
Package ‘ecodive’
January 16, 2026

Type Package

Title Parallel and Memory-Efficient Ecological Diversity Metrics

Version 2.2.2

Description Computes alpha and beta diversity metrics using concurrent 'C' threads.
Metrics include 'UniFrac', Faith's phylogenetic diversity, Bray-Curtis
dissimilarity, Shannon diversity index, and many others.
Also parses newick trees into 'phylo' objects and rarefies feature tables.

URL https://cmmr.github.io/ecodive/, https://github.com/cmmr/ecodive

BugReports https://github.com/cmmr/ecodive/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 3.6.0)

RoxygenNote 7.3.3

Config/Needs/website rmarkdown

Config/testthat/edition 3

Imports parallel, utils

Suggests knitr, Matrix, parallelly, rmarkdown, slam, testthat (>=
3.0.0)

VignetteBuilder knitr

NeedsCompilation yes

Author Daniel P. Smith [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2479-2044>),

Alkek Center for Metagenomics and Microbiome Research [cph, fnd]

Maintainer Daniel P. Smith <dansmith01@gmail.com>

Repository CRAN

Date/Publication 2026-01-16 15:10:02 UTC

1

https://cmmr.github.io/ecodive/
https://github.com/cmmr/ecodive
https://github.com/cmmr/ecodive/issues
https://orcid.org/0000-0002-2479-2044


2 adiv_functions

Contents
adiv_functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
alpha_div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
bdiv_functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
beta_div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
ex_counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ex_tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
list_metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
n_cpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
rarefy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
read_tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Index 24

adiv_functions Alpha Diversity Metrics

Description

Alpha Diversity Metrics

Usage

ace(counts, cutoff = 10L, margin = 1L, cpus = n_cpus())

berger(counts, norm = "percent", margin = 1L, cpus = n_cpus())

brillouin(counts, margin = 1L, cpus = n_cpus())

chao1(counts, margin = 1L, cpus = n_cpus())

faith(counts, tree = NULL, margin = 1L, cpus = n_cpus())

fisher(counts, digits = 3L, margin = 1L, cpus = n_cpus())

inv_simpson(counts, norm = "percent", margin = 1L, cpus = n_cpus())

margalef(counts, margin = 1L, cpus = n_cpus())

mcintosh(counts, margin = 1L, cpus = n_cpus())

menhinick(counts, margin = 1L, cpus = n_cpus())

observed(counts, margin = 1L, cpus = n_cpus())

shannon(counts, norm = "percent", margin = 1L, cpus = n_cpus())



adiv_functions 3

simpson(counts, norm = "percent", margin = 1L, cpus = n_cpus())

squares(counts, margin = 1L, cpus = n_cpus())

Arguments

counts A numeric matrix of count data where each column is a feature, and each row is
a sample. Any object coercible with as.matrix() can be given here, as well as
phyloseq, rbiom, SummarizedExperiment, and TreeSummarizedExperiment
objects. For optimal performance with very large datasets, see the guide in
vignette('performance').

cutoff The maximum number of observations to consider "rare". Default: 10.

margin If your samples are in the matrix’s rows, set to 1L. If your samples are in
columns, set to 2L. Ignored when counts is a phyloseq, rbiom, SummarizedExperiment,
or TreeSummarizedExperiment object. Default: 1L

cpus How many parallel processing threads should be used. The default, n_cpus(),
will use all logical CPU cores.

norm Normalize the incoming counts. Options are:

norm = "percent" - Relative abundance (sample abundances sum to 1).
norm = "binary" - Unweighted presence/absence (each count is either 0 or 1).
norm = "clr" - Centered log ratio.
norm = "none" - No transformation.

Default: 'percent', which is the expected input for these formulas.

tree A phylo-class object representing the phylogenetic tree for the OTUs in counts.
The OTU identifiers given by colnames(counts) must be present in tree. Can
be omitted if a tree is embedded with the counts object or as attr(counts,
'tree').

digits Precision of the returned values, in number of decimal places. E.g. the default
digits=3 could return 6.392.

Value

A numeric vector.

Formulas

Prerequisite: all counts are whole numbers.

Given:

• n : The number of features (e.g. species, OTUs, ASVs, etc).

• Xi : Integer count of the i-th feature.

• XT : Total of all counts (i.e. sequencing depth). XT =
∑n

i=1 Xi

• Pi : Proportional abundance of the i-th feature. Pi = Xi/XT

• F1 : Number of features where Xi = 1 (i.e. singletons).

• F2 : Number of features where Xi = 2 (i.e. doubletons).



4 adiv_functions

Abundance-based Coverage Estimator (ACE) ace() See below.
Berger-Parker Index berger() max(Pi)

Brillouin Index brillouin()
ln [(

∑n
i=1 Xi)!]−

∑n
i=1 ln (Xi!)∑n

i=1 Xi

Chao1 chao1() n+
(F1)

2

2F2
Faith’s Phylogenetic Diversity faith() See below.

Fisher’s Alpha (α) fisher()
n

α
= ln

(
1 +

XT

α

)
The value of α must be solved for iteratively.

Gini-Simpson Index simpson() 1−
∑n

i=1 P
2
i

Inverse Simpson Index inv_simpson() 1/
∑n

i=1 P
2
i

Margalef’s Richness Index margalef()
n− 1

lnXT

McIntosh Index mcintosh()
XT −

√∑n
i=1(Xi)2

XT −
√
XT

Menhinick’s Richness Index menhinick()
n√
XT

Observed Features observed() n
Shannon Diversity Index shannon() −

∑n
i=1 Pi × ln(Pi)

Squares Richness Estimator squares() n+
(F1)

2
∑n

i=1(Xi)
2

X2
T − nF1

Abundance-based Coverage Estimator (ACE):
Given:

• n : The number of features (e.g. species, OTUs, ASVs, etc).
• r : Rare cutoff. Features with ≤ r counts are considered rare.
• Xi : Integer count of the i-th feature.
• Fi : Number of features with exactly i counts.
• F1 : Number of features where Xi = 1 (i.e. singletons).
• Frare : Number of rare features where Xi ≤ r.
• Fabund : Number of abundant features where Xi > r.
• Xrare : Total counts belonging to rare features.
• Cace : The sample abundance coverage estimator, defined below.
• γ2

ace : The estimated coefficient of variation, defined below.
• Dace : Estimated number of features in the sample.

Cace = 1− F1

Xrare

γ2
ace = max

[
Frare

∑r
i=1 i(i− 1)Fi

CaceXrare(Xrare − 1)
− 1, 0

]
Dace = Fabund +

Frare

Cace
+

F1

Cace
γ2
ace

Faith’s Phylogenetic Diversity (Faith’s PD):
Given n branches with lengths L and a sample’s abundances A on each of those branches coded
as 1 for present or 0 for absent:∑n

i=1 LiAi



alpha_div 5

Examples

# Example counts matrix
t(ex_counts)

ace(ex_counts)

chao1(ex_counts)

squares(ex_counts)

alpha_div Alpha Diversity Wrapper Function

Description

Alpha Diversity Wrapper Function

Usage

alpha_div(
counts,
metric,
norm = "percent",
cutoff = 10L,
digits = 3L,
tree = NULL,
margin = 1L,
cpus = n_cpus()

)

Arguments

counts A numeric matrix of count data where each column is a feature, and each row is
a sample. Any object coercible with as.matrix() can be given here, as well as
phyloseq, rbiom, SummarizedExperiment, and TreeSummarizedExperiment
objects. For optimal performance with very large datasets, see the guide in
vignette('performance').

metric The name of an alpha diversity metric. One of c('ace', 'berger', 'brillouin',
'chao1', 'faith', 'fisher', 'inv_simpson', 'margalef', 'mcintosh', 'menhinick',
'observed', 'shannon', 'simpson', 'squares'). Case-insensitive and par-
tial name matching is supported. Programmatic access via list_metrics('alpha').

norm Normalize the incoming counts. Options are:

norm = "percent" - Relative abundance (sample abundances sum to 1).
norm = "binary" - Unweighted presence/absence (each count is either 0 or 1).
norm = "clr" - Centered log ratio.



6 alpha_div

norm = "none" - No transformation.

Default: 'percent', which is the expected input for these formulas.

cutoff The maximum number of observations to consider "rare". Default: 10.

digits Precision of the returned values, in number of decimal places. E.g. the default
digits=3 could return 6.392.

tree A phylo-class object representing the phylogenetic tree for the OTUs in counts.
The OTU identifiers given by colnames(counts) must be present in tree. Can
be omitted if a tree is embedded with the counts object or as attr(counts,
'tree').

margin If your samples are in the matrix’s rows, set to 1L. If your samples are in
columns, set to 2L. Ignored when counts is a phyloseq, rbiom, SummarizedExperiment,
or TreeSummarizedExperiment object. Default: 1L

cpus How many parallel processing threads should be used. The default, n_cpus(),
will use all logical CPU cores.

Details

Integer Count Requirements:
A frequent and critical error in alpha diversity analysis is providing the wrong type of data to a
metric’s formula. Some indices are mathematically defined based on counts of individuals and
require raw, integer abundance data. Others are based on proportional abundances and can accept
either integer counts (which are then converted to proportions) or pre-normalized proportional
data. Using proportional data with a metric that requires integer counts will return an error mes-
sage.

Requires Integer Counts Only:
• Chao1
• ACE
• Squares Richness Estimator
• Margalef’s Index
• Menhinick’s Index
• Fisher’s Alpha
• Brillouin Index

Can Use Proportional Data:
• Observed Features
• Shannon Index
• Gini-Simpson Index
• Inverse Simpson Index
• Berger-Parker Index
• McIntosh Index
• Faith’s PD

Value

A numeric vector.



bdiv_functions 7

Examples

# Example counts matrix
ex_counts

# Shannon diversity values
alpha_div(ex_counts, 'Shannon')

# Chao1 diversity values
alpha_div(ex_counts, 'c')

# Faith PD values
alpha_div(ex_counts, 'faith', tree = ex_tree)

bdiv_functions Beta Diversity Metrics

Description

Beta Diversity Metrics

Usage

aitchison(
counts,
pseudocount = NULL,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

bhattacharyya(
counts,
norm = "percent",
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

bray(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

canberra(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

chebyshev(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

chord(counts, margin = 1L, pairs = NULL, cpus = n_cpus())



8 bdiv_functions

clark(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

divergence(
counts,
norm = "percent",
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

euclidean(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

gower(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

hellinger(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

horn(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

jensen(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

jsd(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

lorentzian(
counts,
norm = "percent",
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

manhattan(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

matusita(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

minkowski(
counts,
norm = "percent",
power = 1.5,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

morisita(counts, margin = 1L, pairs = NULL, cpus = n_cpus())

motyka(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())



bdiv_functions 9

psym_chisq(
counts,
norm = "percent",
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

soergel(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

squared_chisq(
counts,
norm = "percent",
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

squared_chord(
counts,
norm = "percent",
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

squared_euclidean(
counts,
norm = "percent",
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

topsoe(counts, norm = "percent", margin = 1L, pairs = NULL, cpus = n_cpus())

wave_hedges(
counts,
norm = "percent",
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

hamming(counts, margin = 1L, pairs = NULL, cpus = n_cpus())

jaccard(counts, margin = 1L, pairs = NULL, cpus = n_cpus())



10 bdiv_functions

ochiai(counts, margin = 1L, pairs = NULL, cpus = n_cpus())

sorensen(counts, margin = 1L, pairs = NULL, cpus = n_cpus())

unweighted_unifrac(
counts,
tree = NULL,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

weighted_unifrac(
counts,
tree = NULL,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

normalized_unifrac(
counts,
tree = NULL,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

generalized_unifrac(
counts,
tree = NULL,
alpha = 0.5,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

variance_adjusted_unifrac(
counts,
tree = NULL,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

Arguments

counts A numeric matrix of count data where each column is a feature, and each row is
a sample. Any object coercible with as.matrix() can be given here, as well as



bdiv_functions 11

phyloseq, rbiom, SummarizedExperiment, and TreeSummarizedExperiment
objects. For optimal performance with very large datasets, see the guide in
vignette('performance').

pseudocount The value to add to all counts in counts to prevent taking log(0) for unobserved
features. The default, NULL, selects the smallest non-zero value in counts.

margin If your samples are in the matrix’s rows, set to 1L. If your samples are in
columns, set to 2L. Ignored when counts is a phyloseq, rbiom, SummarizedExperiment,
or TreeSummarizedExperiment object. Default: 1L

pairs Which combinations of samples should distances be calculated for? The default
value (NULL) calculates all-vs-all. Provide a numeric or logical vector specifying
positions in the distance matrix to calculate. See examples.

cpus How many parallel processing threads should be used. The default, n_cpus(),
will use all logical CPU cores.

norm Normalize the incoming counts. Options are:

norm = "percent" - Relative abundance (sample abundances sum to 1).
norm = "binary" - Unweighted presence/absence (each count is either 0 or 1).
norm = "clr" - Centered log ratio.
norm = "none" - No transformation.

Default: 'percent', which is the expected input for these formulas.

power Scaling factor for the magnitude of differences between communities (p). De-
fault: 1.5

tree A phylo-class object representing the phylogenetic tree for the OTUs in counts.
The OTU identifiers given by colnames(counts) must be present in tree. Can
be omitted if a tree is embedded with the counts object or as attr(counts,
'tree').

alpha How much weight to give to relative abundances; a value between 0 and 1,
inclusive. Setting alpha=1 is equivalent to normalized_unifrac().

Value

A dist object.

Formulas

Given:

• n : The number of features.

• Xi, Yi : Absolute counts for the i-th feature in samples X and Y .

• XT , YT : Total counts in each sample. XT =
∑n

i=1 Xi

• Pi, Qi : Proportional abundances of Xi and Yi. Pi = Xi/XT

• XL, YL : Mean log of abundances. XL = 1
n

∑n
i=1 lnXi

• Ri : The range of the i-th feature across all samples (max - min).



12 bdiv_functions

Aitchison distance aitchison()
√∑n

i=1[(lnXi −XL)− (lnYi − YL)]2

Bhattacharyya distance bhattacharyya() − ln
∑n

i=1

√
PiQi

Bray-Curtis dissimilarity bray()

∑n
i=1 |Pi −Qi|∑n
i=1(Pi +Qi)

Canberra distance canberra()
n∑

i=1

|Pi −Qi|
Pi +Qi

Chebyshev distance chebyshev() max(|Pi −Qi|)

Chord distance chord()

√√√√√ n∑
i=1

 Xi√∑n
j=1 X

2
j

− Yi√∑n
j=1 Y

2
j

2

Clark’s divergence distance clark()

√√√√ n∑
i=1

(
Pi −Qi

Pi +Qi

)2

Divergence divergence() 2

n∑
i=1

(Pi −Qi)
2

(Pi +Qi)2

Euclidean distance euclidean()
√∑n

i=1(Pi −Qi)2

Gower distance gower()
1

n

n∑
i=1

|Pi −Qi|
Ri

Hellinger distance hellinger()
√∑n

i=1(
√
Pi −

√
Qi)2

Horn-Morisita dissimilarity horn() 1−
2
∑n

i=1 PiQi∑n
i=1 P

2
i +

∑n
i=1 Q

2
i

Jensen-Shannon distance jensen()

√√√√1

2

[
n∑

i=1

Pi ln

(
2Pi

Pi +Qi

)
+

n∑
i=1

Qi ln

(
2Qi

Pi +Qi

)]

Jensen-Shannon divergence (JSD) jsd()
1

2

[
n∑

i=1

Pi ln

(
2Pi

Pi +Qi

)
+

n∑
i=1

Qi ln

(
2Qi

Pi +Qi

)]
Lorentzian distance lorentzian()

∑n
i=1 ln (1 + |Pi −Qi|)

Manhattan distance manhattan()
∑n

i=1 |Pi −Qi|
Matusita distance matusita()

√∑n
i=1

(√
Pi −

√
Qi

)2
Minkowski distance minkowski() p

√∑n
i=1(Pi −Qi)p Where p is the geometry of the space.

Morisita dissimilarity * Integers Only morisita() 1−
2
∑n

i=1 XiYi(∑n
i=1 Xi(Xi − 1)

XT (XT − 1)
+

∑n
i=1 Yi(Yi − 1)

YT (YT − 1)

)
XTYT

Motyka dissimilarity motyka()

∑n
i=1 max(Pi, Qi)∑n
i=1(Pi +Qi)

Probabilistic Symmetric χ2 distance psym_chisq() 2

n∑
i=1

(Pi −Qi)
2

Pi +Qi

Soergel distance soergel()

∑n
i=1 |Pi −Qi|∑n

i=1 max(Pi, Qi)

Squared χ2 distance squared_chisq()
n∑

i=1

(Pi −Qi)
2

Pi +Qi

Squared Chord distance squared_chord()
∑n

i=1

(√
Pi −

√
Qi

)2



bdiv_functions 13

Squared Euclidean distance squared_euclidean()
∑n

i=1(Pi −Qi)
2

Topsoe distance topsoe()
n∑

i=1

Pi ln

(
2Pi

Pi +Qi

)
+

n∑
i=1

Qi ln

(
2Qi

Pi +Qi

)
Wave Hedges distance wave_hedges()

∑n
i=1 |Pi −Qi|∑n

i=1 max(Pi, Qi)

Presence / Absence:
Given:

• A, B : Number of features in each sample.
• J : Number of features in common.

Dice-Sorensen dissimilarity sorensen()
2J

(A+B)
Hamming distance hamming() (A+B)− 2J

Jaccard distance jaccard() 1− J

(A+B − J)]

Otsuka-Ochiai dissimilarity ochiai() 1− J√
AB

Phylogenetic:
Given n branches with lengths L and a pair of samples’ binary (A and B) or proportional abun-
dances (P and Q) on each of those branches.

Unweighted UniFrac unweighted_unifrac()
1

n

n∑
i=1

Li|Ai −Bi|

Weighted UniFrac weighted_unifrac()
n∑

i=1

Li|Pi −Qi|

Normalized Weighted UniFrac normalized_unifrac()

∑n
i=1 Li|Pi −Qi|∑n
i=1 Li(Pi +Qi)

Generalized UniFrac (GUniFrac) generalized_unifrac()

∑n
i=1 Li(Pi +Qi)

α

∣∣∣∣Pi −Qi

Pi +Qi

∣∣∣∣∑n
i=1 Li(Pi +Qi)α

Where α is a scalable weighting factor.

Variance-Adjusted Weighted UniFrac variance_adjusted_unifrac()

n∑
i=1

Li
|Pi −Qi|√

(Pi +Qi)(2− Pi −Qi)
n∑

i=1

Li
Pi +Qi√

(Pi +Qi)(2− Pi −Qi)

See vignette('unifrac') for detailed example UniFrac calculations.



14 beta_div

References

Levy, A., Shalom, B. R., & Chalamish, M. (2024). A guide to similarity measures. arXiv.

Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between probability
density functions. International Journal of Mathematical Models and Methods in Applied Sciences,
1(4), 300–307.

Examples

# Example counts matrix
t(ex_counts)

bray(ex_counts)

jaccard(ex_counts)

generalized_unifrac(ex_counts, tree = ex_tree)

# Only calculate distances for Saliva vs all.
bray(ex_counts, pairs = 1:3)

beta_div Beta Diversity Wrapper Function

Description

Beta Diversity Wrapper Function

Usage

beta_div(
counts,
metric,
norm = "percent",
power = 1.5,
pseudocount = NULL,
alpha = 0.5,
tree = NULL,
pairs = NULL,
margin = 1L,
cpus = n_cpus()

)



beta_div 15

Arguments

counts A numeric matrix of count data where each column is a feature, and each row is
a sample. Any object coercible with as.matrix() can be given here, as well as
phyloseq, rbiom, SummarizedExperiment, and TreeSummarizedExperiment
objects. For optimal performance with very large datasets, see the guide in
vignette('performance').

metric The name of a beta diversity metric. One of c('aitchison', 'bhattacharyya',
'bray', 'canberra', 'chebyshev', 'chord', 'clark', 'divergence', 'euclidean',
'generalized_unifrac', 'gower', 'hamming', 'hellinger', 'horn', 'jaccard',
'jensen', 'jsd', 'lorentzian', 'manhattan', 'matusita', 'minkowski',
'morisita', 'motyka', 'normalized_unifrac', 'ochiai', 'psym_chisq',
'soergel', 'sorensen', 'squared_chisq', 'squared_chord', 'squared_euclidean',
'topsoe', 'unweighted_unifrac', 'variance_adjusted_unifrac', 'wave_hedges',
'weighted_unifrac'). Flexible matching is supported (see below). Program-
matic access via list_metrics('beta').

norm Normalize the incoming counts. Options are:

norm = "percent" - Relative abundance (sample abundances sum to 1).
norm = "binary" - Unweighted presence/absence (each count is either 0 or 1).
norm = "clr" - Centered log ratio.
norm = "none" - No transformation.

Default: 'percent', which is the expected input for these formulas.

power Scaling factor for the magnitude of differences between communities (p). De-
fault: 1.5

pseudocount The value to add to all counts in counts to prevent taking log(0) for unobserved
features. The default, NULL, selects the smallest non-zero value in counts.

alpha How much weight to give to relative abundances; a value between 0 and 1,
inclusive. Setting alpha=1 is equivalent to normalized_unifrac().

tree A phylo-class object representing the phylogenetic tree for the OTUs in counts.
The OTU identifiers given by colnames(counts) must be present in tree. Can
be omitted if a tree is embedded with the counts object or as attr(counts,
'tree').

pairs Which combinations of samples should distances be calculated for? The default
value (NULL) calculates all-vs-all. Provide a numeric or logical vector specifying
positions in the distance matrix to calculate. See examples.

margin If your samples are in the matrix’s rows, set to 1L. If your samples are in
columns, set to 2L. Ignored when counts is a phyloseq, rbiom, SummarizedExperiment,
or TreeSummarizedExperiment object. Default: 1L

cpus How many parallel processing threads should be used. The default, n_cpus(),
will use all logical CPU cores.

Details

List of Beta Diversity Metrics



16 beta_div

Option / Function Name Metric Name
aitchison Aitchison distance
bhattacharyya Bhattacharyya distance
bray Bray-Curtis dissimilarity
canberra Canberra distance
chebyshev Chebyshev distance
chord Chord distance
clark Clark’s divergence distance
divergence Divergence
euclidean Euclidean distance
generalized_unifrac Generalized UniFrac (GUniFrac)
gower Gower distance
hamming Hamming distance
hellinger Hellinger distance
horn Horn-Morisita dissimilarity
jaccard Jaccard distance
jensen Jensen-Shannon distance
jsd Jesen-Shannon divergence (JSD)
lorentzian Lorentzian distance
manhattan Manhattan distance
matusita Matusita distance
minkowski Minkowski distance
morisita Morisita dissimilarity
motyka Motyka dissimilarity
normalized_unifrac Normalized Weighted UniFrac
ochiai Otsuka-Ochiai dissimilarity
psym_chisq Probabilistic Symmetric Chi-Squared distance
soergel Soergel distance
sorensen Dice-Sorensen dissimilarity
squared_chisq Squared Chi-Squared distance
squared_chord Squared Chord distance
squared_euclidean Squared Euclidean distance
topsoe Topsoe distance
unweighted_unifrac Unweighted UniFrac
variance_adjusted_unifrac Variance-Adjusted Weighted UniFrac (VAW-UniFrac)
wave_hedges Wave Hedges distance
weighted_unifrac Weighted UniFrac

Flexible name matching

Case insensitive and partial matching. Any runs of non-alpha characters are converted to under-
scores. E.g. metric = 'Weighted UniFrac selects weighted_unifrac.

UniFrac names can be shortened to the first letter plus "unifrac". E.g. uunifrac, w_unifrac, or
V UniFrac. These also support partial matching.

Finished code should always use the full primary option name to avoid ambiguity with future addi-
tions to the metrics list.



ex_counts 17

Value

A numeric vector.

Examples

# Example counts matrix
ex_counts

# Bray-Curtis distances
beta_div(ex_counts, 'bray')

# Generalized UniFrac distances
beta_div(ex_counts, 'GUniFrac', tree = ex_tree)

ex_counts Example counts matrix

Description

Genera found on four human body sites.

Usage

ex_counts

Format

A matrix of 4 samples (columns) x 6 genera (rows).

Source

Derived from The Human Microbiome Project dataset. https://commonfund.nih.gov/hmp

ex_tree Example phylogenetic tree

Description

Companion tree for ex_counts.

Usage

ex_tree

https://commonfund.nih.gov/hmp


18 list_metrics

Format

A phylo object.

Details

ex_tree encodes this tree structure:

+----------44---------- Haemophilus
+-2-|
| +----------------68---------------- Bacteroides
|
| +---18---- Streptococcus
| +--12--|
| | +--11-- Staphylococcus
+--11--|

| +-----24----- Corynebacterium
+--12--|

+--13-- Propionibacterium

list_metrics Find and Browse Available Metrics

Description

Programmatic access to the lists of available metrics, and their associated functions.

Usage

list_metrics(
div = c(NA, "alpha", "beta"),
val = c("data.frame", "list", "func", "id", "name", "div", "phylo", "weighted",

"int_only", "true_metric"),
nm = c(NA, "id", "name"),
phylo = NULL,
weighted = NULL,
int_only = NULL,
true_metric = NULL

)

match_metric(
metric,
div = NULL,
phylo = NULL,
weighted = NULL,
int_only = NULL,
true_metric = NULL

)



list_metrics 19

Arguments

div, phylo, weighted, int_only, true_metric
Consider only metrics matching specific criteria. For example, div = "alpha"
will only return alpha diversity metrics. Default: NULL

val Sets the return value for this function call. See "Value" section below. Default:
"data.frame"

nm What value to use for the names of the returned object. Default is "id" when
val is "list" or "func", otherwise the default is NA (no name).

metric The name of an alpha/beta diversity metric to search for. Supports partial match-
ing. All non-alpha characters are ignored.

Value

match_metric()

A list with the following elements.

• name : Metric name, e.g. "Faith's Phylogenetic Diversity"

• id : Metric ID - also the name of the function, e.g. "faith"
• div : Either "alpha" or "beta".
• phylo : TRUE if metric requires a phylogenetic tree; FALSE otherwise.
• weighted : TRUE if metric takes relative abundance into account; FALSE if it only uses pres-

ence/absence.
• int_only : TRUE if metric requires integer counts; FALSE otherwise.
• true_metric : TRUE if metric is a true metric and satisfies the triangle inequality; FALSE if it

is a non-metric dissimilarity; NA for alpha diversity metrics.
• func : The function for this metric, e.g. ecodive::faith
• params : Formal args for func, e.g. c("counts", "tree", "cpus")

list_metrics()

The returned object’s type and values are controlled with the val and nm arguments.

• val = "data.frame" : The data.frame from which the below options are sourced.
• val = "list" : A list of objects as returned by match_metric() (above).
• val = "func" : A list of functions.
• val = "id" : A character vector of metric IDs.
• val = "name" : A character vector of metric names.
• val = "div" : A character vector "alpha" and/or "beta".
• val = "phylo" : A logical vector indicating which metrics require a tree.
• val = "weighted" : A logical vector indicating which metrics take relative abundance into

account (as opposed to just presence/absence).
• val = "int_only" : A logical vector indicating which metrics require integer counts.
• val = "true_metric" : A logical vector indicating which metrics are true metrics and satisfy

the triangle inequality, which work better for ordinations such as PCoA.

If nm is set, then the names of the vector or list will be the metric ID (nm="id") or name (nm="name").
When val="data.frame", the names will be applied to the rownames() property of the data.table.



20 rarefy

Examples

# A data.frame of all available metrics.
head(list_metrics())

# All alpha diversity function names.
list_metrics('alpha', val = 'id')

# Try to find a metric named 'otus'.
m <- match_metric('otus')

# The result is a list that includes the function.
str(m)

n_cpus Number of CPU Cores

Description

A thin wrapper around parallely::availableCores(). If the parallely package is not installed,
then it falls back to parallel::detectCores(all.tests = TRUE, logical = TRUE). Returns 1 if
pthread support is unavailable or when the number of cpus cannot be determined.

Usage

n_cpus()

Value

A scalar integer, guaranteed to be at least 1.

Examples

n_cpus()

rarefy Rarefy OTU counts.

Description

Sub-sample OTU observations such that all samples have an equal number. If called on data with
non-integer abundances, values will be re-scaled to integers between 1 and depth such that they
sum to depth.



rarefy 21

Usage

rarefy(
counts,
depth = 0.1,
n_samples = NULL,
seed = 0,
times = NULL,
drop = TRUE,
margin = 1L,
cpus = n_cpus()

)

Arguments

counts A numeric matrix of count data where each column is a feature, and each row is
a sample. Any object coercible with as.matrix() can be given here, as well as
phyloseq, rbiom, SummarizedExperiment, and TreeSummarizedExperiment
objects. For optimal performance with very large datasets, see the guide in
vignette('performance').

depth How many observations to keep per sample. When 0 < depth < 1, it is taken
as the minimum percentage of the dataset’s observations to keep. Ignored when
n_samples is specified. Default: 0.1

n_samples The number of samples to keep. When 0 < n_samples < 1, it is taken as the
percentage of samples to keep. If negative, that number of samples is dropped.
If 0, all samples are kept. If NULL, then depth is used instead. Default: NULL

seed An integer seed for randomizing which observations to keep or drop. If you
need to create different random rarefactions of the same data, set the seed to a
different number each time. Default: 0

times How many independent rarefactions to perform. If set, rarefy() will return
a list of matrices. The seeds for each matrix will be sequential, starting from
seed. Default: NULL

drop Drop rows and columns with zero observations after rarefying. Default: TRUE

margin If your samples are in the matrix’s rows, set to 1L. If your samples are in
columns, set to 2L. Ignored when counts is a phyloseq, rbiom, SummarizedExperiment,
or TreeSummarizedExperiment object. Default: 1L

cpus How many parallel processing threads should be used. The default, n_cpus(),
will use all logical CPU cores.

Value

A rarefied matrix. Matrix and slam objects will be returned with the same type; otherwise a base
R matrix will be returned.

Examples

# A 4-sample x 5-OTU matrix with samples in rows.
counts <- matrix(c(0,0,0,0,0,8,9,10,5,5,5,5,2,0,0,0,6,5,7,0), 4, 5,



22 read_tree

dimnames = list(LETTERS[1:4], paste0('OTU', 1:5)))
counts
rowSums(counts)

# Rarefy all samples to a depth of 13.
# Note that sample 'A' has 0 counts and is dropped.
r_mtx <- rarefy(counts, depth = 13, seed = 1)
r_mtx
rowSums(r_mtx)

# Keep zero-sum rows and columns by setting `drop = FALSE`.
rarefy(counts, depth = 13, drop = FALSE, seed = 1)

# Rarefy to the depth of the 2nd most abundant sample (B, depth=22).
rarefy(counts, n_samples = 2, seed = 1)

# Perform 3 independent rarefactions.
r_list <- rarefy(counts, depth = 13, times = 3, seed = 1)
length(r_list)
r_list[[1]]

# The class of the input matrix is preserved.
if (requireNamespace('Matrix', quietly = TRUE)) {

counts_dgC <- Matrix::Matrix(counts, sparse = TRUE)
class(counts_dgC)
r_dgC <- rarefy(counts_dgC, depth = 13, seed = 1)
class(r_dgC)

}

read_tree Read a newick formatted phylogenetic tree.

Description

A phylogenetic tree is required for computing UniFrac distance matrices. You can load a tree from
a file or by providing the tree string directly. This tree must be in Newick format, also known as
parenthetic format and New Hampshire format.

Usage

read_tree(newick, underscores = FALSE)

Arguments

newick Input data as either a file path, URL, or Newick string. Compressed (gzip or
bzip2) files are also supported.

underscores If TRUE, underscores in unquoted names will remain underscores. If FALSE,
underscores in unquoted named will be converted to spaces.



read_tree 23

Value

A phylo class object representing the tree.

Examples

tree <- read_tree("
(A:0.99,((B:0.87,C:0.89):0.51,(((D:0.16,(E:0.83,F:0.96)
:0.94):0.69,(G:0.92,(H:0.62,I:0.85):0.54):0.23):0.74,J:0.1
2):0.43):0.67);")

class(tree)



Index

∗ adiv_functions
adiv_functions, 2

∗ bdiv_functions
bdiv_functions, 7

∗ datasets
ex_counts, 17
ex_tree, 17

ace (adiv_functions), 2
adiv_functions, 2
aitchison (bdiv_functions), 7
alpha_div, 5

bdiv_functions, 7
berger (adiv_functions), 2
beta_div, 14
bhattacharyya (bdiv_functions), 7
bray (bdiv_functions), 7
brillouin (adiv_functions), 2

canberra (bdiv_functions), 7
chao1 (adiv_functions), 2
chebyshev (bdiv_functions), 7
chord (bdiv_functions), 7
clark (bdiv_functions), 7

divergence (bdiv_functions), 7

euclidean (bdiv_functions), 7
ex_counts, 17
ex_tree, 17

faith (adiv_functions), 2
fisher (adiv_functions), 2

generalized_unifrac (bdiv_functions), 7
gower (bdiv_functions), 7

hamming (bdiv_functions), 7
hellinger (bdiv_functions), 7
horn (bdiv_functions), 7

inv_simpson (adiv_functions), 2

jaccard (bdiv_functions), 7
jensen (bdiv_functions), 7
jsd (bdiv_functions), 7

list_metrics, 18
lorentzian (bdiv_functions), 7

manhattan (bdiv_functions), 7
margalef (adiv_functions), 2
match_metric (list_metrics), 18
matusita (bdiv_functions), 7
mcintosh (adiv_functions), 2
menhinick (adiv_functions), 2
minkowski (bdiv_functions), 7
morisita (bdiv_functions), 7
motyka (bdiv_functions), 7

n_cpus, 20
normalized_unifrac (bdiv_functions), 7

observed (adiv_functions), 2
ochiai (bdiv_functions), 7

psym_chisq (bdiv_functions), 7

rarefy, 20
read_tree, 22

shannon (adiv_functions), 2
simpson (adiv_functions), 2
soergel (bdiv_functions), 7
sorensen (bdiv_functions), 7
squared_chisq (bdiv_functions), 7
squared_chord (bdiv_functions), 7
squared_euclidean (bdiv_functions), 7
squares (adiv_functions), 2

topsoe (bdiv_functions), 7

unweighted_unifrac (bdiv_functions), 7

24



INDEX 25

variance_adjusted_unifrac
(bdiv_functions), 7

wave_hedges (bdiv_functions), 7
weighted_unifrac (bdiv_functions), 7


	adiv_functions
	alpha_div
	bdiv_functions
	beta_div
	ex_counts
	ex_tree
	list_metrics
	n_cpus
	rarefy
	read_tree
	Index

