30

simulated_data <- corr_haltons(means, cholesky=cholesky, ndraws=ndraws,
scrambled=scrambled, dist=dist,
lower=lower, upper=upper)

apply(simulated_data, 2, mean)

apply(simulated_data, 2, sd)

cor(simulated_data)

countreg Count regression models

Description

The purpose of this function is to estimate count regression models using maximum likelihood esti-
mation (MLE) or Maximum Simulated Likelihood Estimation (MSLE). The function can estimate
the following models:

* Poisson (Poisson)

* Negative Binomial 1 (NB1)

* Negative Binomial 2 (NB2)

* Negative Binomial P (NBP)

* Poisson-Lognormal (PLN)

* Poisson-Generalized-Exponential (PGE)

* Poisson-Inverse-Gaussian Type 1 (PIG1)

* Poisson-Inverse-Gaussian Type 2 (PIG2)
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¢ Poisson-Inverse-Gamma (PIG)

* Poisson-Lindley (PL)

* Poisson-Lindley-Gamma (PLG), also known as the Negative Binomial-Lindley (NBL)
* Poisson-Lindley-Lognormal (PLL)

* Poisson-Weibull (PW)

* Sichel (SI)

* Generalized Waring (GW)

* Conway-Maxwell-Poisson (COM)

Usage
countreg(
formula,
data,
family = "NB2",
offset = NULL,
weights = NULL,

verbose = FALSE,

dis_param_formula_1 = NULL,
dis_param_formula_2 = NULL,
underreport_formula = NULL,
underreport_family = "logit",
ndraws = 1500,
method = "NM",
max.iters = 1000,
start.vals = NULL,
stderr = "normal”,
bootstraps = NULL
)
Arguments
formula a symbolic description of the model to be fitted.
data a data frame containing the variables in the model.
family the name of the distribution/model type to estimate. The default "NB2" is the
standard negative binomial distribution with a log link. other options are listed
below.
offset the name of a variable, or vector of variable names, in the data frame that should
be used as an offset (i.e., included but forced to have a coefficient of 1). The
normal method of setting an offset in the equation can also be used (overrides
the offset option).
weights the name of a variable in the data frame that should be used as a frequency
weight.
verbose an optional parameter. If ‘TRUE’, the function will print out the progress of the

model fitting. Default is ‘FALSE*.
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dis_param_formula_1

a symbolic description of the model for the natural log of the dispersion parame-
ter or first parameter of the count distribution used. Further details are provided
below.

dis_param_formula_2

a symbolic description of the model for the second parameter of the count dis-
tribution used. Further details are provided below.

underreport_formula

an optional formula to estimate the underreporting for any of the count model
options. The underreporting is estimated as a function (logit or probit) of the
predictors in the model. For the model to be tractable, the independent variables
cannot be the exact same as the count model. The default is ‘NULL".

underreport_family

ndraws

method

max.iters
start.vals

stderr

bootstraps

Details

the name of the distribution/model type to estimate the underreporting portion of
the model when ‘underreport_formula“ is specified. The default is "logit" for a
binary logistic regression model. The other option is "probit" for a probit model.

The number of Halton draws for integrating the distribution being compounded
with the Poisson distribution when there is not a closed-form solution. Default
is 1500. It is recommended to test different numbers of draws to determine if
the model is stable (i.e., doesn’t change or has minimal change as the number of
draws changes within a reasonable range).

Optimization method to be used for maximum likelihood estimation. See ‘max-
Lik* documentation for options. The default is "NM" for the Nelder-Mead
method.

Maximum number of iterations for the optimization method.
Optional vector of starting values for the optimization.

Type of standard errors to use. The default is "normal". Other options include
"boot" for bootstrapped standard errors, or "robust" for robust standard errors.

Optional integer specifying the number of bootstrap samples to be used for esti-
mating standard errors when ‘stderr‘= "boot". Note that this currently does not
work when an offset variable is used.

For the ‘family* argument, the following options are available:

* "POISSON" for Poisson distribution with a log link.
* "NB1" for Negative Binomial 1 distribution with a log link.

* "NB2" for Negative Binomial 2 distribution with a log link (i.e., the standard negative binomial

model).

* "NBP" for Negative Binomial P distribution with a log link.

* "PLN" for Poisson-Lognormal distribution with a log link.

* "PGE" for Poisson-Generalized-Exponential distribution with a log link.

» "PIG1" for Poisson-Inverse-Gaussian Type-1 distribution with a log link.

» "PIG2" for Poisson-Inverse-Gaussian Type-2 distribution with a log link.
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* "PIG" for Poisson-Inverse-Gamma distribution with a log link.

» "PL" for Poisson-Lindley distribution with a log link.

* "PLG" for Poisson-Lindley-Gamma distribution with a log link.

» "PLL" for Poisson-Lindley-Lognormal distribution with a log link.

* "PW" for Poisson-Weibull distribution with a log link.

» "SI" for Sichel distribution with a log link.

* "GW" for Generalized Waring distribution with a log link.

* "COM" for Conway-Maxwell-Poisson (COM) distribution with a log link.
The ‘dis_param_formula_1‘ and ‘dis_param_formula_2° parameters are used to estimate the dis-
persion parameter or other parameters of the count distribution used. This leads to the distributions
parameters being functions rather than constants in the model. For example, if the user wants to
estimate the overdispersion parameter of the Negative Binomial 2 distribution as a function of the
variable ‘x1° and ‘x2°, the user would specify ‘dis_param_formula_1 = ~ x1 + x2°. In the case of

the Negative Binomial distributions, the model is known as a Generalized Negative Binomial model
when the overdispersion parameter is specified as a function.

The function linking the distribution parameters to the predictors is:

Param = exp((Intercept) + Z BX)

The parameters for the different models are as follows:

For ‘dis_param_formula_1°, the models are for the parameters:
* In(«) for the Negative Binomial 1 model.
* In(«a) for the Negative Binomial 2 model.
n(«) for the Negative Binomial P model.
* In(o) for the Poisson-Lognormal model.
* shape parameter for the Poisson-Generalized-Exponential model.
. ln( ) for the Poisson-Inverse-Gaussian model.
In(n) for the Poisson-Inverse-Gamma model.
* In(0) for the Poisson-Lindley model.
In(#) for the Poisson-Lindley-Gamma model.
In(#) for the Poisson-Lindley-Lognormal model.
* In(«) for the Poisson-Weibull model.
¢ ~ for the Sichel model.
* [ for the Generalized Waring model.

* In(v) for the Conway-Maxwell-Poisson model.
For ‘dis_param_formula_2°, the models are for the parameters:

* Not Applicable for the Negative Binomial 1 model.
* Not Applicable for the Negative Binomial 2 model.
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* p for the Negative Binomial P model.

* Not Applicable for the Poisson-Lognormal model.

* scale parameter for the Poisson-Generalized-Exponential model.

* Not Applicable for the Poisson-Inverse-Gaussian model.

* Not Applicable for the Poisson-Inverse-Gamma model.

» Not Applicable for the Poisson-Lindley model.

* In(a) for the Poisson-Lindley-Gamma model.

* In(o) for the Poisson-Lindley-Lognormal model.

* In(o) for the Poisson-Weibull model.

* In(o) for the Sichel model.

* In(p) for the Generalized Waring model.

* Not Applicable for the Conway-Maxwell-Poisson model.
The ‘ndraws‘ parameter is used to estimate the distribution when there is not a closed-form solution.
This uses Halton draws to integrate the distribution being compounded with the Poisson distribution.
The default is 1500. The models this is applicable for include:

* Poisson-Lognormal

* Poisson-Generalized-Exponential

* Poisson-Lindley-Gamma (more efficient than using hypergeometric functions)

* Poisson-Lindley-Lognormal

* Poisson-Weibull

Value
An object of class ‘countreg‘ which is a list with the following components:

* model: the fitted model object.
¢ data: the data frame used to fit the model.
e call: the matched call.

e formula: the formula used to fit the model.

Model Details

## Poisson Model This implements the Poisson regression model using Maximum Likelihood Es-
timation, as opposed to the Iteratively Reweighted Least Squares (IRLS) method used in the ‘glm*
function.

The PMF and log-likelihood functions are:
efﬂuy

PY =y) = )

n

LLPoisson(B) = Z [_,ui + Y hl(/'ci) - ln(yz')]

i=1
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The mean is:
p = exp(Xp)

The variance is:
Var(Y) =

## Negative Binomial Models**

The NB-1, NB-2, and NB-P versions of the negative binomial distribution are based on Greene
(2008). The details of each of these are provided below.

### NB-1 Model The PMF and log-likelihood functions are:

PY =y) = F;!y;(rg%) (g%u)g (gh)y

L (6,0) = 3 [T (4 -+ )m(ﬂz)myﬂwgln(if_{ui)+yi1n<#/j;m)]

The mean is:

p = exp(XB)

The variance is:
Var(Y) = p+ au

### NB-2 Model The PMF and log-likelihood functions are:

v == ) () ()’

a +yiln [ L1
o+ g o+ g

n

LLng, = Z [hlr(yi +a)—InT(a) —Iny! +aln (

i=1

The mean is:
p = exp(Xp)

The variance is:
Var(Y) = p + oy

### NB-P Model The PMF and log-likelihood functions are:

2—p 2—p “T Yy
Py =y = W) (S o
YT \ 2 4 u £t

$ ;" ;" pi " ut i
LLngp(B,a,p) = Z InT [y, + = —InT[—=— ] —lny!+—~—1In e pa +yiln | ——
i=1 @ a « By, wi "

e

The mean is:
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The variance is:
Var(Y) = p + ap”

## Poisson-Lognormal (PLN) Model The compound Probability Mass Function(PMF) for the Poisson-
Lognormal distribution is:

o0 \YyYe— AT €IP <_an0(§)> p

f@MJ%:A . T

Where ¢ is a parameter for the lognormal distribution with the restriction o > 0, and y is a non-
negative integer.

The expected value of the distribution is:

Ely] = eXB+02/2 _ /L602/2

When ‘In.sigma.formula‘ is used, the parameter ¢ is modeled as:
ln(0> = ﬂO + ﬁlxl +- ann

Thus, the resulting value for the parameter o is:

o = ePothizit+Bnan

The t-statistics and p-values for the coefficients related to In(sigma) are, by default, testing if the
coefficients are different from a value of 0. This has little practical meaning given that they are
coefficients for In(sigma). They are not testing if the coefficients have statistical significance in
terms of improvement over a Poisson model. The Likelihood-Ratio test results provided in the
output provide a test comparing if the Poisson-Lognormal model provides a statistically significant
improvement in model fit over the Poisson model.

## Poisson Generalized-Exponential (PGE) Model The Generalized Exponential distribution can
be written as a function with a shape parameter o > 0 and scale parameter v > 0. The distribution
has strictly positive continuous values. The PDF of the distribution is:

x

f(zla,v) = % (1 _ e—‘;)”“le_

218

Thus, the compound Probability Mass Function(PMF) for the PGE distribution is:

o NgVe M o _e\oml
f(?/|/\704,5)—/0 T; (1—6 ”) e vdx

The expected value of the distribution is:

MM:M:A(Ma+U—wO»

v

Where 1(+) is the digamma function.
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The variance is:

1 1 —’ 1 (1

o (Mt DZV) | (Vak ) e

v g
Where ¢/ (+) is the trigamma function.
To ensure that 1z = eX#, \ is replaced with:

_ e
Pl +1) — (1)
This results in:
yeX? )y v~ (vEtoem )
* Betn—sm) ¢ o A
f(ylu,a,ﬁ):/ , —(1—e w) e vdv
0 Y- Y

Halton draws are used to perform simulation over the lognormal distribution to solve the integral.

## Poisson-Inverse-Gaussian Type 1 (PIG1) and Type 2 (PIG2) Models The Poisson-Inverse-Gaussian
regression model is based on the Poisson-Inverse-Gaussian Distribution.

The expected value of the distribution in the regression utilizes a log-link function. Thus, the mean
is:

p=eX’
The variance function for the Type 1 distribution (which is the default) is:
0% = p+
While the variance for the Type 2 distribution is:

o = p+nu’

The parameter 7) is estimated as the natural logarithm transformed value, In(7), to ensure that > 0.

## Poisson-Inverse-Gamma (PIG) Model The PDF of the distribution is:
2(n(+1)
K

ar (2 +2) (2 “(i“))

Where 7 is a shape parameter with the restriction that n > 0, u > 0 is the mean value, y is a non-
negative integer, and K;(z) is the modified Bessel function of the second kind. This formulation
uses the mean directly.

1.
=+ eta +2

|~

f(ln, p) =

The variance of the distribution is:
o = p+nu’

## Poisson-Lindley (PL) Model The Poisson-Lindley regression is based on a compound Poisson-
Lindley distribution. It handles count outcomes with high levels of zero observations (or other high
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densities at low outcome values) that standard count regression methods, including the negative
binomial, may struggle to adequately capture or model.

The compound Probability Mass Function(PMF) for the Poisson-Lindley (PL) distribution is:

N0+ N+y+1)
(0+1)(0 4 N)y+2

f(y|97 >‘) =

Where 6 and A are distribution parameters with the restrictions that # > 0 and A > 0, and y is a
non-negative integer.

The expected value of the distribution is:

A0 +2)
F= %011
If a log-link function is used, the mean is:
A0+ 2
p=XP = (0+2)
060 +1)

Thus, the parameter A in the PL distribution when applied to regression analysis is:

uh(0+1)
=20 TD)
6+2

Using the replacement and simplifying results in:

02(ub(0 +1)Y(0>(1+p) +02+p) + (O +2)(y+1))
(0 +1)(0+2)yTH(0%(1 + p) + 0(2 + p))vt2

f(y‘aﬂ):

And

LL = 2log(#)+y(log(p)+log(#)+log(0+1))+log (6 (14-11)+0(2+) +(6+2) (y+1))—log(8+1)— (y+1) log (0 +2) — (y+

The variance function is defined as:

2
2 o 2
i ‘”(l <e+2>2>“

It should be noted that the p-value for the parameter ‘In(theta)* in the model summary is testing if the
parameter ‘theta‘ is equal to a value of 1. This has no practical meaning. The Likelihood-Ratio (LR)
test compares the Poisson-Lindley regression with a Poisson regression with the same independent
variables. Thus, the PR test result indicates the statistical significance for the improvement in how
well the model fits the data over a Poisson regression. This indicates the statistical significance of
the ‘theta‘ parameter.

## Poisson-Lindley-Gamma (PLG) Model The Poisson-Lindley-Gamma regression is based on
a compound Poisson-Lindley- Gamma distribution. Details of the distribution can be seen at
dplindGamma.

The mean for the regression model is:
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The variance function is defined as:

2(1
02=u+<2a+1—(+a)>u2

(0+2)2

It should be noted that the p-value for the parameters ‘In(theta)‘ and ‘In(alpha)‘ in the model sum-
mary are testing if the parameter ‘theta‘ and ‘alpha‘ are equal to a value of 1.

## Poisson-Lindley-Lognormal (PLL) Model The Poisson-Lindley-Lognormal regression is based
on a compound Poisson- Lindley-Lognormal distribution. Details of the distribution can be seen at
dplindLnorm.

The mean for the regression model is:

The variance function is defined as:

1— —2 _
02:M+<<9;2>2+802_1>Mz

o

ez
It should be noted that the p-value for the parameters ‘In(theta) and ‘In(sigma)‘ in the model sum-

mary are testing if the parameter ‘theta‘ and ‘sigma‘ are equal to a value of 1.

## Poisson-Weibull (PW) Model The Poisson-Weibull distribution uses the Weibull distribution as
a mixing distribution for a Poisson process. It is useful for modeling overdispersed count data. The
density function (probability mass function) for the Poisson-Weibull distribution is given by:

FKMAﬁLJ)‘AKWEAZ?xy<j)<§)a_1@(ﬁfdx

where f(x|a, o) is the PDF of the Weibull distribution and ) is the mean of the Poisson distribution.

For the Poisson-Weibull Regression model, the expected values is:
1
E[Y] = AoT (1 + )
Q

Where A is the mean of the Poisson distribution, « is the shape parameter, and o is the scale
parameter.

To ensure that the regression model predicts the mean value, the regression utilizes:
1
p=expXy=Aol'|1+4 —
@

Where X is a matrix of independent variables and -y is a vector of coefficients.
This leads to:

I
A= ———~
ol (14 1)

The variance for the Poisson-Weibull regression is:

Vi) = pt (””3) —1) p

r(1+2)°
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## Sichel (SI) Model The compound Probability Mass Function (PMF) for the Sichel distribution
uses the formulation from Zhou et al. (2011) and Rigby et al. (2008):

(%)y Kyiqy()

Flw, o,7) = K, (1/o)yY(ao)v*y
Where ¢ and ~ are distribution parameters with —oco < v < coando > 0, ¢ = %1(/1{,5‘)
.
a? = 072 + 2u(co) ™!, a mean value of y, y is a non-negative integer, and K (z) is a modified

Bessel function of the third kind with order j and argument x.
The variance of the distribution is:

20(y+1 1
¥:M+((c)+@_oﬁ

## Generalized Waring (GW) Model The following are the versions of the PMF, mean, and variance
used for the Generalized Waring model. This is adjusted from the typical formulation by replacing
parameter k with p
F(a+y)L(k+y)T(p+k)T(a+p)
YT(@)T ()T (p)T(a+ k+p +y)
k
Iu = eXB = 7@
p—1
o _ ak(at+k+p—1)
(p—=1)2(p—2)

The distribution parameters are often considered to capture the randomness (parameter

PMF =

Q
), proneness (parameter
k), and liability (parameter

p
) of the data.
If we use:

uk
o=—-

p—1

The PMF becomes:

P (L5 +y) T+ )T+ BT (25 +p)

= YT (25 TOIT ()T (45 +k + o+ y)

This results in a regression model where:
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k
) uk2(ﬁ+k+p—l) (k3+pk2_k2)u ( &3 >N2
o~ = = _—
(p—1)3(p—2) (p=1)3*(p—2) (p—1*p—2)
Note that when
p=1
or
p=2

, the distribution is undefined.
## Conway-Maxwell-Poisson (COM) Model The following is the the PMF for the COM model.
)\I

Iev) = Gzt

Where A and v are distribution parameters with A > 0 and v > 0, and Z(\, v) is the normalizing
constant.

The normalizing constant is given by:

The mean and variance are: 5
p=e~P= )\5 log(Z(\,v))

0
2

= Ai
7 AN
Note that the COM distribution parameter A is solved for using p and v, so the regression model
provides direct predictions for the mean.

## Underreporting Models for underreporting combine a binary probability model (logit or probit)
with a count model. This is accomplished using a model for the probability of crashes being reported
multiplied by the estimated mean for the count model, based on the observed data. This is discussed
in Wood et. al. (2016), Pararai et. al., (2006), and Pararai et. al., (2010). The underreporting model
is based on:

Htrue = Hobserved P(event is reported)

This allows the inference of both the true event count and the probability of the event being reported
as a function of independent variables.

References

Greene, W. (2008). Functional forms for the negative binomial model for count data. Economics
Letters, 99(3), 585-590.

Pararai, M., Famoye, F., & Lee, C. (2006). Generalized Poisson regression model for underreported
counts. Advances and applications in Statistics, 6(3), 305-322.

Pararai, M., Famoye, F., & Lee, C. (2010). Generalized Poisson-Poisson mixture model for misre-
ported counts with an application to smoking data. Journal of Data Science, 8(4), 607-617.
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Rigby, R. A., Stasinopoulos, D. M., & Akantziliotou, C. (2008). A framework for modelling
overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution.
Computational Statistics & Data Analysis, 53(2), 381-393.

Wood, J.S., Eric T. Donnell, & Christopher J. Fariss. "A method to account for and estimate under-
reporting in crash frequency research." Accident Analysis & Prevention 95 (2016): 57-66.

Zou, Y., Lord, D., & Zhang, Y. (2012). Analyzing highly dispersed crash data using the Sichel
generalized additive models for location, scale and shape.

Examples

# Load the Washington data

data("washington_roads")

washington_roads$AADT10kplus <- ifelse(washington_roads$AADT > 10000, 1, 0)

# Estimate an NB2 model with a dispersion parameter as a function of the

# variable “speed50° (i.e., generalized NB2), verbose output, and use the

# BFGS optimization method

nb2 <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 + AADT10kplus,
data = washington_roads, family = "NB2",
dis_param_formula_1 = ~ speed50, verbose = TRUE,
method="'BFGS")

summary (nb2)

# Estimate a Poisson-Lognormal model (a low number of draws is used to speed

# up the estimation for examples - not recommended in practice)

pln <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 + AADT10kplus,
data = washington_roads, family = "PLN", ndraws=10)

summary (pln)

# Estimate an Poisson-Lognormal with underreporting (probit)
plogn_underreport <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 +
AADT10kplus,
data = washington_roads, family = "NB2",
underreport_formula = ~ speed50 + AADT10kplus,
underreport_family = "probit")
summary (plogn_underreport)

# Estimate a Conway-Maxwell-Poisson model
com_model <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 +
AADT10kplus,
data = washington_roads, family = "COM", method="BHHH")
summary (com_model)
#

countreg.rp Random Parameters Count Regression Models
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Description

countreg.rp

Random Parameters Count Regression Models

Usage

countreg.rp(
formula,

rpar_formula,

data,

family = "NB2",

rpardists

NULL,

dis_param_formula_1 = NULL,
dis_param_formula_2 = NULL,
het_mean_formula = NULL,
het_var_formula = NULL,

ndraws = 500,

scrambled = FALSE,
correlated = FALSE,
panel_id = NULL,

weights =

NULL,

offset = NULL,
method = "BHHH",

max.iters
start.vals
verbose =

Arguments

formula

rpar_formula

data

family

rpardists

1000,
NULL,
FALSE

an R formula. This formula should specify the outcome and the independent
variables that have fixed parameters.

a symbolic description of the model related specifically to the random parame-
ters. This should not include an outcome variable. If the intercept is random,
include it in this formula. If the intercept is fixed, include it in formula but not
in rpar_formula.

a dataframe that has all of the variables in the formula and rpar_formula.

the name of the distribution/model type to estimate. Default is "NB2". Options
include "Poisson", "NB1", "NB2", "NBP", "PIG", "Sichel", etc. (See countreg
for full list).

an optional named vector whose names are the random parameters and values
the distribution. The distribution options include normal ("n"), lognormal ("In"),
triangular ("t"), uniform ("u"), and gamma ("g"). If not provided, normal is used.

dis_param_formula_1

a symbolic description of the model for the first parameter of the count distribu-
tion (e.g., In(alpha) for NB2).



countreg.rp 21

dis_param_formula_2
a symbolic description of the model for the second parameter of the count dis-
tribution (if applicable).

het_mean_formula
an optional symbolic description of the model for heterogeneity in the means of
the random parameters.

het_var_formula
an optional symbolic description of the model for heterogeneity in the variances
of the random parameters.

ndraws the number of Halton draws to use for estimating the random parameters.
scrambled if the Halton draws should be scrambled.
correlated if the random parameters should be correlated. If TRUE, only normal distribu-

tions are used.

panel_id an optional variable name (string) or vector defining the panel structure (re-
peated measures). If provided, the standard errors and likelihood are estimated
accounting for the panel structure.

weights variable name to be used as frequency weights.
offset variable name to be used as an offset.
method optimization method (e.g., "BHHH", "BFGS", "NM").
max.iters maximum number of iterations.
start.vals optional vector of starting values.
verbose logical.

Value

An object of class ‘countreg* which is a list with the following components:

* model: the fitted model object.
¢ data: the data frame used to fit the model.
e call: the matched call.

e formula: the formula used to fit the model.

Examples

# Load data
data("washington_roads")
washington_roads$AADT10kplus <- ifelse(washington_roads$AADT > 10000, 1, 0)

# 1. Basic Random Parameters Negative Binomial (NB2)
rp_nb2 <- countreg.rp(Total_crashes ~ lnaadt + lnlength,

rpar_formula = ~ -1 + speed50,
data = washington_roads,
family = "NB2",

"o

rpardists = c(speed50 = "n"),
ndraws = 100,
method = "BHHH")



22 cureplot

summary (rp_nb2)

# 2. Random Parameters with Panel Structure (if 'site_id' exists)

# rp_panel <- countreg.rp(Total_crashes ~ -1 + lnaadt,
# rpar_formula = ~ speed50,

# data = washington_roads,

# panel_id = "site_id",

# family = "NB2",

# ndraws = 100)

# 3. Generalized Random Parameters Model with Heterogeneity
rp_gen <- countreg.rp(Total_crashes ~ lnhaadt,
rpar_formula = ~ -1 + speed50,
dis_param_formula_1 = ~ Inlength,
het_mean_formula = ~ AADT10kplus,
data = washington_roads,
family = "NB2",
rpardists = c(speed50 = "n"),
ndraws = 100)
summary (rp_gen)

# 4. Random Parameters Poisson Model with panel specification
rp_poisson <- countreg.rp(Total_crashes ~ lnaadt,

rpar_formula = ~ -1 + speed50,
dis_param_formula_1 = ~ lnlength,
het_mean_formula = ~ AADT10kplus,

data = washington_roads,
family = "POISSON",
rpardists = c(speed50 = "n"),
ndraws = 100,
panel_id = "ID")

summary (rp_poisson)

cureplot Cumulative Residuals (CURE) Plot for Count Models

Description

This function generates a Cumulative Residuals (CURE) plot for count models, including those
with random parameters, estimated using the flexCountReg package.

Usage

cureplot(
model,
data = NULL,
indvar = NULL,
method = "Simulated”,
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n_resamples = 0,

)
Arguments
model A model object estimated using this R package.
data Optional dataframe. If not provided, the data used to fit the model will be used.
indvar Optional independent variable name (character string). This is the continuous
independent variable to plot the cumulative residuals against. If not provided,
the plot will be against the predicted values.
method Optional parameter to pass to the predict function. This is only used for random
parameters models (e.g., "Simulated" or "Individual"). For further details, see
predict.flexCountReg.
n_resamples Number of resamples for potential resampling in the CURE plot confidence
bands. Default is 0 (no bands).
Additional arguments passed to cure_plot.
Value

A CURE plot generated with cureplots.

Examples

## Example using a Negative Binomial model
data("washington_roads")
washington_roads$AADTover10k <- ifelse(washington_roads$AADT>10000,1,0)

nb_model <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 +
ShouldWidth@4 + AADToveri1ok,
data = washington_roads, family = 'nb2',
method = 'NM', max.iters = 500)

# 1. Plot against fitted values (default) with confidence bands
cureplot(nb_model, n_resamples = 20)

# 2. Plot against a specific covariate (e.g., lnlength)

cureplot(nb_model, indvar = "lnlength"”, n_resamples = 20)
dlindley One-Parameter Lindley Distribution
Description

Distribution function for the one-parameter Lindley distribution with parameter theta.
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Usage
dlindley(x, theta = 1, log = FALSE)

plindley(q, theta = 1, lower.tail = TRUE, log.p = FALSE)

glindley(p, theta = 1, lower.tail = TRUE, log.p = FALSE)
rlindley(n, theta = 1)
Arguments
X a single value or vector of positive values.
theta distribution parameter value. Default is 1.
log, log.p logical; If TRUE, probabilities p are given as log(p). If FALSE, probabilities p
are given directly. Default is FALSE.
q a single value or vector of quantiles.
lower.tail logical; If TRUE, (default), P(X < z) are returned, otherwise P(X > z) is
returned. Default is TRUE.
p a single value or vector of probabilities.
number of random values to generate.
Details
Probability density function (PDF)
F@10) = (14 et
T = T)e
(1+0)

Cumulative distribution function (CDF)

Ox —0x
F(mQ)—1—<1+1+0)e

Quantile function (Inverse CDF)
1

Qp| ) =—-1-7- %W,l ((1 +0)(p - 1)6—(1+e>)

where W_1 () is the negative branch of the Lambert W function.
The moment generating function (MGF) is:
02(0 —t+1)

M=o o—ep

The distribution mean and variance are:
0+ 2
0(1+6)

2 _ MK §_ 2
"_9+2<9 4) a
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Value

dlindley gives the density, plindley gives the distribution function, glindley gives the quantile func-
tion, and rlindley generates random deviates.

The length of the result is determined by n for rlindley, and is the maximum of the lengths of the
numerical arguments for the other functions.

Examples

x <- seq(@, 5, by = 0.1)

p <- seq(@.1, 0.9, by = 0.1)

q <- c(0.2, 3, 0.2)

dlindley(x, theta = 1.5)

dlindley(x, theta=0.5, log=TRUE)

plindley(q, theta = 1.5)

plindley(q, theta = 0.5, lower.tail = FALSE)
glindley(p, theta = 1.5)

glindley(p, theta = 0.5)

set.seed(123154)
rlindley(5, theta = 1.5)
rlindley(5, theta = 0.5)

flexCountReg-class flexCountReg Class

Description

A class to represent various objects created by the flexCountReg package.

Slots

model The fitted model object (can be any type).
data The data used for fitting the model (data frame).

formula The R formula used in the regression model (main formula, not including random param-
eters, etc.)

call The matched call (language).

additional Any additional information (list).
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Generalized-Waring Generalized Waring Distribution

Description

These functions provide density, distribution function, quantile function, and random number gen-
eration for the Generalized Waring Distribution.

Usage
dgwar(y, mu, k, rho, log = FALSE)

pgwar(q, mu, k, rho, lower.tail = TRUE, log.p = FALSE)
ggwar(p, mu, k, rho)

rgwar(n, mu, k, rho)

Arguments
y non-negative integer vector of count outcomes.
mu numeric vector of means of the distribution.
k non-negative numeric parameter of the distribution.
rho non-negative numeric parameter of the distribution.
log logical; if TRUE, probabilities p are given as log(p).
q non-negative integer vector of quantiles.
lower.tail logical; if TRUE, probabilities p are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities p are given as log(p).
p numeric vector of probabilities.
n integer number of random numbers to generate.
Details

The Generalized Waring distribution is a 3-parameter count distribution that is used to model
overdispersed count data.

dgwar computes the density (PMF) of the Generalized Waring Distribution.

pgwar computes the CDF of the Generalized Waring Distribution.

gwaring computes the quantile function of the Generalized Waring Distribution.
rwaring generates random numbers from the Generalized Waring Distribution.

The Probability Mass Function (PMF) for the Generalized Waring (GW) distribution is:

L(az + p)T(k + p) (az),, (F)y

Jlaak-P) = U an T 5 p)(aw + k1 o),
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Where (o), = Féo(‘z)r) and ag, k, p) > 0.

The mean value is:

E[Y] = ZI_KI
Thus, we can use:
a, = M(Pk— 1)
This results in a regression model where:
p=e*’

Value

dgwar gives the density, pgwar gives the distribution function, ggwar gives the quantile function,
and rgwar generates random deviates.

The length of the result is determined by n for rgwar, and is the maximum of the lengths of the
numerical arguments for the other functions.

Examples

dgwar (@, mu=1, k=2, rho=3)
pgwar(c(@,1,2,3), mu=1, k=2, rho=3)
ggwar (0.8, mu=1, k=2, rho=3)
rgwar(10, mu=1, k=2, rho=3)

halton_dists Generate pseudo-random draws from specified distributions using
Halton draws

Description

Generate pseudo-random draws from specified distributions using Halton draws

Usage

halton_dists(dist, mean, sdev, hdraw = NULL, ndraws = 500)
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Arguments
dist The distribution type to use. The distribution options include normal ("n"), log-
normal ("In"), triangular ("t"), uniform ("u"), and gamma ("g").
mean The mean value for the random draws.
sdev The standard deviation value for the random draws.
hdraw An optional vector of Halton draws to convert to the specified distribution. If
not provided, the function will generate Halton draws.
ndraws The number of random draws to generate. This is only used if ‘hdraw* is not
provided.
Details

This function is used to convert Halton draws to the specified distribution. The function can be used
to generate random draws for use in random parameter models, generating Halton-based pseudo-
random draws for specified distributions, etc.

The distributions generated all use the ‘mean‘ (

) and ‘sdev* (

g

) parameters to generate the random draws. The density functions for the distributions are as fol-

lows: The Normal distribution is: f(x) = \/2;? exp (7 (Z*M)z)

202

The Lognormal distribution is: f(z) = - L —M)

oV 2w exXp < 202

The Triangular distribution is (note that this is a symmetrical triangular distribution where

I
is the median and
o
(:'37;7;”7), forpy—oc<x<p
is the half-width): f(z) = (“t%z), foruy<az<pu+o
0, otherwise
The Uniform distribution is (note that 1 is the midpoint and o is the half-width): f(x) = m =
" o n o
1
2B
The Gamma distribution is based on o
H=Z
B
and o
2 _
M
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Value

A vector of psudo-random draws from the specified distribution, based on Halton draws.

Examples

# Generate 500 random draws from a normal distribution
halton_dists(dist="n", mean=3, sdev=2, ndraws=500)

# Generate 500 random draws from a lognormal distribution
halton_dists(dist="1n", mean=2, sdev=1.5, ndraws=500)

# Generate 500 random draws from a triangular distribution
halton_dists(dist="t", mean=1, sdev=0.5, ndraws=500)

# Generate 500 random draws from a uniform distribution
halton_dists(dist="u", mean=8, sdev=3, ndraws=500)

# Generate 500 random draws from a gamma distribution
halton_dists(dist="g", mean=0.5, sdev=1.5, ndraws=500)

invgamma Inverse Gamma Distribution

Description
These functions provide the density function, distribution function, quantile function, and random
number generation for the Inverse-Gamma (IG) Distribution

Usage

dinvgamma(x, shape = 2.5, scale = 1, log = FALSE)

pinvgamma(q, shape = 2.5, scale = 1, lower.tail = TRUE, log.p = FALSE)
ginvgamma(p, shape = 2.5, scale = 1, lower.tail = TRUE, log.p = FALSE)

rinvgamma(n, shape = 2.5, scale = 1)

Arguments
X numeric value or a vector of values.
shape numeric value or vector of shape values for the distribution (the values have to
be greater than 0).
scale single value or vector of values for the scale parameter of the distribution (the

values have to be greater than 0).

log logical; if TRUE, probabilities p are given as log(p).
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q quantile or a vector of quantiles.
lower.tail logical; if TRUE, probabilities p are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities p are given as log(p).
p probability or a vector of probabilities.
n the number of random numbers to generate.
Details

dinvgamma computes the density (PDF) of the Inverse-Gamma Distribution.
pinvgamma computes the CDF of the Inverse-Gamma Distribution.

ginvgamma computes the quantile function of the Inverse-Gamma Distribution.
rinvgamma generates random numbers from the Inverse-Gamma Distribution.

The compound Probability Mass Function (PMF) for the Inverse-Gamma distribution:

felon) = o (1) e

8l

Where « is the shape parameter and 3 is a scale parameter with the restrictions that &« > 0 and
n > 0,and x > 0.

The CDF of the Inverse-Gamma distribution is:
o (4) 8
F(ola, B) = e (a)

Where the numerator is the incomplete gamma function and Q)(-) is the regularized gamma function.

8

The mean of the distribution is (provided o > 1):

n= b
a—1
The variance of the distribution is (for o« > 2):
2 _ 5
2= =
(a—1)*(a —2)

Value

dinvgamma gives the density, pinvgamma gives the distribution function, ginvgamma gives the
quantile function, and rinvgamma generates random deviates.

The length of the result is determined by n for rinvgamma, and is the maximum of the lengths of
the numerical arguments for the other functions.

Examples

dinvgamma(1, shape = 3, scale = 2)
pinvgamma(c(@.1, 0.5, 1, 3, 5, 10, 30), shape = 3, scale = 2)
ginvgamma(c(@.1, 0.3, 0.5, 0.9, 0.95), shape = 3, scale = 2)
rinvgamma (30, shape = 3, scale = 2)
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mae Calculate Mean Absolute Error (MAE)

Description

This function calculates the Mean Absolute Error (MAE) between observed and predicted values.

Usage

mae(y, mu)

Arguments

y Numeric vector representing the observed values.

mu Numeric vector representing the predicted values.

Details
The MAE is calculated usir 12 the formula:
MAE n e Yi Hi

Where y is the vector of observed values and p is the vector of predicted values.

Value

Numeric value representing the MAE.

Examples

y <= c(1, 2, 3)
mu <- c(1.1, 1.9, 3.2)
mae(y, mu)

mgf_lognormal Moment Generating Function for a Lognormal Distribution

Description

Computes the value of the moment generating function (MGF) for a lognormal distribution at a
given point through numerical integration. This function is particularly useful for distributions
where the MGF does not have a closed-form solution. The lognormal distribution is specified by its
log-mean (u) and log-standard deviation (o).
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Usage

mgf_lognormal(mu, sigma, n)

Arguments

mu The mean of the log-transformed variable, corresponding to p in the lognormal
distribution’s parameters.

sigma The standard deviation of the log-transformed variable, corresponding to o in
the lognormal distribution’s parameters.

n The point at which to evaluate the MGF, often denoted as ¢ in the definition of the
MGE. This parameter essentially specifies the order of the moment generating
function.

Details

The moment generating function (MGF) for the lognormal distribution does not have a closed form
solution. The MGF is defined as:

o0 1 2
_ (@) —p)
Moy = [T el
0

xoV 2T

The MGF for the lognormal distribution is useful for adjusting the predictions of generalized linear
mixed models (GLMMs) that have parameters that follow a lognormal distribution and use a log
link function. The adjustment for the mean value is the MGF with n = 1 or E[e*] = M,(n = 1).
The variance for the lognormal random parameter is:

Var(e®) = E[e**] — E[e”]* = M,(n = 2) — M,(n = 1)?

Value

The estimated value of the moment generating function (MGF) for the specified lognormal distri-
bution at the given point.

Examples

mu <- @

sigma <- 1

n<-1

mgf_value <- mgf_lognormal(mu, sigma, n)
print(mgf_value)
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myAIC Calculate Akaike Information Criterion (AIC)

Description

This function calculates the Akaike Information Criterion (AIC) for a given model.

Usage
myAIC(LL, nparam)

Arguments
LL Numeric value representing the log-likelihood of the model.
nparam Numeric value representing the number of parameters in the model.
Details

The AIC is calculated using the formula:

AIC = —-2-LL+2-nparam

Where LL is the log-likelihood of the model and nparam is the number of parameters.

Value

Numeric value representing the AIC.

Examples

LL <- -120.5
nparam <- 5
myAIC(LL, nparam)

myBIC Calculate Bayesian Information Criterion (BIC)

Description

This function calculates the Bayesian Information Criterion (BIC) for a given model.

Usage

myBIC(LL, nparam, n)
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Arguments
LL Numeric value representing the log-likelihood of the model.
nparam Numeric value representing the number of parameters in the model.
n Numeric value representing the number of observations.

Details

The BIC is calculated using the formula:
BIC = —2- LL + nparam - log(n)

Where LL is the log-likelihood of the model, nparam is the number of parameters, and n is the
number of observations.

Value

Numeric value representing the BIC.

Examples

LL <- -120.5

nparam <- 5

n <- 100

myBIC(LL, nparam, n)

NegativeBinomiallLindley
Poisson-Lindley-Gamma (Negative Binomial-Lindley) Distribution

Description
These functions provide density, distribution function, quantile function, and random number gen-
eration for the Poisson-Lindley-Gamma (PLG) Distribution

Usage

dplindGamma(x, mean = 1, theta = 1, alpha = 1, log = FALSE)

pplindGamma(
qa,
mean = 1,
theta = 1,
alpha = 1,
lower.tail = TRUE,
log.p = FALSE
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gplindGamma(p, mean = 1, theta = 1, alpha = 1)

rplindGamma(n, mean = 1, theta = 1, alpha = 1)
Arguments
X numeric value or a vector of values.
mean numeric value or vector of mean values for the distribution (the values have to
be greater than 0).
theta single value or vector of values for the theta parameter of the distribution (the
values have to be greater than 0).
alpha single value or vector of values for the ‘alpha‘ parameter of the gamma distribu-
tion in the special case that the mean = 1 and the variance = ‘alpha‘ (the values
for ‘alpha‘ have to be greater than 0).
log logical; if TRUE, probabilities p are given as log(p).
q quantile or a vector of quantiles.
lower.tail logical; if TRUE, probabilities p are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities p are given as log(p).
p probability or a vector of probabilities.
n the number of random numbers to generate.
Details

The Poisson-Lindley-Gamma is a count distribution that captures high densities for small integer
values and provides flexibility for heavier tails.

dplindGamma computes the density (PDF) of the Poisson-Lindley-Gamma Distribution.
pplindGamma computes the CDF of the Poisson-Lindley-Gamma Distribution.
gplindGamma computes the quantile function of the Poisson-Lindley-Gamma Distribution.
rplindGamma generates random numbers from the Poisson-Lindley-Gamma Distribution.

The compound Probability Mass Function (PMF) for the Poisson-Lindley-Gamma (PLG) distribu-
tion is:

a0 +2°T(x+a) (00 +1) ald+2) o a(0+2)
f(z|u, 8, a) = 120+ 1)) ( 012 U<x+1,2—a,’u(0+1)>+a(m+1)U<x+2,3 a,ﬂ(9+1))>

Where 6 is a distribution parameter from the Poisson-Lindley distribution with the restrictions that
0 > 0, « is a parameter for the gamma distribution with the restriction o > 0, mu is the mean
value, and z is a non-negative integer, and

U(a,b,z)

is the Tricomi’s solution to the confluent hypergeometric function - also known as the confluent
hypergeometric function of the second kind
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The expected value of the distribution is:

Elz] = p

The variance is:

2(1
02:u+<2a+1—(—|—04)>u2

(0 +2)2

While the distribution can be computed using the confluent hypergeometric function, that function
has limitations in value it can be computed at (along with accuracy, in come cases). For this reason,
the function uses Halton draws to perform simulation over the gamma distribution to solve the
integral. This is sometimes more computationally efficient as well.

Value

dplindGamma gives the density, pplindGamma gives the distribution function, gplindGamma gives
the quantile function, and rplindGamma generates random deviates.

The length of the result is determined by n for rplindGamma, and is the maximum of the lengths of
the numerical arguments for the other functions.

Examples

dplindGamma(@, mean=0.75, theta=7, alpha=2)
pplindGamma(c(9,1,2,3,5,7,9,10), mean=0.75, theta=3, alpha=0.5)
gplindGamma(c(0.1,0.3,0.5,0.9,0.95), mean=1.67, theta=0.5, alpha=0.5)
rplindGamma(3@, mean=0.5, theta=0.5, alpha=2)

poisLindRE Function for estimating a Random Effects Poisson-Lindley regression
model

Description

Function for estimating a Random Effects Poisson-Lindley regression model

Usage

poisLind.re(
formula,
group_var,
data,
method = "NM",
max.iters = 1000,
print.level = 0,
bootstraps = NULL,
offset = NULL
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Arguments
formula an R formula.
group_var the grouping variable(s) indicating random effects (e.g., individual ID).
data a dataframe that has all of the variables in the formula.
method a method to use for optimization in the maximum likelihood estimation. For
options, see maxLik. Note that "BHHH" is not available for this function due to
the implementation for the random effects.
max.iters the maximum number of iterations to allow the optimization method to perform.
print.level Integer specifying the verbosity of output during optimization.
bootstraps Optional integer specifying the number of bootstrap samples to be used for esti-
mating standard errors. If not specified, no bootstrapping is performed.
offset an optional offset term provided as a string.
Details

The function poisLindRE is similar to the poisLind function, but it includes an additional argument
group_var that specifies the grouping variable for the random effects. The function estimates
a Random Effects Poisson-Lindley regression model using maximum likelihood. It is similar to
poisLind, but includes additional terms to account for the random effects.

The Random Effects Poisson-Lindley model is useful for panel data and assumes that the random
effects follow a gamma distribution. The PDF is

0(6+1)\ Yt 0(6+1 ni
PRI (oY () (S0 pae 52 + 04+ S0 i+ 1)
S (Wit pie, 0) = I |

0+1 Yit! i 0(0
t=1 (Z;L it (9:-21 L9

)Zfil Yit+2

The log-likelihood function is:

6(6 +1 “ CNNICE
LL = 2log(0)—log(0+1) Jrz Yit log (it +Z Yit log<(9+2)> Zlog Yit! JrlOg((Z y“‘) >+log (Z Hit =g

t=1

The mean and variance are:
Hit = eXp(Xitﬁ)

2 2
V(pie) = pie + (1 - (0+2)2> Mt

Value
An object of class ‘countreg® which is a list with the following components:
* model: the fitted model object.
* data: the data frame used to fit the model.

e call: the matched call.

e formula: the formula used to fit the model.
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Examples

PoissonGeneralizedExponential

data("washington_roads")
washington_roads$AADTover10k <-
ifelse(washington_roads$AADT > 10000, 1, @)

poislind.mod <- poisLind.re(
Animal ~ lnaadt + lnlength + speed50 +
ShouldWidth@4 + AADTover10k,

)

data = washington_roads,
group_var = "ID",
method = "NM",

max.iters = 1000

summary (poislind.mod)

PoissonGeneralizedExponential

Poisson-Generalized-Exponential Distribution

Description

These functions provide density, distribution function, quantile function, and random number gen-
eration for the Poisson-Generalized-Exponential (PGE) Distribution

Usage

dpge(

X,

mean = 1,
shape = 1,
scale = 1,
ndraws = 1500,
log = FALSE,
haltons = NULL

ppge(

q,

mean = 1,
shape = 1,
scale = 1
ndraws = 1500,
lower.tail = TRUE,
log.p = FALSE,
haltons = NULL

’
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gpge(p, mean = 1, shape = 1, scale = 1, ndraws = 1500)

rpge(n, mean = 1, shape = 1, scale = 1, ndraws = 1500)

Arguments
X numeric value or a vector of values.
mean numeric value or vector of mean values for the distribution (the values have to
be greater than 0). This is NOT the value of \.
shape numeric value or vector of shape values for the shape parameter of the general-
ized exponential distribution (the values have to be greater than 0).
scale single value or vector of values for the scale parameter of the generalized expo-
nential distribution (the values have to be greater than 0).
ndraws the number of Halton draws to use for the integration.
log logical; if TRUE, probabilities p are given as log(p).
haltons an optional vector of Halton draws to use instead of ndraws.
q quantile or a vector of quantiles.
lower.tail logical; if TRUE, probabilities p are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities p are given as log(p).
p probability or a vector of probabilities.
n the number of random numbers to generate.
Details

dpge computes the density (PDF) of the PGE Distribution.
ppge computes the CDF of the PGE Distribution.

gpge computes the quantile function of the PGE Distribution.
rpge generates random numbers from the PGE Distribution.

The Generalized Exponential distribution can be written as a function with a shape parameter oo > 0
and scale parameter y > 0. The distribution has strictly positive continuous values. The PDF of the
distribution is:

x x

a—1
Sl =2 (1=e75)" s
~
Thus, the compound Probability Mass Function(PMF) for the PGE distribution is:

RO NYpYe—AT Na—1l

f(y|)\,a,6):/ #E (1—6_7) e vdx
0 Y Y

The expected value of the distribution is:

EYEPECCETELD)

gl

Where 1(+) is the digamma function.
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The variance is:

o (MO ZV) | (Ve ) Y

Where ¢/ (+) is the trigamma function.

To ensure that 1z = eX#, \ is replaced with:

yeXP

Pla+1) —4(1)

This results in:

X8
XB Y _ ye
) xYe (w<w+1>—w<1>)“"

oo (e
SlatD—¢(0)
f(ylu,a,6)=/ (
0

x a—1 x
)l % (1—677) e dr

Halton draws are used to perform simulation over the lognormal distribution to solve the integral.

Value

dpge gives the density, ppge gives the distribution function, qpge gives the quantile function, and
rpge generates random deviates.

The length of the result is determined by n for rpge, and is the maximum of the lengths of the
numerical arguments for the other functions.

References

Gupta, R. D., & Kundu, D. (2007). Generalized exponential distribution: Existing results and some
recent developments. Journal of Statistical planning and inference, 137(11), 3537-3547.

Examples

dpge (@, mean=0.75, shape=2, scale=1, ndraws=2000)
ppge(c(0,1,2,3,4,5,6), mean=0.75, shape=2, scale=1, ndraws=500)
gpge(c(0.1,0.3,0.5,0.9,0.95), mean=0.75, shape=2, scale=1, ndraws=500)
rpge(30, mean=0.75, shape=2, scale=1, ndraws=500)

PoissonInverseGamma Poisson-Inverse-Gamma Distribution

Description

These functions provide the density function, distribution function, quantile function, and random
number generation for the Poisson-Inverse-Gamma (PInvGamma) Distribution
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Usage

dpinvgamma(x, mu = 1, eta = 1, log = FALSE)

ppinvgamma(q, mu = 1, eta 1, lower.tail = TRUE, log.p = FALSE)
gpinvgamma(p, mu = 1, eta = 1)

rpinvgamma(n, mu = 1, eta = 1)

Arguments
X numeric value or a vector of values.
mu numeric value or vector of mean values for the distribution (the values have to
be greater than 0).
eta single value or vector of values for the scale parameter of the distribution (the
values have to be greater than 0).
log logical; if TRUE, probabilities p are given as log(p).
q quantile or a vector of quantiles.
lower.tail logical; if TRUE, probabilities p are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities p are given as log(p).
p probability or a vector of probabilities.
n the number of random numbers to generate.
Details

dpinvgamma computes the density (PDF) of the Poisson-Inverse-Gamma Distribution.
ppinvgamma computes the CDF of the Poisson-Inverse-Gama Distribution.

gpinvgamma computes the quantile function of the Poisson-Inverse-Gamma Distribution.
rpinvgamma generates random numbers from the Poisson-Inverse-Gamma Distribution.

The compound Probability Mass Function (PMF) for the Poisson-Inverse-Gamma distribution is:

1
=+ eta +2

f(@ln, p) = i (M i'";(i)j 2) L. (2, [ <717 + 1))

Where 7 is a shape parameter with the restriction that n > 0, p > 0 is the mean value, y is a non-
negative integer, and K;(z) is the modified Bessel function of the second kind. This formulation
uses the mean directly.

The variance of the distribution is:
o = p+nu’
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Value

dpinvgamma gives the density, ppinvgamma gives the distribution function, gpinvgamma gives the
quantile function, and rcom generates random deviates.

The length of the result is determined by n for rpinvgamma, and is the maximum of the lengths of
the numerical arguments for the other functions.

Examples

dpinvgamma(1, mu=0.75, eta=1)
ppinvgamma(c(0,1,2,3,5,7,9,10), mu=0.75, eta=3)
gpinvgamma(c(0.1,0.3,0.5,0.9,0.95), mu=0.75, eta=0.5)
rpinvgamma(30, mu=0.75, eta=1.5)

PoissonInverseGaussian
Poisson-Inverse-Gaussian Distribution

Description

These functions provide the density function, distribution function, quantile function, and random
number generation for the Poisson-Inverse-Gaussian (PInvGaus) Distribution.

These functions provide the density function, distribution function, quantile function, and random
number generation for the Poisson-Inverse-Gaussian (PInvGaus) Distribution

Usage

dpinvgaus(x, mu = 1, eta = 1, form = "Type 1", log = FALSE)

ppinvgaus(
qa,
mu =1,
eta =1,

form = "Type 1",
lower.tail = TRUE,

log.p = FALSE
)
gpinvgaus(p, mu = 1, eta = 1, form = "Type 1")
rpinvgaus(n, mu = 1, eta = 1, form = "Type 1")

dpinvgaus(x, mu = 1, eta = 1, form = "Type 1", log = FALSE)

ppinvgaus(
q,
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mu =1,
eta =1,
form = "Type 1",
lower.tail = TRUE,
log.p = FALSE

)

1, form = "Type 1")

gpinvgaus(p, mu 1, eta

1, eta =1, form = "Type 1")

rpinvgaus(n, mu

Arguments
X numeric value or a vector of values.
mu numeric value or vector of mean values for the distribution (the values have to
be greater than 0).
eta single value or vector of values for the scale parameter of the distribution (the
values have to be greater than 0).
form optional parameter indicating which formulation to use. Options include "Type
1" which is the standard form or "Type 2" which follows the formulation by
Dean et. al. (1987).
log logical; if TRUE, probabilities p are given as log(p).
q quantile or a vector of quantiles.
lower.tail logical; if TRUE, probabilities p are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities p are given as log(p).
p probability or a vector of probabilities.
n the number of random numbers to generate.
Details

The Poisson-Inverse-Gaussian distribution is a special case of the Sichel distribution (Cameron &
Trivedi, 2013). It is also known as a univariate Sichel distribution (Hilbe, 2011).

dpinvgaus computes the PDF of the Poisson-Inverse-Gaussian dist.
ppinvgaus computes the CDF of the Poisson-Inverse-Gaussian dist.
gpinvgaus computes quantiles of the Poisson-Inverse-Gaussian dist.
rpinvgaus generates random numbers from the distribution.

The PMF (Type 1) is:

F(0) =exp (£(1 - yT+20))

fyln, n) = Y - , j .
Sy > 0) = FO) Ly (14 20) 70/ SU0g S0 (1) (14 2m)=9/2

The variance is:
o’ = p+np
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Type 2 modifies n — nu:

y—1 . .

I —y)2 Ly +J) A -y
fly>0)= f(0)—(1+2nu)"¥ - o) (A+2nu)™
(y>0) = F(O) 7 (1+ 20m) jz_;r(y_j)rml)(Z) (1+ 2012

Resulting variance:
o = p+np?

The Poisson-Inverse-Gaussian distribution is a special case of the Sichel distribution, as noted by
Cameron & Trivedi (2013). It is also known as a univariate Sichel distribution (Hilbe, 2011).

dpinvgaus computes the density (PDF) of the Poisson-Inverse-Gaussian Distribution.
ppinvgaus computes the CDF of the Poisson-Inverse-Gaussian Distribution.

gpinvgaus computes the quantile function of the Poisson-Inverse-Gaussian Distribution.
rpinvgaus generates random numbers from the Poisson-Inverse-Gamma Distribution.

The compound Probability Mass Function (PMF) for the Poisson-Inverse-Gaussian distribution
(Type 1) is (Cameron & Trivedi, 2013):

fly=0)=exp (& (1~ yTT27))

fyln,p) = y o, . 2 _
F(yly > 0) = fly = 0) oy (14 20) /2 - Y23 o B0 (1) (1 20) 972

Where 7 is a scale parameter with the restriction that > 0, p is the mean value, and y is a
non-negative integer.

The variance of the distribution is:
0% = p+np

The alternative parametrization by Dean et. al. (1987) replaces n with nu. This version (Type 2)
has the PMF:

fly=0) =exp (4 (1= vIF200))

f(y|777lﬁ) = % - 1 T(y+j 2 .
Flyly > 0) = f(y = 0) 2 (1 + 2np) =9/ - V25 P WD (2)7 (1 + 2np0) 972

This results in the variance of:
o = p+nu’

Value
description dpinvgaus gives the density, ppinvgaus gives the distribution function, qpinvgaus gives
the quantile function, and rpinvgaus generates random deviates.

The length of the result is determined by n for rpinvgaus, and is the maximum of the lengths of the
numerical arguments for the other functions.

dpinvgaus gives the density, ppinvgaus gives the distribution function, qpinvgaus gives the quantile
function, and rpinvgaus generates random deviates.

The length of the result is determined by n for rpinvgaus, and is the maximum of the lengths of the
numerical arguments for the other functions.
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References

Cameron & Trivedi (2013). Regression Analysis of Count Data. Dean, Lawless & Willmot (1989).
Mixed Poisson—Inverse Gaussian Models. Hilbe (2011). Negative Binomial Regression.

Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data, 2nd Edition. Cambridge
university press.

Dean, C., Lawless, J. F., & Willmot, G. E. (1989). A mixed Poisson-Inverse-Gaussian regression
model. Canadian Journal of Statistics, 17(2), 171-181.

Hilbe, J. M. (2011). Negative binomial regression. Cambridge University Press.

Examples

dpinvgaus(1, mu=0.75, eta=1)

ppinvgaus(c(0,1,2,3,5,7,9,10), mu=0.75, eta=3, form="Type 2")
gpinvgaus(c(0.1,0.3,0.5,0.9,0.95), mu=0.75, eta=0.5, form="Type 2")
rpinvgaus (30, mu=0.75, eta=1.5)

dpinvgaus(1, mu=0.75, eta=1)

ppinvgaus(c(@0,1,2,3,5,7,9,10), mu=0.75, eta=3, form="Type 2")
gpinvgaus(c(0.1,0.3,0.5,0.9,0.95), mu=0.75, eta=0.5, form="Type 2")
rpinvgaus (30, mu=0.75, eta=1.5)

PoissonLindley Poisson-Lindley Distribution

Description

These functions provide density, distribution function, quantile function, and random number gen-
eration for the Poisson-Lindley (PL) Distribution

Usage

msgl
dplind(x, mean = 1, theta = 1, lambda = NULL, log = FALSE)
pplind(q, mean = 1, theta = 1, lambda = NULL, lower.tail = TRUE, log.p = FALSE)

gplind(p, mean = 1, theta = 1, lambda = NULL)

rplind(n, mean = 1, theta = 1, lambda = NULL)
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Arguments
X numeric value or a vector of values.
mean numeric value or vector of mean values for the distribution (the values have to
be greater than 0).
theta single value or vector of values for the theta parameter of the distribution (the
values have to be greater than 0).
lambda alternative parameterization (use instead of the mean); numeric value or vector
of values for lambda parameter of the distribution (the values have to be greater
than 0).
log logical; if TRUE, probabilities p are given as log(p).
q quantile or a vector of quantiles.
lower.tail logical; if TRUE, probabilities p are P[X < z] otherwise, P[X > z].
log.p logical; if TRUE, probabilities p are given as log(p).
p probability or a vector of probabilities.
n the number of random numbers to generate.
Format

An object of class character of length 1.

Details

The Poisson-Lindley is a 2-parameter count distribution that captures high densities for small inte-
ger values. This makes it ideal for data that are zero-inflated.

dplind computes the density (PDF) of the Poisson-Lindley Distribution.

pplind computes the CDF of the Poisson-Lindley Distribution.

gplind computes the quantile function of the Poisson-Lindley Distribution.

rplind generates random numbers from the Poisson-Lindley Distribution.

The compound Probability Mass Function (PMF) for the Poisson-Lindley (PL) distribution is:

N0+ N +y+1)
(0 +1)(0 + \)v+2

f(yle’ /\) =

Where 6 and ) are distribution parameters with the restrictions that # > 0 and A > 0, and y is a
non-negative integer.

The expected value of the distribution is:
_AM0+2)
F=%0+1)

The default is to use the input mean value for the distribution. However, the lambda parameter can
be used as an alternative to the mean value.
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Value

dplind gives the density, pplind gives the distribution function, gplind gives the quantile function,
and rplind generates random deviates.

The length of the result is determined by n for rplind, and is the maximum of the lengths of the
numerical arguments for the other functions.

Examples

dplind(@, mean = @.75, theta = 7)

pplind(c(o, 1, 2, 3, 5, 7, 9, 10), mean = 0.75, theta = 7)
gplind(c(@.1, 0.3, 0.5, 0.9, 0.95), lambda = 4.67, theta = 7)
rplind(3@, mean = 0.75, theta = 7)

PoissonLindleylLognormal
Poisson-Lindley-Lognormal Distribution

Description

These functions provide density, distribution, quantile, and random generation for the Poisson-
Lindley-Lognormal (PLL) Distribution.

Usage

dplindLnorm(
X,
mean = 1,
theta = 1,
sigma = 1,
ndraws = 1500,
log = FALSE,
hdraws = NULL

)

pplindLnorm(
qa,
mean = 1,
theta = 1,
lambda = NULL,
sigma = 1,
ndraws = 1500,
lower.tail = TRUE,
log.p = FALSE

)

gplindLnorm(p, mean = 1, theta = 1, sigma = 1, ndraws = 1500, lambda = NULL)
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PoissonLindleyLognormal

rplindLnorm(n, mean = 1, theta = 1, sigma = 1, ndraws = 1500, lambda = NULL)

Arguments
X numeric value or vector of values.
mean mean (>0).
theta Poisson-Lindley theta parameter (>0).
sigma lognormal sigma parameter (>0).
ndraws number of Halton draws.
log return log-density.
hdraws optional Halton draws.
q quantile or vector of quantiles.
lambda optional lambda parameter (>0).
lower.tail TRUE returns P[X

<
x].

log.p return log-CDF.
p probability or vector of probabilities.
n number of random draws.

Details

The PLL is a 3-parameter count distribution that captures high mass at small y and allows flexible
heavy tails.

dplind computes the PLL density. pplind computes the PLL CDF. gplind computes quantiles.
rplind generates random draws.

The PMF is:
oS 92Myxy(9+ﬂx _,’_y+ 1) exp (_111220—(5))
folw0.0) = | - da
0 0+ 1)(0 + px)Y zoV/2m
Mean: )
MO +2)e /2
E = = ——m-——
] =n 00+ 1)

Halton draws are used to evaluate the integral.

Value

dplindLnorm gives the density, pplindLnorm gives the distribution function, gplindLnorm gives the
quantile function, and rplindLnorm generates random deviates.

The length of the result is determined by n for rplindLnorm, and is the maximum of the lengths of
the numerical arguments for the other functions.
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Examples
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dplindLnorm(@, mean=0.75, theta=7, sigma=2, ndraws=10)

pplindLnorm(@:10,

mean=0.75, theta=7, sigma=2, ndraws=10)

gplindLnorm(c(@0.1,0.5,0.9), lambda=4.67, theta=7, sigma=2)
rplindLnorm(5, mean=0.75, theta=7, sigma=2)

PoissonLognormal

Poisson-Lognormal Distribution

Description

These functions provide density, distribution function, quantile function, and random number gen-
eration for the Poisson-Lognormal (PLogN) Distribution

Usage

dpLnorm(x, mean

ppLnorm(
q,
mean
sigma
ndraws

=1

:‘]’
= 1500

lower.tail = TRUE,

log.p = FALSE

gpLnorm(p, mean

rpLnorm(n, mean =

Arguments

X
mean

sigma

ndraws

log

hdraws

q
lower.tail
log.p

p

n

=1, sigma = 1, ndraws = 1500, log = FALSE, hdraws = NULL)
=1, sigma = 1, ndraws = 1500)
=1, sigma = 1, ndraws = 1500)

numeric value or a vector of values.

numeric value or vector of mean values for the distribution (the values have to
be greater than 0).

single value or vector of values for the sigma parameter of the lognormal distri-
bution (the values have to be greater than 0).

the number of Halton draws to use for the integration.

logical; if TRUE, probabilities p are given as log(p).

and optional vector of Halton draws to use for the integration.
quantile or a vector of quantiles.

logical; if TRUE, probabilities p are P[X < z] otherwise, P[X > z].
logical; if TRUE, probabilities p are given as log(p).

probability or a vector of probabilities.

the number of random numbers to generate.
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Details

dpLnorm computes the density (PDF) of the Poisson-Lognormal Distribution.
ppLnorm computes the CDF of the Poisson-Lognormal Distribution.

gpLnorm computes the quantile function of the Poisson-Lognormal Distribution.
rpLnorm generates random numbers from the Poisson-Lognormal Distribution.

The compound Probability Mass Function (PMF) for the Poisson-Lognormal distribution is:

In?(z)

o] Myxye—um ETD (— 252 )

flu, 0, ) =/ dx
0

y! ToV 2T

Where o is a parameter for the lognormal distribution with the restriction ¢ > 0, and y is a non-
negative integer.

The expected value of the distribution is:

E[y] _ eXB+z72/2 — M602/2

Halton draws are used to perform simulation over the lognormal distribution to solve the integral.

Value

dpLnorm gives the density, ppLnorm gives the distribution function, qpLnorm gives the quantile
function, and rpLnorm generates random deviates.

The length of the result is determined by n for rpLnorm, and is the maximum of the lengths of the
numerical arguments for the other functions.

Examples

dpLnorm(@, mean=0.75, sigma=2, ndraws=10)
ppLnorm(c(9,1,2,3,5,7,9,10), mean=0.75, sigma=2, ndraws=10)
gpLnorm(c(@.1,0.3,0.5,0.9,0.95), mean=0.75, sigma=2, ndraws=10)
rpLnorm(30, mean=0.75, sigma=2, ndraws=10)

PoissonWeibull Poisson-Weibull Distribution Functions

Description

These functions provide density, distribution function, quantile function, and random number gen-
eration for the Poisson-Weibull Distribution, which is specified either by its shape and scale param-
eters or by its mean and standard deviation.
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Usage

dpoisweibull(
X,
lambda = NULL,
alpha = NULL,
sigma = NULL,
mean_value = NULL,
sd_value = NULL,
ndraws = 1500,

log = FALSE

)

ppoisweibull(
q,
lambda = NULL,
alpha = NULL,
sigma = NULL,

mean_value = NULL,
sd_value = NULL,
ndraws = 1500,
lower.tail = TRUE,

log.p = FALSE
)
gpoisweibull(
P,
lambda = NULL,
alpha = NULL,
sigma = NULL,

mean_value = NULL,
sd_value = NULL,
ndraws = 1500

)

rpoisweibull(
n,
lambda = NULL,
alpha = NULL,
sigma = NULL,
mean_value = NULL,
sd_value = NULL,
ndraws = 1500

Arguments

X A numeric value or vector of values for which the PDF or CDF is calculated.

lambda Mean value of the Poisson distribution.
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alpha Shape parameter of the Weibull distribution (optional if mean and sd are pro-
vided).

sigma Scale parameter of the Weibull distribution (optional if mean and sd are pro-
vided).

mean_value Mean of the Weibull distribution (optional if alpha and sigma are provided).

sd_value Standard deviation of the Weibull distribution (optional if alpha and sigma are
provided).

ndraws the number of Halton draws to use for the integration.

log Logical; if TRUE, probabilities p are given as log(p).

q Quantile or a vector of quantiles.

lower.tail Logical; if TRUE, probabilities are P[X <= x], otherwise P[X > x].

log.p Logical; if TRUE, probabilities p are given as log(p).

p A numeric value or vector of probabilities for the quantile function.

n The number of random samples to generate.

Details

The Poisson-Weibull distribution uses the Weibull distribution as a mixing distribution for a Poisson
process. It is useful for modeling overdispersed count data. The density function (probability mass
function) for the Poisson-Weibull distribution is given by:
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where f(z|a, o) is the PDF of the Weibull distribution and A is the mean of the Poisson distribution.
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dpoisweibull computes the density of the Poisson-Weibull distribution.
ppoisweibull computes the distribution function of the Poisson-Weibull distribution.
gpoisweibull computes the quantile function of the Poisson-Weibull distribution.
rpoisweibull generates random numbers following the Poisson-Weibull distribution.

The shape and scale parameters directly define the Weibull distribution, whereas the mean and
standard deviation are used to compute these parameters indirectly.

Value

dpoisweibull gives the density, ppoisweibull gives the distribution function, gpoisweibull gives the
quantile function, and rpoisweibull generates random deviates.

The length of the result is determined by n for rpoisweibull, and is the maximum of the lengths of
the numerical arguments for the other functions.

Examples

dpoisweibull(4, lambda=1.5, mean_value=1.5, sd_value=0.5, ndraws=10)
ppoisweibull (4, lambda=1.5, mean_value=1.5, sd_value=2, ndraws=10)
gpoisweibull(0.95, lambda=1.5, mean_value=1.5, sd_value=2, ndraws=10)
rpoisweibull (10, lambda=1.5, mean_value=1.5, sd_value=2, ndraws=10)
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predict.flexCountReg Predictions for flexCountReg models

Description

Generates predictions for the expected count (lambda) for observations.
For countreg.rp (Random Parameters) models, three methods are available:
e Simulated: Uses Halton draws to simulate the random parameters and averages the outcomes.
This is a simulation-based approximation.

* Individual: Estimates observation-specific coefficients (conditional on observed outcomes)
using Empirical Bayes. Requires the outcome variable to be present in data.

* Exact: Uses the analytical Moment Generating Functions (MGFs) of the random parameter
distributions to calculate the exact expected value. This method is faster and removes simula-
tion error.

For countreg, poisLindRE, and RENB models, the function calculates the expected value p =
exp(X ) (with appropriate adjustments for specific families like PLN or underreporting).

Usage
## S3 method for class 'flexCountReg'
predict(object, newdata = NULL, ...)
Arguments
object a model object estimated using this R package.
newdata optional dataframe for which to generate predictions.

optional arguments passed to the function. This includes ‘method°.

Value

A numeric vector of predicted expected counts for each observation in the provided data. If no data
is provided, the predictions for the data used in estimating the model are provided.

Note

optional parameter ‘newdata‘: a dataframe that has all of the variables in the formula and rpar_formula.

optional parameter ‘method‘: Only valid for random parameters models (‘countreg.rp‘). Options
include Simulated (default), Individual, or Exact.

References

Wood, J.S., Gayah, V. (2025). Out-of-sample prediction and interpretation for random parameter
generalized linear models. Accident Analysis and Prevention, 220, 108147.
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Examples

# Load data and create a dummy variable
data("washington_roads")
washington_roads$AADT10kplus <- ifelse(washington_roads$AADT > 10000, 1, 0)

#
# 1. Fixed Parameter Model (countreg)
#
nb2_fixed <- countreg(Total_crashes ~ lnaadt + lnlength + speed50,
data = washington_roads,
family = "NB2")
pred_fixed <- predict(nb2_fixed, data = washington_roads)

#

# 2. Random Parameters Model (countreg.rp)

#

rp_nb2 <- countreg.rp(Total_crashes ~ lnaadt + lnlength,
rpar_formula = ~ -1 + speed50,
data = washington_roads,
family = "NB2",

rpardists = c(speed50 = "n"),
ndraws = 100)

# Method A: Simulated (Default)
pred_sim <- predict(rp_nb2, data = washington_roads, method = "Simulated")

# Method B: Exact (Analytical MGF)

pred_exact <- predict(rp_nb2, data = washington_roads, method = "Exact")
#

# 3. Random Effects Models (poisLindRE / RENB)

#

pl_re <- poisLind.re(Total_crashes ~ lnaadt + lnlength,
data = washington_roads,
group_var = "ID")

pred_pl_re <- predict(pl_re, data = washington_roads)

regCompTable Create a Table Comparing Regression Models with AIC, BIC, and Mc-
Fadden’s Pseudo-R-Squared

Description

This function creates tables comparing the flexCountReg package models supplied to the function.

Usage
regCompTable(
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models,

coefs = TRUE,
AIC = TRUE,
TRUE,

BIC
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RSquare = TRUE,
tableType = "tibble",

digits = 3

Arguments

models

coef's

AIC

BIC

RSquare

tableType

digits

Value

A named list of fitted flexCountReg model objects. This must include 2 or more
models.

A logical. The default value “TRUE® indicates that the coefficients from the
models should be included in the table of comparisons.

A logical. The default value “TRUE" indicates that AIC values for the models
should be included.

A logical. The default value “TRUE® indicates that BIC values for the models
should be included.

A logical. The default value “TRUE‘ indicates that the McFadden’s Pseudo-
R-Squared statistic (comparing against a Poisson regression model) should be
included.

The type of table format to return. Options include "tibble" for returning the
table as a tibble, "gt" for a gt table object, or "latex" for a latex table. The
default is "tibble".

An integer value indicating the number of decimals to round the table values to.

A table comparing the models supplied to the function in the format specified The table includes
coefficients, standard errors, statistical significance, AIC, BIC, and McFadden’s Pseudo-R-Squared.
Table formats include: "tibble", "gt", and "latex".

Examples

# Comparing the NBP model with the NB2 and NB1 models
data("washington_roads")
washington_roads$AADTover10k <- ifelse(washington_roads$AADT>10000,1,0)

nb.1 <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 +

ShouldWidth@4 + AADToveri1ok,
data=washington_roads, family = 'NB1', method

'NM')

nb.2 <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 +

ShouldWidth@4 + AADTover10k,
data=washington_roads, family = 'NB2', method = 'NM")
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nb.p <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 +
ShouldWidth@4 + AADTover10k,
data=washington_roads, family = 'NBP', method = 'NM')

comptable <-
regCompTable(list("NB-1"=nb.1, "NB-2"=nb.2, "NB-P"=nb.p), tableType="latex")
print(comptable)

regCompTest Compare Regression Models with Likelihood Ratio Test, AIC, and BIC

Description

This function compares a given regression model to a base model using the Likelihood Ratio (LR)
test, Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC).

Usage

regCompTest(
model,
data = NULL,
basemodel = "Poisson”,
variables = FALSE,
print = FALSE,

)
Arguments

model A fitted regression model object.

data An options data frame containing the variables in the model. If not supplied, the
original data used to estimate the model will be used.

basemodel A character string specifying the family of base model to compare against (op-
tions include the family from countreg or "Poisson"). Default is "Poisson".

variables Logical. If TRUE, the base model will include the same variables as the provided
model. If FALSE, the base model will be an intercept-only model. Default is
FALSE.

print Logical. If TRUE, a table of the results will be shown. If FALSE, the table of

results will not be printed to the console.

Additional arguments to be passed to the base model fitting function - options
are any argument from the countreg function.
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Details
The function performs the following steps:

1. Fits the base model, either a Poisson regression or another specified model.
2. Computes the log-likelihoods of both the provided model and the base model.
3. Calculates the AIC and BIC for both models.

4. Conducts a Likelihood Ratio test to compare the models (if the provided model has more
parameters than the base model).

5. Computes McFadden’s Pseudo R*2.
The Likelihood-Ratio test is computed as
LR = —2(LLpase model — LLmodel)
. The test is chi-squared with degrees of freedom

dOf = N’model params — Nbase mode params

. The AIC is calculated as
AIC = —2-LL + 2 -nparam

, and the BIC is calculated as

BIC = —2- LL + nparam - log(n)

Value

A list containing the following components:

LL Log-likelihood of the provided model.

LLbase Log-likelihood of the base model.

LR Likelihood Ratio statistic.

LRdof Degrees of freedom for the Likelihood Ratio test.
AIC Akaike Information Criterion for the provided model.
AICbase Akaike Information Criterion for the base model.

BIC Bayesian Information Criterion for the provided model.
BICbase Bayesian Information Criterion for the base model.
LR_pvalue P-value for the Likelihood Ratio test.

PseudoR2 McFadden’s Pseudo R"2.

statistics A tibble format summary of the results.

gtTable A gt table object summarizing the results.
latexTable Latex code for a table summarizing the results.

htmlTable HTML table summarizing the results.
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Examples

# Comparing the NBP model with the NB2 model
data("washington_roads")
washington_roads$AADTover10k <- ifelse(washington_roads$AADT>10000,1,0)

nbp.base <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 +
ShouldWidth@4 + AADTover10k,
data=washington_roads, family = 'NBP', method = 'NM',
max.iters=3000)

regCompTest(nbp.base, washington_roads, basemodel="NB2", print=TRUE)

renb Estimate a Random Effects Negative Binomial regression model

Description

Estimate a Random Effects Negative Binomial regression model

Usage

renb(
formula,
group_var,
data,
method = "NM",
max.iters = 1000,
print.level = 0,
bootstraps = NULL,
offset = NULL

)
Arguments

formula an R formula.

group_var the grouping variable(s) for the random effects (e.g., individual ID or other panel
ID variables).

data a dataframe that has all of the variables in the formula.

method a method to use for optimization in the maximum likelihood estimation. For
options, see maxLik. Note that "BHHH" is not available for this function due to
the implementation for the random effects.

max.iters the maximum number of iterations to allow the optimization method to perform.

print.level Integer specifying the verbosity of output during optimization.

bootstraps Optional integer specifying the number of bootstrap samples to be used for esti-

mating standard errors. If not specified, no bootstrapping is performed.

offset an optional offset term provided as a string.
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Details

This function estimates a random effects negative binomial (RENB) regression model. This model
is based on the NB-1 model. The PDF for the RENB is:

(a+b)+F(a+Zt 1#zt)+F(b+Zt 1y1t H Mzt+yzt

f Yit | i 7a>b
( tl ¢ ) F(G)F(b) (a + b + thl it + Etzl yzt =1 ,qut yzf)

Value
An object of class ‘countreg* which is a list with the following components:

* model: the fitted model object.
¢ data: the data frame used to fit the model.
e call: the matched call.

e formula: the formula used to fit the model.

Examples

## RENB Model
data("washington_roads")
washington_roads$AADTover10k <-
ifelse(washington_roads$AADT > 10000, 1, @) # create a dummy variable
renb.mod <- renb(Animal ~ lnaadt + speed5@ + ShouldWidth@4 + AADToveri10k,
data=washington_roads,
offset = "lnlength”,
group_var="1ID",
method="nm",
max.iters = 1000)
summary (renb.mod)

rmse Calculate Root Mean Squared Error (RMSE)

Description
This function calculates the Root Mean Squared Error (RMSE) between observed and predicted
values.

Usage

rmse(y, mu)

Arguments

y Numeric vector representing the observed values.

mu Numeric vector representing the predicted values.
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Details

The RMSE is calculated using the formula:

RMSE =

Where y is the vector of observed values and p is the vector of predicted values.

Value

Numeric value representing the RMSE.

Examples

y <= c(1, 2, 3)
mu <- c(1.1, 1.9, 3.2)
rmse(y, mu)

SichelDistribution Sichel Distribution

Description

Density, distribution function, quantile function, and random generation for the Sichel distribution.

Usage

dsichel(x, mu = 1, sigma = 1, gamma = 1, log = FALSE)

psichel(q, mu = 1, sigma = 1, gamma = 1, lower.tail = TRUE, log.p = FALSE)

gsichel(p, mu = 1, sigma = 1, gamma = 1, lower.tail = TRUE, log.p FALSE)

rsichel(n, mu = 1, sigma = 1, gamma = 1)

Arguments
X numeric value or vector of non-negative integer values.
mu numeric; mean of the distribution (mu > 0).
sigma numeric; scale parameter (sigma > 0).
gamma numeric; shape parameter (can be any real number).
log, log.p logical; if TRUE, probabilities are given as log(p).
q quantile or vector of quantiles.
lower.tail logical; if TRUE, probabilities are P[X <= x].
p probability or vector of probabilities.

n number of random values to generate.
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Details

The Sichel distribution is a three-parameter discrete distribution that generalizes the Poisson-inverse
Gaussian distribution. It is useful for modeling overdispersed count data.

The PMF is:
(/) Kyiy(a)
K, (1/o)y!(ao)s+

fylp,o,v) =

Value

dsichel gives the density, psichel gives the distribution function, gsichel gives the quantile function,
and rsichel generates random deviates.

The length of the result is determined by n for rsichel, and is the maximum of the lengths of the
numerical arguments for the other functions.

References

Rigby, R. A., Stasinopoulos, D. M., & Akantziliotou, C. (2008). A framework for modelling
overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution.
Computational Statistics & Data Analysis, 53(2), 381-393.

Examples

# Basic usage
dsichel(@:10, mu = 5, sigma = 1, gamma = -0.5)

# Log-probabilities for numerical stability
dsichel(@:10, mu = 5, sigma = 1, gamma = -0.5, log = TRUE)

# CDF
psichel(5, mu = 5, sigma = 1, gamma = -0.5)

summary . flexCountReg  Custom summary method for flexCountReg models

Description

Custom summary method for flexCountReg models

Usage
## S3 method for class 'flexCountReg'
summary(object, ...)

Arguments
object A flexCountReg model object.

Optional parameters that include ‘confint_level and ‘digits‘.
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Details

This summary method accounts for bootstrapped or robust standard errors (when used).

Value

Prints the model formula, method used for estimation, number of iterations used, if the model
converged, and the log-likelihood. Then, it prints a table containing parameter estimates, standard
errors, t-statistics, p-values, and confidence intervals. Also quietly returns a tibble with these values.

Note

Optional parameter ‘confint_level‘: A numeric value between O and 1 indicating the confidence
level for confidence intervals. Default is 0.95.

Optional parameter ‘digits‘: Number of digits (decimal places) to round to. Default is 3.

Examples

# NB2 Model

data("washington_roads")

washington_roads$AADT10kplus <- ifelse(washington_roads$AADT > 10000, 1, @)

nb2 <- countreg(Total_crashes ~ lnaadt + lnlength + speed50 + AADT1@kplus,
data = washington_roads, family = "NB2",

dis_param_formula_1 = ~ speed5@, method='BFGS')
summary (nb2)
tidy.flexCountReg Tidy a flexCountReg object
Description

Tidy a flexCountReg object

Usage
## S3 method for class 'flexCountReg'
tidy(x, ...)
Arguments
X An object of class flexCountReg
Additional arguments
Value

A tibble object with columns: term, estimate
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Triangular

Triangle Distribution

Description

These functions provide density, distribution function, quantile function, and random number gen-
eration for the Triangle Distribution, specified by its mean, standard deviation, and optional lower

and upper bounds.

Usage

dtri(x, mode = @, sigma =

ptri(

)

q,

mode = 0,
sigma = 1,
upper = NA,
lower = NA,

1, upper = NA, lower = NA, log = FALSE)

lower.tail = TRUE,

log.p = FALSE

gtri(p, mode

rtri(n, mode

Arguments

X

mode

sigma

upper

lower

log

q

lower.tail

log.p

p
n

NA, lower =

0, sigma =

1, upper NA)

9, sigma =

1, upper = NA, lower = NA)

numeric value or a vector of values.
numeric value or vector of mode values for the distribution.

single value or vector indicating both the positive and negative max differences
from the mean (if the difference is the same).

single value or vector for the upper limit of the distribution (must be used with
‘lower®).

single value or vector for the lower limit of the distribution (must be used with
‘upper®).

logical; if TRUE, probabilities p are given as log(p).

quantile or a vector of quantiles.

logical; if TRUE, probabilities p are P[X < z] otherwise, P[X > z].

logical; if TRUE, probabilities p are given as log(p).

probability or a vector of probabilities.

the number of random numbers to generate.
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Details

The Triangle Distribution is defined by three points: a (minimum), b (maximum), and ¢ (mode),
where the density is zero outside the interval [a, b], increases linearly from a to ¢, and decreases
linearly from c to b.

dtri computes the density (PDF) of the Triangle Distribution.
ptri computes the CDF of the Triangle Distribution.

gtri computes the quantile function of the Triangle Distribution.
rtri generates random numbers from the Triangle Distribution.

The mode and standard deviation parameters define the distribution’s location and scale, respec-
tively, while the lower and upper bounds explicitly set the minimum and maximum values of the
distribution.

Value

dtri gives the density, ptri gives the distribution function, qtri gives the quantile function, and rtri
generates random deviates.

The length of the result is determined by n for rtri, and is the maximum of the lengths of the
numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.

Examples

dtri(4, mode=8, upper=13, lower=1)

ptri(c(o, 1, 2, 3, 5, 7, 9, 10), mode = 3, upper=9, lower = 1)
gtri(c(o0.1, 0.3, 0.5, 0.9, 0.95), mode = 3, upper = 9, lower = 1)
rtri(30, mode = 5, sigma = 3)

washington_roads Washington Road Crashes

Description

Crashes on Washington primary roads from 2016, 2017, and 2018. Data acquired from Washington
Department of Transportation through the Highway Safety Information System (HSIS).

Usage

washington_roads
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Format

Data frame compiled from roadway, traffic, and police-reported crash data that has 1,501 rows and
13 columns:

ID Anonymized road ID. Factor.

Year Year. Integer.

AADT Annual Average Daily Traffic (AADT). Double.

Length Segment length in miles. Double.

Total_crashes Total crashes. Integer.

Inaadt Natural logarithm of AADT. Double.

Inlength Natural logarithm of length in miles. Double.

speed50 Indicator of whether the speed limit is 50 mph or greater. Binary.
ShouldWidth04 Indicator of whether the shoulder is 4 feet or wider. Binary.
Fatal_crashes Total number of non-intersection fatal crashes for the road segment
Injury_crashes Total number of non-intersection Injury crashes for the road segment
Animal Total number of non-intersection animal-related crashes for the road segment

Rollover Total number of non-intersection rollover crashes for the road segment

Source

https://highways.dot.gov/research/safety/hsis
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