Package ‘ecodive’

January 16, 2026
Type Package
Title Parallel and Memory-Efficient Ecological Diversity Metrics
Version 2.2.2

Description Computes alpha and beta diversity metrics using concurrent 'C' threads.
Metrics include 'UniFrac', Faith's phylogenetic diversity, Bray-Curtis
dissimilarity, Shannon diversity index, and many others.

Also parses newick trees into 'phylo’ objects and rarefies feature tables.

URL https://cmmr.github.io/ecodive/, https://github.com/cmmr/ecodive

BugReports https://github.com/cmmr/ecodive/issues
License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>=3.6.0)

RoxygenNote 7.3.3

Config/Needs/website rmarkdown

Config/testthat/edition 3

Imports parallel, utils

Suggests knitr, Matrix, parallelly, rmarkdown, slam, testthat (>=
3.0.0)

VignetteBuilder knitr
NeedsCompilation yes

Author Daniel P. Smith [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2479-2044>),
Alkek Center for Metagenomics and Microbiome Research [cph, fnd]

Maintainer Daniel P. Smith <dansmith@1@gmail.com>
Repository CRAN
Date/Publication 2026-01-16 15:10:02 UTC

https://cmmr.github.io/ecodive/
https://github.com/cmmr/ecodive
https://github.com/cmmr/ecodive/issues
https://orcid.org/0000-0002-2479-2044

2 adiv_functions

Contents
adiv_functionS e 2
alpha_div L 5
bdiv_functions 7
beta div e e 14
EX_COUNES . . . v v v v e e e e e e e e e s 17
EX_IICE . . o v v v e e e e e s 17
LSt_mMEtriCS o e e e e e e e e 18
TLCPUS v v v v e 20
rarefy ..o e e 20
read_tree L. e e e e 22

Index 24

adiv_functions Alpha Diversity Metrics
Description
Alpha Diversity Metrics
Usage

ace(counts, cutoff = 10L, margin = 1L, cpus = n_cpus())
berger(counts, norm = "percent”, margin = 1L, cpus = n_cpus())
brillouin(counts, margin = 1L, cpus = n_cpus())

chaol(counts, margin = 1L, cpus = n_cpus())

faith(counts, tree = NULL, margin = 1L, cpus = n_cpus())
fisher(counts, digits = 3L, margin = 1L, cpus = n_cpus())
inv_simpson(counts, norm = "percent”, margin = 1L, cpus = n_cpus())

margalef (counts, margin = 1L, cpus = n_cpus())

mcintosh(counts, margin = 1L, cpus = n_cpus())

menhinick(counts, margin = 1L, cpus = n_cpus())
observed(counts, margin = 1L, cpus = n_cpus())

shannon(counts, norm = "percent”, margin = 1L, cpus = n_cpus())

adiv_functions 3

simpson(counts, norm = "percent”, margin = 1L, cpus = n_cpus())
squares(counts, margin = 1L, cpus = n_cpus())

Arguments

counts A numeric matrix of count data where each column is a feature, and each row is
a sample. Any object coercible with as.matrix() can be given here, as well as
phyloseq, rbiom, SummarizedExperiment, and TreeSummarizedExperiment
objects. For optimal performance with very large datasets, see the guide in
vignette('performance').

cutoff The maximum number of observations to consider "rare". Default: 10.

margin If your samples are in the matrix’s rows, set to 1L. If your samples are in
columns, set to 2L. Ignored when counts is a phyloseq, rbiom, SummarizedExperiment,
or TreeSummarizedExperiment object. Default: 1L

cpus How many parallel processing threads should be used. The default, n_cpus(),
will use all logical CPU cores.

norm Normalize the incoming counts. Options are:

norm = "percent” - Relative abundance (sample abundances sum to 1).

norm = "binary"” - Unweighted presence/absence (each count is either O or 1).
norm="clr"” - Centered log ratio.

norm = "none"” - No transformation.

Default: 'percent’, which is the expected input for these formulas.

tree A phylo-class object representing the phylogenetic tree for the OTUs in counts.
The OTU identifiers given by colnames(counts) must be present in tree. Can
be omitted if a tree is embedded with the counts object or as attr(counts,
"tree').

digits Precision of the returned values, in number of decimal places. E.g. the default
digits=3 could return 6.392.

Value

A numeric vector.

Formulas

Prerequisite: all counts are whole numbers.

Given:

* n : The number of features (e.g. species, OTUs, ASVs, etc).

e X, : Integer count of the i-th feature.

e X : Total of all counts (i.e. sequencing depth). X1 = Z?zl X;
* P; : Proportional abundance of the i-th feature. P, = X; /X

e Fi : Number of features where X; = 1 (i.e. singletons).

e F5 : Number of features where X; = 2 (i.e. doubletons).

Abundance-based Coverage Estimator (ACE) ace ()
Berger-Parker Index berger ()

Brillouin Index brillouin()

Chaol chao1()
Faith’s Phylogenetic Diversity faith()
Fisher’s Alpha («) fisher()

Gini-Simpson Index simpson()
Inverse Simpson Index inv_simpson()

Margalef’s Richness Index margalef ()

MclIntosh Index mcintosh()

Menhinick’s Richness Index menhinick()

Observed Features observed()
Shannon Diversity Index shannon ()

Squares Richness Estimator squares()

Abundance-based Coverage Estimator (ACE):
Given:

adiv_functions

See below.
max(P;)
In [(Z?:1 X)) - ZLI In (X;!)

2F%
See below.

X
T w1 + T> The value of « must be solved for iteratively.
o o

Ly P
1/ 350, P?
n—1

h’lXT

Xr — /2 (X0)?
n Xr — VX7

VX1

n

— Z?:l Pz X 1I1(PZ)
(F1)? 3o (X0)?
X% — nF1

n —+

e n : The number of features (e.g. species, OTUs, ASVs, etc).
e r: Rare cutoff. Features with < r counts are considered rare.

e X, : Integer count of the i-th feature.
e F; : Number of features with exactly ¢ counts.

e Fy : Number of features where X; = 1 (i.e. singletons).

¢ F,.re : Number of rare features where X; < r.

¢ Fipund : Number of abundant features where X; > r.

* X,qre : Total counts belonging to rare features.

* Cyce : The sample abundance coverage estimator, defined below.
* 2., : The estimated coefficient of variation, defined below.
* Dgce : Estimated number of features in the sample.

Fy
Xrare
Frare 2221 ’L(Z B 1)Fl
CaceXrare (Xra'r‘e - 1)
Frare Fl 2
Cace Cace Tace

Faith’s Phylogenetic Diversity (Faith’s PD):

Cace =1-

~1,0

2
Yace = max

D(Lce =

abund +

Given n branches with lengths L and a sample’s abundances A on each of those branches coded

as 1 for present or 0 for absent:

Z?:l LiA;

alpha_div 5

Examples

Example counts matrix
t(ex_counts)

ace(ex_counts)
chaol(ex_counts)

squares(ex_counts)

alpha_div Alpha Diversity Wrapper Function

Description

Alpha Diversity Wrapper Function

Usage
alpha_div(

counts,

metric,

norm = "percent”,
cutoff = 10L,
digits = 3L,

tree = NULL,

margin = 1L,
cpus = n_cpus()

)
Arguments

counts A numeric matrix of count data where each column is a feature, and each row is
a sample. Any object coercible with as.matrix() can be given here, as well as
phyloseq, rbiom, SummarizedExperiment, and TreeSummarizedExperiment
objects. For optimal performance with very large datasets, see the guide in
vignette('performance').

metric The name of an alpha diversity metric. One of c('ace', 'berger', 'brillouin’,
'chaol', 'faith', 'fisher', 'inv_simpson', 'margalef', 'mcintosh', 'menhinick’,
'observed', 'shannon', 'simpson', 'squares'). Case-insensitive and par-
tial name matching is supported. Programmatic access via list_metrics('alpha').

norm Normalize the incoming counts. Options are:

norm = "percent” - Relative abundance (sample abundances sum to 1).
norm = "binary"” - Unweighted presence/absence (each count is either O or 1).
norm="clr"” - Centered log ratio.

6 alpha_div

norm = "none"” - No transformation.
Default: 'percent’, which is the expected input for these formulas.
cutoff The maximum number of observations to consider "rare". Default: 10.

digits Precision of the returned values, in number of decimal places. E.g. the default
digits=3 could return 6.392.

tree A phylo-class object representing the phylogenetic tree for the OTUs in counts.
The OTU identifiers given by colnames(counts) must be present in tree. Can
be omitted if a tree is embedded with the counts object or as attr(counts,
"tree').

margin If your samples are in the matrix’s rows, set to 1L. If your samples are in
columns, set to 2L. Ignored when counts is a phyloseq, rbiom, SummarizedExperiment,
or TreeSummarizedExperiment object. Default: 1L

cpus How many parallel processing threads should be used. The default, n_cpus(),
will use all logical CPU cores.

Details

Integer Count Requirements:
A frequent and critical error in alpha diversity analysis is providing the wrong type of data to a
metric’s formula. Some indices are mathematically defined based on counts of individuals and
require raw, integer abundance data. Others are based on proportional abundances and can accept
either integer counts (which are then converted to proportions) or pre-normalized proportional
data. Using proportional data with a metric that requires integer counts will return an error mes-
sage.
Requires Integer Counts Only:

* Chaol

* ACE

* Squares Richness Estimator

* Margalef’s Index

* Menhinick’s Index

* Fisher’s Alpha

¢ Brillouin Index

Can Use Proportional Data:
* Observed Features
* Shannon Index
* Gini-Simpson Index
¢ Inverse Simpson Index
* Berger-Parker Index
* McIntosh Index
e Faith’s PD

Value

A numeric vector.

bdiv_tfunctions 7

Examples

Example counts matrix
ex_counts

Shannon diversity values
alpha_div(ex_counts, 'Shannon')

Chaol diversity values
alpha_div(ex_counts, 'c')

Faith PD values
alpha_div(ex_counts, 'faith', tree = ex_tree)

bdiv_functions Beta Diversity Metrics

Description

Beta Diversity Metrics

Usage

aitchison(
counts,
pseudocount = NULL,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

bhattacharyya(
counts,
norm = "percent”,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

bray(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())

canberra(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())

chebyshev(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())

chord(counts, margin = 1L, pairs = NULL, cpus = n_cpus())

bdiv_functions

clark(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())

divergence(
counts,
norm = "percent”,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

euclidean(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())
gower (counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())
hellinger(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())
horn(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())
jensen(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())
jsd(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())
lorentzian(

counts,

norm = "percent”,

margin = 1L,

pairs = NULL,

cpus = n_cpus()
manhattan(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())
matusita(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())
minkowski (

counts,

norm = "percent”,

power = 1.5,

margin = 1L,

pairs = NULL,

cpus = n_cpus()

morisita(counts, margin = 1L, pairs = NULL, cpus = n_cpus())

motyka(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())

bdiv_tfunctions

psym_chisq(

counts,
norm = "percent”,
margin = 1L,
pairs = NULL,
cpus = n_cpus()
)
soergel(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())

squared_chisq(

counts,
norm = "percent”,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

squared_chord(
counts,
norm = "percent”,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

squared_euclidean(
counts,
norm = "percent”,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

topsoe(counts, norm = "percent”, margin = 1L, pairs = NULL, cpus = n_cpus())

wave_hedges(

counts,

norm = "percent”,

margin = 1L,

pairs = NULL,

cpus = n_cpus()
)
hamming(counts, margin = 1L, pairs = NULL, cpus = n_cpus())
jaccard(counts, margin = 1L, pairs = NULL, cpus = n_cpus())

10 bdiv_functions

ochiai(counts, margin = 1L, pairs = NULL, cpus = n_cpus())

sorensen(counts, margin = 1L, pairs = NULL, cpus = n_cpus())

unweighted_unifrac(

counts,
tree = NULL,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

weighted_unifrac(
counts,
tree = NULL,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

normalized_unifrac(
counts,
tree = NULL,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

generalized_unifrac(
counts,
tree = NULL,
alpha = 0.5,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

variance_adjusted_unifrac(
counts,
tree = NULL,
margin = 1L,
pairs = NULL,
cpus = n_cpus()

)

Arguments
counts A numeric matrix of count data where each column is a feature, and each row is

a sample. Any object coercible with as.matrix() can be given here, as well as

bdiv_tfunctions 11

phyloseq, rbiom, SummarizedExperiment, and TreeSummarizedExperiment
objects. For optimal performance with very large datasets, see the guide in
vignette('performance').

pseudocount The value to add to all counts in counts to prevent taking log (@) for unobserved
features. The default, NULL, selects the smallest non-zero value in counts.

margin If your samples are in the matrix’s rows, set to 1L. If your samples are in
columns, set to 2L. Ignored when counts is a phyloseq, rbiom, SummarizedExperiment,
or TreeSummarizedExperiment object. Default: 1L

pairs Which combinations of samples should distances be calculated for? The default
value (NULL) calculates all-vs-all. Provide a numeric or logical vector specifying
positions in the distance matrix to calculate. See examples.

cpus How many parallel processing threads should be used. The default, n_cpus(),
will use all logical CPU cores.

norm Normalize the incoming counts. Options are:

norm = "percent” - Relative abundance (sample abundances sum to 1).

norm = "binary"” - Unweighted presence/absence (each count is either O or 1).
norm= "clr"” - Centered log ratio.

norm = "none"” - No transformation.

Default: 'percent’, which is the expected input for these formulas.

power Scaling factor for the magnitude of differences between communities (p). De-
fault: 1.5
tree A phylo-class object representing the phylogenetic tree for the OTUs in counts.

The OTU identifiers given by colnames(counts) must be present in tree. Can
be omitted if a tree is embedded with the counts object or as attr(counts,
"tree').

alpha How much weight to give to relative abundances; a value between 0 and 1,
inclusive. Setting alpha=1 is equivalent to normalized_unifrac().

Value

A dist object.

Formulas
Given:

* n : The number of features.

* X;, Y, : Absolute counts for the i-th feature in samples X and Y.
* X7, Yr : Total counts in each sample. X1 = Z?:l X;

* P, Q; : Proportional abundances of X; and Y;. P, = X;/Xr

e X1,Yr : Mean log of abundances. X, = % Z,?:l In X;

* R, : The range of the i-th feature across all samples (max - min).

12

Aitchison distance aitchison()
Bhattacharyya distance bhattacharyya()

Bray-Curtis dissimilarity bray ()

Canberra distance canberra()

Chebyshev distance chebyshev ()

Chord distance chord()

Clark’s divergence distance clark()

Divergence divergence()
Euclidean distance euclidean()

Gower distance gower ()

Hellinger distance hellinger()

Horn-Morisita dissimilarity horn()

Jensen-Shannon distance jensen()

Jensen-Shannon divergence (JSD) jsd()

Lorentzian distance lorentzian()
Manhattan distance manhattan()

Matusita distance matusita()
Minkowski distance minkowski ()

Morisita dissimilarity * Integers Only morisita()

Motyka dissimilarity motyka()
Probabilistic Symmetric x? distance psym_chisq()
Soergel distance soergel()

Squared 2 distance squared_chisq()

Squared Chord distance squared_chord()

bdiv_functions

Vi X; — Xp) -
_IHZ:‘;1 vpsz
21 |5~ Qi
Z?|1(P + Qi)

P — Qi
Z P +Q;
max(IP Qil)

(InY; = Y1))?

n

X Y
2 VI XS

n P_QZ 2
>(776)

=1

Jo- (P Q)
2 (P Qi
S Q)?

1~ P — Qi
n ; R;
VI (VP V@)
_ 2 22;1 PiQi
Y P43, QF

n ZPZ n 2@1

ZPAH (P‘—&-Qi) +ZQiln (Pi+Qi>
2Q;

ZPIH(P +Ql) ;Q”n(awi)

> 11n(1+|P Qil)

2ima Qi

¢z¢<¢* Va)?

> (P — Q;)P Where p is the geometry of the space.

1 230 XY,

Y Xi(Xi =) 3, V(Y

Xr(Xr—1) Yr(Yr—1

Sor max(P;, Q;)

EZL 1(P + Q)

| = _~
N

>)>Xﬂ%

Sy (VP - V@)

bdiv_tfunctions 13

Squared Euclidean distance squared_euclidean() > . (P — Q;)?

- 2P; - 20Q;
Topsoe distance topsoe() Z P;In () + Z Q;ln (>
=, P+ Qi pt P+ Qi
Zi:1 |Pi B Ql‘

Wave Hedges distance wave_hedges()

22;1 max(P;, Q;)

Presence / Absence:

Given:

¢ A, B : Number of features in each sample.

e J : Number of features in common.

2J

Dice-Sorensen dissimilarity sorensen —_—

y 0 (A+ B)
Hamming distance hamming () (A+B)—2J

J
Jaccard distance jaccard 1
J O (A+B =7

Otsuka-Ochiai dissimilarity ochiai 11— —

Y O JAB

Phylogenetic:

Given n branches with lengths L and a pair of samples’ binary (A and B) or proportional abun-
dances (P and Q) on each of those branches.

1 n
Unweighted UniFrac unweighted_unifrac() — Z L;|A; — Bj]
n
i=1
Weighted UniFrac weighted_unifrac() Z L;|P; — Q]

1=1

>y Lil P — Qi

St Li(P 4 Qi) P_0

>y Li(Pi+ Qi) PZ n QZ
S Li(P 4 Qi)

Normalized Weighted UniFrac normalized_unifrac()

Generalized UniFrac (GUniFrac) generalized_unifrac() Where « is a sc

. = VP +Q)2-P—-Q)
Variance-Adjusted Weighted UniFrac variance_adjusted_unifrac() P10
i T &

h
Il
—

VP T Q)C-P-Q)

See vignette('unifrac') for detailed example UniFrac calculations.

14 beta_div

References

Levy, A., Shalom, B. R., & Chalamish, M. (2024). A guide to similarity measures. arXiv.

Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between probability
density functions. International Journal of Mathematical Models and Methods in Applied Sciences,
1(4), 300-307.

Examples

Example counts matrix
t(ex_counts)

bray(ex_counts)
jaccard(ex_counts)
generalized_unifrac(ex_counts, tree = ex_tree)

Only calculate distances for Saliva vs all.
bray(ex_counts, pairs = 1:3)

beta_div Beta Diversity Wrapper Function

Description

Beta Diversity Wrapper Function

Usage

beta_div(
counts,
metric,
norm = "percent”,
power = 1.5,
pseudocount = NULL,

alpha = 0.5,
tree = NULL,
pairs = NULL,

margin = 1L,
cpus = n_cpus()

beta_div 15

Arguments

counts A numeric matrix of count data where each column is a feature, and each row is
a sample. Any object coercible with as.matrix() can be given here, as well as
phyloseq, rbiom, SummarizedExperiment, and TreeSummarizedExperiment
objects. For optimal performance with very large datasets, see the guide in
vignette('performance').

metric The name of a beta diversity metric. One of c('aitchison', 'bhattacharyya',
'bray', 'canberra', 'chebyshev', 'chord', 'clark', 'divergence', 'euclidean',
'generalized_unifrac', 'gower', "hamming', 'hellinger', 'horn', 'jaccard',
'jensen', 'jsd', 'lorentzian', 'manhattan', 'matusita', 'minkowski',
'morisita', 'motyka', 'normalized_unifrac', 'ochiai', 'psym_chisq',
'soergel', 'sorensen', 'squared_chisq', 'squared_chord', 'squared_euclidean',
"topsoe', 'unweighted_unifrac', 'variance_adjusted_unifrac', 'wave_hedges',
'weighted_unifrac'). Flexible matching is supported (see below). Program-
matic access via list_metrics('beta').

norm Normalize the incoming counts. Options are:

norm = "percent” - Relative abundance (sample abundances sum to 1).

norm = "binary” - Unweighted presence/absence (each count is either O or 1).
norm= "clr"” - Centered log ratio.

norm = "none"” - No transformation.

Default: 'percent’, which is the expected input for these formulas.

power Scaling factor for the magnitude of differences between communities (p). De-
fault: 1.5

pseudocount The value to add to all counts in counts to prevent taking 1og (@) for unobserved
features. The default, NULL, selects the smallest non-zero value in counts.

alpha How much weight to give to relative abundances; a value between 0 and 1,
inclusive. Setting alpha=1 is equivalent to normalized_unifrac().

tree A phylo-class object representing the phylogenetic tree for the OTUs in counts.
The OTU identifiers given by colnames(counts) must be present in tree. Can
be omitted if a tree is embedded with the counts object or as attr(counts,
"tree').

pairs Which combinations of samples should distances be calculated for? The default
value (NULL) calculates all-vs-all. Provide a numeric or logical vector specifying
positions in the distance matrix to calculate. See examples.

margin If your samples are in the matrix’s rows, set to 1L. If your samples are in
columns, set to 2L. Ignored when counts is a phyloseq, rbiom, SummarizedExperiment,
or TreeSummarizedExperiment object. Default: 1L

cpus How many parallel processing threads should be used. The default, n_cpus(),
will use all logical CPU cores.

Details

List of Beta Diversity Metrics

Option / Function Name
aitchison
bhattacharyya
bray
canberra
chebyshev
chord
clark
divergence
euclidean
generalized_unifrac
gower
hamming
hellinger
horn
jaccard
jensen
jsd
lorentzian
manhattan
matusita
minkowski
morisita
motyka
normalized_unifrac
ochiai
psym_chisq
soergel
sorensen
squared_chisq
squared_chord
squared_euclidean
topsoe
unweighted_unifrac

variance_adjusted_unifrac

wave_hedges
weighted_unifrac

beta_div

Metric Name

Aitchison distance
Bhattacharyya distance
Bray-Curtis dissimilarity
Canberra distance

Chebyshev distance

Chord distance

Clark’s divergence distance
Divergence

Euclidean distance

Generalized UniFrac (GUniFrac)
Gower distance

Hamming distance

Hellinger distance
Horn-Morisita dissimilarity
Jaccard distance
Jensen-Shannon distance
Jesen-Shannon divergence (JSD)
Lorentzian distance

Manhattan distance

Matusita distance

Minkowski distance

Morisita dissimilarity

Motyka dissimilarity
Normalized Weighted UniFrac
Otsuka-Ochiai dissimilarity
Probabilistic Symmetric Chi-Squared distance
Soergel distance

Dice-Sorensen dissimilarity
Squared Chi-Squared distance
Squared Chord distance

Squared Euclidean distance
Topsoe distance

Unweighted UniFrac
Variance-Adjusted Weighted UniFrac (VAW-UniFrac)
Wave Hedges distance
Weighted UniFrac

Flexible name matching

Case insensitive and partial matching. Any runs of non-alpha characters are converted to under-
scores. E.g. metric = 'Weighted UniFrac selects weighted_unifrac.

UniFrac names can be shortened to the first letter plus "unifrac”". E.g. uunifrac, w_unifrac, or
V UniFrac. These also support partial matching.

Finished code should always use the full primary option name to avoid ambiguity with future addi-
tions to the metrics list.

ex_counts

Value

A numeric vector.

Examples

Example counts matrix
ex_counts

Bray-Curtis distances
beta_div(ex_counts, 'bray')

Generalized UniFrac distances
beta_div(ex_counts, 'GUniFrac', tree = ex_tree)

17

ex_counts Example counts matrix

Description

Genera found on four human body sites.

Usage

ex_counts

Format

A matrix of 4 samples (columns) x 6 genera (rows).

Source

Derived from The Human Microbiome Project dataset. https://commonfund.nih.gov/hmp

ex_tree Example phylogenetic tree

Description

Companion tree for ex_counts.

Usage

ex_tree

https://commonfund.nih.gov/hmp

18 list_metrics

Format

A phylo object.

Details

ex_tree encodes this tree structure:

Fommmm - 44---——--——- Haemophilus
+-2-|
| Ao 68-————-————-—————- Bacteroides
|
| +---18---- Streptococcus
| +==12-|
| | +--11-- Staphylococcus
+--11--|
| +-———- 24----- Corynebacterium
+-=12--|
+--13-- Propionibacterium
list_metrics Find and Browse Available Metrics
Description

Programmatic access to the lists of available metrics, and their associated functions.

Usage

list_metrics(
div = c(NA, "alpha", "beta"),
val = c("data.frame"”, "list", "func”, "id", "name”, "div", "phylo”, "weighted”

"int_only", "true_metric"),
nm = c(NA, "id", "name"),
phylo = NULL,

weighted = NULL,
int_only = NULL,
true_metric = NULL

match_metric(
metric,
div = NULL,
phylo = NULL,
weighted = NULL,
int_only = NULL,
true_metric = NULL

list_metrics 19

Arguments

div, phylo, weighted, int_only, true_metric
Consider only metrics matching specific criteria. For example, div = "alpha”
will only return alpha diversity metrics. Default: NULL

val Sets the return value for this function call. See "Value" section below. Default:
"data.frame”
nm What value to use for the names of the returned object. Default is "id"” when

val is "list” or "func”, otherwise the default is NA (no name).

metric The name of an alpha/beta diversity metric to search for. Supports partial match-
ing. All non-alpha characters are ignored.

Value

match_metric()

A list with the following elements.

* name : Metric name, e.g. "Faith's Phylogenetic Diversity”

* id: Metric ID - also the name of the function, e.g. "faith”

e div : Either "alpha” or "beta”.

* phylo : TRUE if metric requires a phylogenetic tree; FALSE otherwise.

* weighted : TRUE if metric takes relative abundance into account; FALSE if it only uses pres-
ence/absence.

* int_only : TRUE if metric requires integer counts; FALSE otherwise.

* true_metric : TRUE if metric is a true metric and satisfies the triangle inequality; FALSE if it
is a non-metric dissimilarity; NA for alpha diversity metrics.

* func : The function for this metric, e.g. ecodive: :faith

* params : Formal args for func, e.g. c("counts”, "tree”, "cpus")

list_metrics()

The returned object’s type and values are controlled with the val and nm arguments.

* val = "data.frame" : The data.frame from which the below options are sourced.
e val = "list" : A list of objects as returned by match_metric() (above).

e val = "func” : A list of functions.

e val ="id" : A character vector of metric IDs.

e val = "name” : A character vector of metric names.

e val ="div" : A character vector "alpha” and/or "beta".

* val = "phylo” : A logical vector indicating which metrics require a tree.

* val = "weighted” : A logical vector indicating which metrics take relative abundance into
account (as opposed to just presence/absence).

e val = "int_only" : A logical vector indicating which metrics require integer counts.
e val = "true_metric” : A logical vector indicating which metrics are true metrics and satisfy
the triangle inequality, which work better for ordinations such as PCoA.

If nm s set, then the names of the vector or list will be the metric ID (nm="id") or name (nm="name").
When val="data.frame", the names will be applied to the rownames () property of the data. table.

20 rarefy

Examples

A data.frame of all available metrics.
head(list_metrics())

All alpha diversity function names.
list_metrics('alpha', val = 'id")

Try to find a metric named 'otus'.
m <- match_metric('otus')

The result is a list that includes the function.
str(m)

n_cpus Number of CPU Cores

Description

A thin wrapper around parallely: :availableCores(). If the parallely package is not installed,
then it falls back to parallel::detectCores(all.tests = TRUE, logical = TRUE). Returns 1 if
pthread support is unavailable or when the number of cpus cannot be determined.

Usage

n_cpus()

Value

A scalar integer, guaranteed to be at least 1.

Examples

n_cpus()

rarefy Rarefy OTU counts.

Description

Sub-sample OTU observations such that all samples have an equal number. If called on data with
non-integer abundances, values will be re-scaled to integers between 1 and depth such that they
sum to depth.

rarefy 21

Usage
rarefy(

counts,
depth = 0.1,
n_samples = NULL,
seed = 0,
times = NULL,
drop = TRUE,

margin = 1L,
cpus = n_cpus()

)
Arguments

counts A numeric matrix of count data where each column is a feature, and each row is
a sample. Any object coercible with as.matrix() can be given here, as well as
phyloseq, rbiom, SummarizedExperiment, and TreeSummarizedExperiment
objects. For optimal performance with very large datasets, see the guide in
vignette('performance').

depth How many observations to keep per sample. When @ < depth < 1, it is taken
as the minimum percentage of the dataset’s observations to keep. Ignored when
n_samples is specified. Default: 0.1

n_samples The number of samples to keep. When @ < n_samples < 1, itis taken as the

percentage of samples to keep. If negative, that number of samples is dropped.
If 0, all samples are kept. If NULL, then depth is used instead. Default: NULL

seed An integer seed for randomizing which observations to keep or drop. If you
need to create different random rarefactions of the same data, set the seed to a
different number each time. Default: 0

times How many independent rarefactions to perform. If set, rarefy() will return
a list of matrices. The seeds for each matrix will be sequential, starting from
seed. Default: NULL

drop Drop rows and columns with zero observations after rarefying. Default: TRUE

margin If your samples are in the matrix’s rows, set to 1L. If your samples are in
columns, set to 2L. Ignored when counts is a phyloseq, rbiom, SummarizedExperiment,
or TreeSummarizedExperiment object. Default: 1L

cpus How many parallel processing threads should be used. The default, n_cpus(),
will use all logical CPU cores.

Value
A rarefied matrix. Matrix and slam objects will be returned with the same type; otherwise a base
R matrix will be returned.

Examples

A 4-sample x 5-0TU matrix with samples in rows.
counts <- matrix(c(9,9,0,9,0,8,9,10,5,5,5,5,2,0,0,0,6,5,7,0), 4, 5,

22

dimnames = 1ist(LETTERS[1:4], paste@('OTU', 1:5)))
counts
rowSums (counts)

Rarefy all samples to a depth of 13.

Note that sample 'A' has @ counts and is dropped.
r_mtx <- rarefy(counts, depth = 13, seed = 1)

r_mtx

rowSums (r_mtx)

Keep zero-sum rows and columns by setting ~drop = FALSE™.
rarefy(counts, depth = 13, drop = FALSE, seed = 1)

Rarefy to the depth of the 2nd most abundant sample (B, depth=22).
rarefy(counts, n_samples = 2, seed = 1)

Perform 3 independent rarefactions.

r_list <- rarefy(counts, depth = 13, times = 3, seed = 1)
length(r_list)

r_list[[1]]

The class of the input matrix is preserved.

if (requireNamespace('Matrix', quietly = TRUE)) {
counts_dgC <- Matrix::Matrix(counts, sparse = TRUE)
class(counts_dgC)
r_dgC <- rarefy(counts_dgC, depth = 13, seed = 1)
class(r_dgC)

}

read_tree

read_tree Read a newick formatted phylogenetic tree.

Description

A phylogenetic tree is required for computing UniFrac distance matrices. You can load a tree from
a file or by providing the tree string directly. This tree must be in Newick format, also known as
parenthetic format and New Hampshire format.

Usage

read_tree(newick, underscores = FALSE)

Arguments
newick Input data as either a file path, URL, or Newick string. Compressed (gzip or
bzip2) files are also supported.
underscores If TRUE, underscores in unquoted names will remain underscores. If FALSE,

underscores in unquoted named will be converted to spaces.

read_tree

Value

A phylo class object representing the tree.

Examples

tree <- read_tree("
(A:0.99, ((B:0.87,C:0.89):0.51,(((D:0.16, (E:0.83,F:0.96)
:0.94):0.69,(G:0.92,(H:0.62,1:0.85):0.54):0.23):0.74,7:0.1
2):0.43):0.67);")

class(tree)

23

Index

x adiv_functions
adiv_functions, 2

x bdiv_functions
bdiv_functions, 7

x datasets
ex_counts, 17
ex_tree, 17

ace (adiv_functions), 2
adiv_functions, 2

aitchison (bdiv_functions), 7
alpha_div, 5

bdiv_functions, 7

berger (adiv_functions), 2
beta_div, 14

bhattacharyya (bdiv_functions), 7
bray (bdiv_functions), 7
brillouin (adiv_functions), 2

canberra (bdiv_functions), 7
chaol (adiv_functions), 2
chebyshev (bdiv_functions), 7
chord (bdiv_functions), 7
clark (bdiv_functions), 7

divergence (bdiv_functions), 7

euclidean (bdiv_functions), 7
ex_counts, 17
ex_tree, 17

faith (adiv_functions), 2
fisher (adiv_functions), 2

generalized_unifrac (bdiv_functions), 7
gower (bdiv_functions), 7

hamming (bdiv_functions), 7
hellinger (bdiv_functions), 7
horn (bdiv_functions), 7

inv_simpson (adiv_functions), 2

jaccard (bdiv_functions), 7
jensen (bdiv_functions), 7
jsd (bdiv_functions), 7

list_metrics, 18
lorentzian (bdiv_functions), 7

manhattan (bdiv_functions), 7
margalef (adiv_functions), 2
match_metric (list_metrics), 18
matusita (bdiv_functions), 7
mcintosh (adiv_functions), 2
menhinick (adiv_functions), 2
minkowski (bdiv_functions), 7
morisita (bdiv_functions), 7
motyka (bdiv_functions), 7

n_cpus, 20
normalized_unifrac (bdiv_functions), 7

observed (adiv_functions), 2
ochiai (bdiv_functions), 7

psym_chisq (bdiv_functions), 7

rarefy, 20
read_tree, 22

shannon (adiv_functions), 2

simpson (adiv_functions), 2

soergel (bdiv_functions), 7

sorensen (bdiv_functions), 7
squared_chisq (bdiv_functions), 7
squared_chord (bdiv_functions), 7
squared_euclidean (bdiv_functions), 7
squares (adiv_functions), 2

topsoe (bdiv_functions), 7

unweighted_unifrac (bdiv_functions), 7

INDEX

variance_adjusted_unifrac
(bdiv_functions), 7

wave_hedges (bdiv_functions), 7
weighted_unifrac (bdiv_functions), 7

25

	adiv_functions
	alpha_div
	bdiv_functions
	beta_div
	ex_counts
	ex_tree
	list_metrics
	n_cpus
	rarefy
	read_tree
	Index

