Package ‘cpfa’

January 15, 2026

Type Package

Title Classification with Parallel Factor Analysis

Version 1.2-5

Date 2026-01-15

Maintainer Matthew A. Asisgress <mattgress@protonmail.ch>
Depends multiway

Imports glmnet, e1071, randomForest, nnet, rda, xgboost, foreach,
doParallel, doRNG

Suggests knitr, rmarkdown

Description Classification using Richard A. Harshman's Parallel Factor Analysis-
1 (Parafac) model or Parallel Factor Analysis-2 (Parafac2) model fit to a three-way or four-
way data array. See Harshman and Lundy (1994): <doi:10.1016/0167-9473(94)90132-
5>. Uses component weights from one mode of a Parafac or Parafac2 model as fea-
tures to tune parameters for one or more classification methods via a k-fold cross-validation pro-
cedure. Allows for constraints on different tensor modes. Supports penalized logistic regres-
sion, support vector machine, random forest, feed-forward neural network, regularized discrimi-
nant analysis, and gradient boosting machine. Supports binary and multiclass classification. Pre-
dicts class labels or class probabilities and calculates multiple classification performance mea-
sures. Implements parallel computing via the 'parallel’, 'doParallel', and 'doRNG' packages.

License GPL (>=2)

VignetteBuilder knitr, rmarkdown
NeedsCompilation no

Author Matthew A. Asisgress [aut, cre]
Repository CRAN

Date/Publication 2026-01-15 03:40:02 UTC

Contents
cpfa . .. 2
CPIM .« o v vt i e e e e e e e e e e e e e 9
cpmall . ..o 12

https://doi.org/10.1016/0167-9473(94)90132-5
https://doi.org/10.1016/0167-9473(94)90132-5

plotepfa L e e e e 14
predict.tunecpfa L. L 17
print.tunecpfao 19
simepfa 21
tunecpfa L 26
Index 34
cpfa Classification with Parallel Factor Analysis
Description

Fits Richard A. Harshman’s Parallel Factor Analysis-1 (Parafac) model or Parallel Factor Analysis-
2 (Parafac2) model to a three-way or four-way data array. Allows for different constraint options
on multiple tensor modes. Uses Parafac component weights from a single mode of this model as
predictors to tune parameters for one or more classification methods via a k-fold cross-validation
procedure. Predicts class labels and calculates multiple performance measures for binary or multi-
class classification across multiple replications with different train-test splits. Provides descriptive
statistics to pool output across replications.

Usage

cpfa(x, y, model = c("parafac”, "parafac2"), nfac = 1, nrep = 5, ratio = 0.8,
nfolds = 10, method = c("PLR", "SVM", "RF", "NN", "RDA", "GBM"),
family = c("binomial”, "multinomial”), parameters = list(),
type.out = c("measures”, "descriptives”), foldid = NULL,
prior = NULL, cmode = NULL, seeds = NULL, plot.out = FALSE,
plot.measures = NULL, parallel = FALSE, cl = NULL, verbose = TRUE, ...)

Arguments

X A three-way or four-way data array. For Parafac2, can be a list where each
element is a matrix or three-way array. Array or list must contain only real
numbers. See note below.

y A vector containing at least two unique class labels. Should be a factor that
contains two or more levels. For binary case, ensure the order of factor levels
(left to right) is such that negative class is first and positive class is second.

model Character designating the Parafac model to use, either model = "parafac” to fit
the Parafac model or model = "parafac2” to fit the Parafac2 model.

nfac Number of components for each Parafac or Parafac2 model to fit. Default is
nfac=1.

nrep Number of replications to repeat the procedure. Default is nrep = 5.

ratio Split ratio for dividing data into train and test sets. Default is ratio = 9.8.

nfolds Numeric value specifying number of folds for k-fold cross-validation. Must be

2 or greater. Default is nfolds = 10.

cpfa

method

family

parameters

Character vector indicating classification methods to use. Possible methods
include penalized logistic regression (PLR); support vector machine (SVM);
random forest (RF); feed-forward neural network (NN); regularized discrimi-
nant analysis (RDA); and gradient boosting machine (GBM). If none are se-
lected, default is to use all methods with method = c("PLR", "SVM", "RF",
"NN", "RDA", "GBM").

Character value specifying binary classification (family = "binomial”) or mul-
ticlass classification (family = "multinomial”). If not provided, number of
levels of input y is used, where two levels is binary, and where three or more
levels is multiclass.

List containing arguments related to classification methods. When specified,
must contain one or more of the following:

alpha Values for penalized logistic regression alpha parameter; default is alpha
=seq(@, 1, length = 6). Must be numeric and contain only real numbers
between 0 and 1, inclusive.

lambda Optional user-supplied lambda sequence for cv.glmnet for penalized
logistic regression. Default is NULL.

cost Values for support vector machine cost parameter; default is cost = c(1,
2,4,8,16, 32, 64). Must be numeric and contain only real numbers
greater than 0.

gamma Values for support vector machine gamma parameter; default is gamma
=c(0,0.01,0.1, 1, 10, 100, 1000). Must be numeric and greater than
or equal to 0.

ntree Values for random forest number of trees parameter; default is ntree =
c(100, 200, 400, 600, 800, 1600, 3200). Must be numeric and contain
only integers greater than or equal to 1.

nodesize Values for random forest node size parameter; default is nodesize
=c(1, 2, 4, 8, 16, 32, 64). Must be numeric and contain only integers
greater than or equal to 1.

size Values for neural network size parameter; default is size = c(1, 2, 4, 8,
16, 32, 64). Must be numeric and contain only integers greater than or
equal to 0.

decay Values for neural network decay parameter; default is decay = c(0.001,
0.01,0.1, 1, 2, 4, 8, 16). Must be numeric and contain only real num-
bers.

rda.alpha Values for regularized discriminant analysis alpha parameter; default
is rda.alpha = seq(@, 0.999, length = 6). Must be numeric and contain
only real numbers between 0 (inclusive) and 1 (exclusive).

delta Values for regularized discriminant analysis delta parameter; default is
delta=c(0, 0.1, 1, 2, 3, 4). Must be numeric and contain only real
numbers greater than or equal to 0.

eta Values for gradient boosting machine eta parameter; defaultiseta =c(0.1,
0.3,0.5,0.7,0.9). Must be numeric and contain only real numbers
greater than 0 and less than 1.

max.depth Values for gradient boosting machine max.depth parameter; default
is max.depth =c(1, 2, 3, 4). Must be numeric and contain only integers
greater than or equal to 1.

cpfa

subsample Values for gradient boosting machine subsample parameter; de-
fault is subsample =c(0.6, 0.7, 0.8, 0.9). Must be numeric and con-
tain only real numbers greater than 0 and less than or equal to 1.

nrounds Values for gradient boosting machine nrounds parameter; default is
nrounds = c(100, 200, 300, 500). Must be numeric and contain only in-
tegers greater than or equal to 1.

type.out Type of output desired: type.out = "measures” gives array containing classifi-
cation performance measures for all replications while type.out = "descriptives”
gives list of descriptive statistics calculated across all replications for each per-
formance measure. Both options also provide the estimated training weights and
classification weights. Defaults to type.out = "descriptives”.

foldid Integer vector containing fold IDs for k-fold cross-validation. If not provided,
fold IDs are generated randomly for number of folds nfolds.

prior Prior probabilities of class membership. If specified, the probabilities should be
in the order of the factor levels of input y. If unspecified, the observed class
proportions for input y are used. Based on prior, inverse probability weights
are calculated to account for class imbalance. Note that RF and RDA ignore
prior and use uniform priors to handle imbalance.

cmode Integer value of 1, 2, or 3 (or 4 if x is a four-way array) specifying the mode
whose component weights will be predictors for classification. Defaults to the
last mode of the input array (i.e., defaults to 3 for three-way array, and to 4 for
four-way array). If model = "parafac2”, last mode will be used.

seeds Random seeds to be associated with each replication. Defaultis seeds = 1:nrep.

plot.out Logical indicating whether to output one or more box plots of classification
performance measures that are plotted across classification methods and number
of components.

plot.measures Character vector containing values that specify for plotting one or more of 11
possible classification performance measures. Only relevant when plot.out =
TRUE. Should contain one or more of the following labels: c("err”, "acc”,
"tpr", "fpr”, "tnr", "fnr", "ppv", "npv", "fdr", "fom", "fs"). A box
plot will be created for each measure that is specified, summarizing output
across replications. Note that additional information about each label is avail-
able in the Details section of the help file for function cpm. Note also that there
are a few cases where the x-axis tick labels for a plot might not appear. A future
update is planned to fix this issue.

parallel Logical indicating if parallel computing should be implemented. If TRUE, the
package parallel is used for parallel computing. For all classification methods
except penalized logistic regression, the doParallel package is used as a wrap-
per. Defaults to FALSE, which implements sequential computing.

cl Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and c1 = NULL, then the cluster is defined as makeCluster (detectCores()).

verbose If TRUE, progress is printed.

Additional arguments to be passed to function parafac for fitting a Parafac
model or function parafac? for fitting a Parafac2 model. Example: can impose
different constraints on different modes of the input array using the argument

cpfa 5

const. See help file for function parafac or for function parafac2 for addi-
tional details.

Details

Data are split into a training set and a testing set. After fitting a Parafac or Parafac2 model with
the training set using package multiway (see parafac or parafac2 in multiway for details), the
estimated classification mode weight matrix is passed to one or more classification methods. The
methods include: penalized logistic regression (PLR); support vector machine (SVM); random for-
est (RF); feed-forward neural network (NN); regularized discriminant analysis (RDA); and gradient
boosting machine (GBM).

Package glmnet fits models for PLR. PLR tunes penalty parameter lambda while the elastic net
parameter alpha is set by the user (see the help file for function cv.glmnet in package glmnet).
For SVM, package e1071 is used with a radial basis kernel. Penalty parameter cost and radial basis
parameter gamma are used (see svm in package e1071). For RF, package randomForest is used
and implements Breiman’s random forest algorithm. The number of predictors sampled at each
node split is set at the default of sqrt(R), where R is the number of Parafac or Parafac2 compo-
nents. Two tuning parameters allowed are ntree, the number of trees to be grown, and nodesize, the
minimum size of terminal nodes (see randomForest in package randomForest). For NN, package
nnet fits a single-hidden-layer, feed-forward neural network model. Penalty parameters size (i.e.,
number of hidden layer units) and decay (i.e., weight decay) are used (see nnet). For RDA, package
rda fits a shrunken centroids regularized discriminant analysis model. Tuning parameters include
rda.alpha, the shrinkage penalty for the within-class covariance matrix, and delta, the shrinkage
penalty of class centroids towards the overall dataset centroid. For GBM, package xgboost fits a
gradient boosting machine model. Four tuning parameters are allowed: (1) eta, the learning rate;
(2) max.depth, the maximum tree depth; (3) subsample, the fraction of samples per tree; and (4)
nrounds, the number of boosting trees to build.

For all six methods, k-fold cross-validation is implemented to tune classification parameters where
the number of folds is set by argument nfolds. Separately, the trained Parafac or Parafac2 model
is used to predict the classification mode’s component weights using the testing set data. The
predicted component weights and the optimized classification method are then used to predict class
labels. Finally, classification performance measures are calculated. The process is repeated over a
number of replications with different random splits of the input array and of the class labels at each
replication.

Value

Returns an object of class wrapcpfa either with a three-way array with classification performance
measures for each model and for each replication, or with a list containing matrices with descrip-
tive statistics for performance measures calculated across all replications. Specify type.out =
"measures” to output the array of performance measures. Specify type.out = "descriptives”
to output descriptive statistics across replications. In addition, for both options, the following are
also provided:

predweights List of predicted classification weights for each Parafac or Parafac2 model and
for each replication.

train.weights List of lists of training weights for each Parafac or Parafac2 model and for each
replication.

6 cpfa

opt.tune List of optimal tuning parameters for classification methods for each Parafac or
Parafac2 model and for each replication.

mean.opt.tune Mean across all replications of optimal tuning parameters for classification meth-
ods for each Parafac or Parafac2 model.

X Three-way or four-way data array or list used in argument x.

y Vector of class labels used in input argument y.

nfac Number of components used to fit each Parafac or Parafac2 model.

model Character designating the Parafac model that was used, either model = "parafac”
for the Parafac model or model = "parafac2” for the Parafac2 model.

method Classification methods used.

const Constraints used in fitting Parafac or Parafac2 models.

cmode Integer value used to specify the mode whose component weights were predic-

tors for classification.

family Character value used to specify binary classification (family = "binomial”) or
multiclass classification (family = "multinomial”).

Note

If argument cmode is not null, input array x is reshaped with function aperm such that the cmode
dimension of x is ordered last. Estimated mode A and B (and mode C for a four-way array) weights
that are outputted as Aweights and Bweights (and Cweights) reflect this permutation. For example,
if x is a four-way array and cmode = 2, the original input modes 1, 2, 3, and 4 will correspond to
output modes 1, 3, 4, 2. Here, output A = input 1; B =3, and C =4 (i.e., the second mode specified
by cmode has been moved to the D mode/last mode). For model = "parafac2”, classification mode
is assumed to be the last mode (i.e., mode C for three-way array and mode D for four-way array).

In addition, note that the following combination of arguments will give an error: nfac =1, family
= "multinomial”, method = "PLR". The issue arises from providing glmnet: :cv.glmnet input x
an input matrix that has a single column. The issue is resolved for family = "binomial” because
a column of Os is appended to the single column, but this solution does not appear to work for the
multiclass case. As such, this combination of arguments is not currently allowed. Future updates
are planned to resolve this issue.

Applications of this function to real datasets can be explored at the following repository: https:
//github.com/matthewasisgress/multiway-classification/.

Author(s)

Matthew A. Asisgress <mattgress @protonmail.ch>

References

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano,
L., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., Yuan, J. (2025). xgboost: Extreme gradient
boosting. R Package Version 1.7.9.1.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.

https://github.com/matthewasisgress/multiway-classification/
https://github.com/matthewasisgress/multiway-classification/

cpfa 7

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of
Statistics, 29(5), 1189-1232.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American Statistical
Association, 84(405), 165-175.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1), 1-22.

Gaujoux, R. (2025). doRNG: Generic reproducible parallel backend for foreach’ loops. R Package
Version 1.8.6.2.

Guo, Y., Hastie, T., and Tibshirani, R. (2007). Regularized linear discriminant analysis and its
application in microarrays. Biostatistics, 8(1), 86-100.

Guo, Y., Hastie, T., and Tibshirani, R. (2023). rda: Shrunken centroids regularized discriminant
analysis. R Package Version 1.2-1.

Harshman, R. (1970). Foundations of the PARAFAC procedure: Models and conditions for an
"explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1-84.

Harshman, R. (1972). PARAFAC2: Mathematical and technical notes. UCLA Working Papers in
Phonetics, 22, 30-44.

Harshman, R. and Lundy, M. (1994). PARAFAC: Parallel factor analysis. Computational Statistics
and Data Analysis, 18, 39-72.

Helwig, N. (2017). Estimating latent trends in multivariate longitudinal data via Parafac2 with
functional and structural constraints. Biometrical Journal, 59(4), 783-803.

Helwig, N. (2025). multiway: Component models for multi-way data. R Package Version 1.0-7.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest. R News 2(3),
18-22.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2024). e1071: Misc func-
tions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R
Package Version 1.7-16.

Ripley, B. (1994). Neural networks and related methods for classification. Journal of the Royal
Statistical Society: Series B (Methodological), 56(3), 409-437.

Venables, W. and Ripley, B. (2002). Modern applied statistics with S. Fourth Edition. Springer,
New York. ISBN 0-387-95457-0.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.

Examples

#iHHEHHHA# Parafac2 example with 4-way array and multiclass response #it##H##H
Not run:
set seed
set.seed(5)

define list of arguments specifying distributions for A and G weights
techlist <- list(distA = list(dname = "poisson”,
lambda = 3), # for A weights
distG = list(dname = "gamma”, shape = 2,
scale = 4)) # for G weights

define target correlation matrix for columns of D mode weights matrix
cormat <- matrix(c(1, .6, .6, .6, 1, .6, .6, .6, 1), nrow = 3, ncol = 3)

simulate a four-way ragged array connected to a response

data <- simcpfa(arraydim = c(10, 11, 12, 100), model = "parafac2"”, nfac = 3,
nclass = 3, nreps = 1e2, onreps = 10, corresp = rep(.6, 3),
meanpred = rep(2, 3), modes = 4, corrpred = cormat,
technical = techlist, smethod = "eigende")

initialize

alpha <- seq(@, 1, length = 20)

gamma <- c(@, 1)

cost <- ¢c(0.1, 5)

ntree <- c(200, 300)

nodesize <- c(1, 2)

size <- c(1, 2)

decay <- c(0, 1)

rda.alpha <- seq(@.1, 0.9, length = 2)

delta <- c(0.1, 2)

eta <- c(0.3, 0.7)

max.depth <- c(1, 2)

subsample <- ¢(0.75)

nrounds <- c(100)

method <- c("PLR", "SVM", "RF", "NN”, "RDA", "GBM")

family <- "multinomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost, ntree = ntree,
nodesize = nodesize, size = size, decay = decay,
rda.alpha = rda.alpha, delta = delta, eta = eta,
max.depth = max.depth, subsample = subsample,
nrounds = nrounds)

model <- "parafac2”

nfolds <- 10

nstart <- 10

constrain first mode weights to be orthogonal, fourth mode to be nonnegative

const <- c("orthog"”, "uncons"”, "uncons"”, "nonneg")

fit Parafac2 model and use fourth mode weights to tune classification

methods, to predict class labels, and to return classification

performance measures pooled across multiple train-test splits

output <- cpfa(x = data$X, y = as.factor(datas$y), model = model, nfac = 3,
nrep = 5, ratio = 0.9, nfolds = nfolds, method = method,
family = family, parameters = parameters,
type.out = "descriptives”, seeds = NULL, plot.out = TRUE,
parallel = FALSE, const = const, nstart = nstart)

print performance measure means across train-test splits
output$descriptive$mean

End(Not run)

cpfa

cpm 9

cpm Classification Performance Measures

Description

Calculates multiple performance measures for binary or multiclass classification. Uses known class
labels and evaluates against predicted labels.

Usage
cpm(x, y, level = NULL, fbeta = NULL, prior = NULL)

Arguments

X Known class labels of class numeric, factor, or integer. If factor, converted to
class integer in the order of factor levels with integers beginning at O (i.e., for
binary classification, factor levels become 0 and 1; for multiclass, levels become
0,1, 2, etc.).

y Predicted class labels of class numeric, factor, or integer. If factor, converted to
class integer in the order of factor levels with integers beginning at 0 (i.e., for
binary classification, factor levels become 0 and 1; for multiclass, levels become
0,1, 2, etc.).

level Optional argument specifying possible class labels. For cases where x or y do
not contain all possible classes. Can be of class numeric, integer, or character.
Must contain two elements for binary classification, and contain three or more
elements for multiclass classification. If integer, integers should be ordered (e.g.,
binary with c(@, 1); or three-class with c(@, 1, 2)). Note: if both x and y
jointly contain only a single value (e.g., 1), must specify argument level in
order to identify classification as binary or multiclass.

fbeta Optional numeric argument specifying beta value for F-score. Defaults to fbeta
=1, providing an F1-score (i.e., the balanced harmonic mean between precision
and recall). Can be any real number.

prior Optional numeric argument specifying weights for classes. Currently only im-
plemented with multiclass problems. Defaults to prior = c(rep(1/1lev, llev)),
where 11ev is the number of classes, providing equal importance across classes.

Details

Selecting one class as a negative class and one class as a positive class, binary classification gen-
erates four possible outcomes: (1) negative cases classified as positives, called false positives (FP);
(2) negative cases classified as negatives, called true negatives (TN); (3) positive cases classified
as negatives, called false negatives (FN); and (4) positive cases classified as positives, called true
positives (TP).

Multiple evaluation measures are calculated using these four outcomes. Measures include: overall
error (ERR), also called fraction incorrect; overall accuracy (ACC), also called fraction correct;
true positive rate (TPR), also called recall, hit rate, or sensitivity; false negative rate (FNR), also

10 cpm

called miss rate; false positive rate (FPR), also called fall-out; true negative rate (TNR), also called
specificity or selectivity; positive predictive value (PPV), also called precision; false discovery rate
(FDR); negative predictive value (NPV); false omission rate (FOR); and F-score (FS).

In multiclass classification, the four outcomes are possible for each individual class in macro-
averaging, and performance measures are averaged over classes. Macro-averaging gives equal im-
portance to all classes. For multiclass classification, calculated measures are currently only macro-
averaged. See the listed reference in this help file for additional details on micro-averaging.

For binary classification, this function assumes a negative class and a positive class (i.e., it contains
a reference group) and is ordered. Multiclass classification is currently assumed to be unordered.

Computational details:

ERR = (FP + FN) / (TP + TN + FP + FN).

ACC = (TP +TN) /(TP + TN + FP + FN), and ACC =1 - ERR.
TPR =TP /(TP + FN).

FNR =FN/ (FN + TP), and FNR =1 - TPR.

FPR =FP / (FP + TN).

TNR =TN/ (TN + FP), and TNR =1 - FPR.

PPV =TP /(TP + FP).

FDR =FP/ (FP + TP), and FDR =1 - PPV.

NPV =TN/ (TN + EN).

FOR =FN/ (FN + TN), and FOR =1 - NPV.

FS = (1 + beta”2) * (PPV * TPR) / (((beta*2)*PPV) + TPR)).

All performance measures calculated are between 0 and 1, inclusive. For multiclass classification,
macro-averaged values are provided for each performance measure. Note that "beta’ in FS repre-
sents the relative weight such that recall (TPR) is beta times more important than precision (PPV).
See reference for more details.

Value

Returns list where first element is a full confusion matrix cm and where the second element is a
data frame containing performance measures. For multiclass classification, macro-averaged values
are provided (i.e., each measure is calculated for each class, then averaged over all classes; the
average is weighted by argument prior if provided). The second list element contains the following
performance measures:

cm A confusion matrix with counts for each of the possible outcomes.
err Overall error (ERR). Also called fraction incorrect.

acc Overall accuracy (ACC). Also called fraction correct.

tpr True positive rate (TPR). Also called recall, hit rate, or sensitivity.
fpr False positive rate (FPR). Also called fall-out.

tnr True negative rate (TNR). Also called specificity or selectivity.
fnr False negative rate (FNR). Also called miss rate.

ppv Positive predictive value (PPV). Also called precision.

cpm 11

npv Negative predictive value (NPV).

fdr False discovery rate (FDR).

fom False omission rate (FOR).

fs F-score. Mean between TPR (recall) and PPV (precision) varying by importance

given to recall over precision (see Details section and argument fbeta).

Author(s)

Matthew Asisgress <mattgress @ protonmail.ch>

References

Sokolova, M. and Lapalme, G. (2009). A systematic analysis of performance measures for classifi-
cation tasks. Information Processing and Management, 45(4), 427-437.

Examples

#iHHEHHHA# Parafac example with 3-way array and binary response ##H###HH##
Not run:

set seed and simulate a three-way array related to a binary response
set.seed(5)

define target correlation matrix for columns of C mode weights matrix
cormat <- matrix(c(1, .6, .6, .6, 1, .6, .6, .6, 1), nrow = 3, ncol = 3)

define list of arguments specifying distributions for A and G weights
techlist <- list(distA = list(dname = "poisson”,

lambda = 3), # for A weights
distG = list(dname = "gamma", shape = 2,
scale = 4)) # for G weights

simulate a three-way array connected to a response

data <- simcpfa(arraydim = c(11, 12, 100), model = "parafac”, nfac = 3,
nclass = 2, nreps = 1e2, onreps = 10, corresp = rep(.6, 3),
meanpred = rep(2, 3), modes = 3, corrpred = cormat,
technical = techlist, smethod = "eigende")

initialize

alpha <- seq(@, 1, length = 2)

gamma <- c(0, 0.01)

cost <- c(1, 2)

method <- c("PLR", "SVM")

family <- "binomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost)
model <- "parafac”

nfolds <- 3

nstart <- 3

constrain first mode weights to be orthogonal
const <- c("orthog”, "uncons"”, "uncons")

12 cpm.all

fit Parafac models and use third mode to tune classification methods
tune.object <- tunecpfa(x = data$X[, , 1:80], y = as.factor(datas$y[1:80, 1),
model = model, nfac = 3, nfolds = nfolds,
method = method, family = family,
parameters = parameters, parallel = FALSE,
const = const, nstart = nstart)

predict class labels
predict.labels <- predict(object = tune.object, newdata = data$x[, , 81:100],
type = "response”)

calculate performance measures for predicted class labels
y.pred <- predict.labels[, 1]

evalmeasure <- cpm(x = as.numeric(data$y[81:100, 1), y = y.pred)

print performance measures
evalmeasure

End(Not run)

cpm.all Wrapper for Calculating Classification Performance Measures

Description

Applies function cpm to multiple sets of class labels. Each set of class labels is evaluated against the
same set of predicted labels. Works with output from function predict. tunecpfa and calculates
classification performance measures for multiple classifiers or numbers of components.

Usage
cpm.all(x, vy, ...)
Arguments
X A data frame where each column contains a set of class labels of class numeric,
factor, or integer. If a set is of class factor, that set is converted to class integer
in the order of factor levels with integers beginning at 0 (i.e., for binary clas-
sification, factor levels become 0 and 1; for multiclass, levels become 0, 1, 2,
etc.).
y Class labels of class numeric.
Additional arguments passed to function cpm for calculating classification per-
formance measures.
Details

Wrapper function that applies function cpm to multiple sets of class labels and one other set of
labels. See help file for function cpm for additional details.

cpm.all 13

Value

Returns a list with the following two elements:

cm.list A list of confusion matrices, denoted cm, where each confusion matrix is asso-
ciated with one comparison.

cpms A data frame containing classification performance measures where each row
contains measures for one comparison.
Author(s)

Matthew Asisgress <mattgress @protonmail.ch>

References

Sokolova, M. and Lapalme, G. (2009). A systematic analysis of performance measures for classifi-
cation tasks. Information Processing and Management, 45(4), 427-437.

Examples

H#iHHHHHH#H Parafac example with 3-way array and binary response #it#i#t######
Not run:

set seed and simulate a three-way array related to a binary response
set.seed(5)

define list of arguments specifying distributions for A and G weights
techlist <- list(distA = list(dname = "poisson”,

lambda = 3), # for A weights
distG = list(dname = "gamma”, shape = 2,
scale = 4)) # for G weights

define target correlation matrix for columns of C mode weights matrix
cormat <- matrix(c(1, .6, .6, .6, 1, .6, .6, .6, 1), nrow = 3, ncol = 3)

simulate a three-way array connected to a response

data <- simcpfa(arraydim = c(11, 12, 100), model = "parafac”, nfac = 3,
nclass = 2, nreps = 1e2, onreps = 10, corresp = rep(.6, 3),
meanpred = rep(2, 3), modes = 3, corrpred = cormat,
technical = techlist, smethod = "eigende")

initialize

alpha <- seq(@, 1, length = 2)

gamma <- c(0, 0.01)

cost <- c(1, 2)

method <- c(”PLR”, "SVM")

family <- "binomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost)
model <- "parafac”

nfolds <- 3

nstart <- 3

constrain first mode weights to be orthogonal

14 plotcpta

const <- c("orthog"”, "uncons"”, "uncons")

fit Parafac models and use third mode to tune classification methods
tune.object <- tunecpfa(x = data$X[, , 1:80], y = as.factor(datas$y[1:80, 1),
model = model, nfac = 3, nfolds = nfolds,
method = method, family = family,
parameters = parameters, parallel = FALSE,
const = const, nstart = nstart)

predict class labels
predict.labels <- predict(object = tune.object, newdata = data$x[, , 81:100],

type = "response”)

calculate performance measures for predicted class labels
evalmeasure <- cpm.all(x = predict.labels, y = as.numeric(data$y[81:100, 1))

print performance measures
evalmeasure

End(Not run)

plotcpfa Plot Optimal Model from Classification with Parallel Factor Analysis

Description

Plots optimal model based on results from a *wrapcpfa’ object generated by function cpfa.

Usage
plotcpfa(object, cmeasure = "acc”, meanvalue = TRUE, supNum = FALSE,
parallel = FALSE, cl = NULL, scale.remode = NULL, newscales =1,
scale.abmode = NULL, sign.remode = NULL, newsigns = 1,
sign.abmode = NULL, ...)
Arguments
object An object of class *wrapcpfa’ from function cpfa.
cmeasure Classification performance measure used to select the optimal number of com-
ponents. Options include c("err”, "acc”, "tpr"”, "fpr", "tnr", "fnr", "ppv”,
"npv", "fdr", "fom", "fs"). If cmeasureisinc("err”, "fpr", "fnr", "fdr",
"fom"), the number of components that minimized cmeasure is selected among
all classification methods. Otherwise, the number that maximized cmeasure is
selected.
meanvalue Logical indicating whether to find the optimal number of components based on

the mean performance across replications from the results generated by cpfa. If
meanvalue = FALSE, the median is used.

plotcpta 15

supNum Logical indicating whether to suppress text displaying component weight values
within plot cells. If TRUE, values are not displayed.

parallel Logical indicating whether parallel computing should be used. If TRUE, parallel
computing is used.

cl Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and cl = NULL, then the cluster is defined as makeCluster (detectCores()).

scale.remode Character that indicates a mode to rescale. Must be one of c("A", "B", "C",
"D"). Sent directly to argument mode in function rescale from package multi-
way. See help file for rescale for additional details.

newscales The root mean-square for columns of the mode indicated by scale.remode. See
help file for rescale for additional details.

scale.abmode Character that indicates the mode that absorbs the inverse of rescalings applied
to the mode indicated by scale.remode. Must be one of c("A", "B", "C",
"D"). Sent directly to argument absorb in function rescale from package
multiway. See help file for rescale for additional details.

sign.remode Character that indicates a mode to resign. Must be one of c("A", "B", "C",
"D"). Sent directly to argument mode in function resign from package multi-
way. See help file for resign for additional details.

newsigns Scalar or vector indicating resignings for columns of the mode indicated by
sign.remode. See help file for resign for additional details.

sign.abmode Character that indicates the mode that absorbs the negation of the resignings
applied to the mode indicated by sign.remode. Must be one of c("A", "B",
"C", "D"). Sent directly to argument absorb in function resign from package
multiway. See help file for resign for additional details.

Additional arguments to be passed to function parafac for fitting a Parafac
model or function parafac2 for fitting a Parafac2 model. See help file for func-
tion parafac or for function parafac? for additional details.

Details

Selects the number of components that optimized a performance measure across all classification
methods used by cpfa. With this optimal number of components, fits the Parafac or Parafac2
model that was used by cpfa to create the input *wrapcpfa’ object. Uses same constraints used
in cpfa. Plots component weights for this optimal model using heatmaps. Darker red indicates
component weights that are more negative while darker green indicates component weights that are
more positive. For three-way Parafac, plots A and B weights. For four-way Parafac, plots A, B, and
C weights. For three-way Parafac2, plots B weights. For four-way Parafac2, plots B and C weights.

Value

Returns one or more heatmap plots of component weights for the optimal Parafac or Parafac2 model.
Returns list of estimated component weights from the optimal model.

Note

Applications of this function to real datasets can be explored at the following repository: https:
//github.com/matthewasisgress/multiway-classification/.

https://github.com/matthewasisgress/multiway-classification/
https://github.com/matthewasisgress/multiway-classification/

16 plotcpta

Author(s)

Matthew Asisgress <mattgress @protonmail.ch>

References

See help file for function cpfa for a list of references.

Examples

#iHHEHHHHA#H Parafac2 example with 4-way array and multiclass response #it##Ht##H
Not run:
set seed and simulate a four-way ragged array related to a multiclass response
set.seed(5)

define list of arguments specifying distributions for A and G weights
techlist <- list(distA = list(dname = "poisson”,

lambda = 3), # for A weights
distG = list(dname = "gamma", shape = 2,
scale = 4)) # for G weights

define target correlation matrix for columns of D mode weights matrix
cormat <- matrix(c(1, .6, .6, .6, 1, .6, .6, .6, 1), nrow = 3, ncol = 3)

simulate a four-way ragged array connected to a response

data <- simcpfa(arraydim = c(10, 11, 12, 100), model = "parafac2"”, nfac = 3,
nclass = 3, nreps = 1e2, onreps = 10, corresp = rep(.6, 3),
meanpred = rep(2, 3), modes = 4, corrpred = cormat,
technical = techlist, smethod = "eigende")

initialize

alpha <- seq(@, 1, length = 2)

gamma <- c(@, 1)

cost <- ¢c(0.1, 5)

rda.alpha <- seq(@.1, 0.9, length = 2)

delta <- c(0.1, 2)

method <- c("PLR", "SVM", "RDA")

family <- "multinomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost,
rda.alpha = rda.alpha, delta = delta)

model <- "parafac2”

nfolds <- 3

nstart <- 3

constrain first mode weights to be orthogonal, fourth mode to be nonnegative
const <- c("orthog"”, "uncons"”, "uncons"”, "nonneg")

fit Parafac2 model and use fourth mode weights to tune classification

methods, to predict class labels, and to return classification

performance measures pooled across multiple train-test splits

output <- cpfa(x = data$X, y = as.factor(data$y), model = model, nfac = 3,
nrep = 2, ratio = 0.8, nfolds = nfolds, method = method,
family = family, parameters = parameters,

predict.tunecpfa

17

type.out = "descriptives"”, seeds = NULL, plot.out = TRUE,
parallel = FALSE, const = const, nstart = nstart, ctol = le-2)

plot heatmap of component weights for optimal model
plotcpfa(output, nstart = nstart, ctol = 1e-3)

End(Not run)

predict.tunecpfa

Predict Method for Tuning for Classification with Parallel Factor
Analysis

Description

Obtains predicted class labels from a ’tunecpfa’ model object generated by function tunecpfa.

Usage

S3 method for class 'tunecpfa'

predict(object, newdata = NULL, method = NULL,
type = c("response”, "prob"”, "classify.weights"),
threshold = NULL, ...)

Arguments

object
newdata

method

type

threshold

A fit object of class ’tunecpfa’ produced by function tunecpfa.

An optional three-way or four-way data array used to predict Parafac or Parafac2
component weights using estimated Parafac or Parafac2 model component weights
from the input object. For Parafac2, can be a list of length K where the k-th el-
ement is a matrix or three-way array associated with the k-th element. Array
or list must contain only real numbers. Dimensions must match dimensions of
original data for all modes except the classification mode. If omitted, the origi-
nal data are used.

Character vector indicating classification methods to use. Possible methods in-
clude penalized logistic regression (PLR); support vector machine (SVM); ran-
dom forest (RF); feed-forward neural network (NN); regularized discriminant
analysis (RDA); and gradient boosting machine (GBM). If none selected, de-
fault is to use all methods.

Character vector indicating type of prediction to return. Possible values in-
clude: (1) "response”, returning predicted class labels; (2) "prob”, returning
predicted class probabilities; or (3) "classify.weights”, returning predicted
component weights used for classification in the specified Parafac models. De-
faults to "response”.

For binary classification, value indicating prediction threshold over which obser-
vations are classified as the positive class. If not provided, calculates threshold
using class proportions in original data. For multiclass classification, threshold
is not currently implemented.

Additional predict arguments. Currently ignored.

18 predict.tunecpfa

Details

Predicts class labels for a binary or a multiclass outcome. Specifically, predicts component weights
for one mode of a Parallel Factor Analysis-1 (Parafac) model or a Parallel Factor Analysis-2 (Parafac2)
model using new data and previously estimated mode weights from original data. Passes predicted
component weights to one or several classification methods as new data for predicting class labels.

Tuning parameters optimized by k-fold cross-validation are used for each classification method (see
help for tunecpfa). If not supplied in argument threshold, prediction threshold for all classifi-
cation methods is calculated using proportions of class labels for original data in the binary case
(and the positive class proportion is set as the threshold). For multiclass case, class with highest
probability is chosen.

Value
Returns one of the following, depending on the choice for argument type:

type = "response”
A data frame containing predicted class labels for each Parafac model and clas-
sification method selected (see argument type). Number of columns is equal to
number of methods times number of Parafac models. Number of rows is equal
to number of predicted observations.

type = "prob” A list containing predicted probabilities for each Parafac model and classifica-
tion method selected (see argument type). The number of list elements is equal
to the number of methods times the number of Parafac models.

type = "classify.weights”
List containing predicted component weights for each Parafac or Parafac2 model.
Length is equal to number of Parafac models that were fit.

Note
Applications of this function to real datasets can be explored at the following repository: https:
//github.com/matthewasisgress/multiway-classification/.

Author(s)

Matthew Asisgress <mattgress @protonmail.ch>

References

See help file for function tunecpfa for a list of references.

Examples

#iHHEHHHA# Parafac example with 3-way array and binary response ##HHt###H##
Not run:

set seed and simulate a three-way array related to a binary response
set.seed(5)

define list of arguments specifying distributions for A and G weights
techlist <- list(distA = list(dname = "poisson”,

https://github.com/matthewasisgress/multiway-classification/
https://github.com/matthewasisgress/multiway-classification/

print.tunecpfa 19

lambda = 3), # for A weights
distG = list(dname = "gamma”, shape = 2,
scale = 4)) # for G weights

define target correlation matrix for columns of C mode weights matrix
cormat <- matrix(c(1, .6, .6, .6, 1, .6, .6, .6, 1), nrow = 3, ncol = 3)

simulate a three-way array connected to a response

data <- simcpfa(arraydim = c(11, 12, 100), model = "parafac”, nfac = 3,
nclass = 2, nreps = 1e2, onreps = 10, corresp = rep(.6, 3),
meanpred = rep(2, 3), modes = 3, corrpred = cormat,
technical = techlist, smethod = "eigende")

initialize

alpha <- seq(@, 1, length = 2)

gamma <- c(0, 0.01)

cost <- c(1, 2)

method <- c("PLR", "SVM")

family <- "binomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost)
model <- "parafac”

nfolds <- 3

nstart <- 3

constrain first mode weights to be orthogonal
const <- c("orthog", "uncons"”, "uncons")

fit Parafac models and use third mode to tune classification methods
tune.object <- tunecpfa(x = data$X[, , 1:80], y = as.factor(datas$y[1:80, 1),
model = model, nfac = 3, nfolds = nfolds,
method = method, family = family,
parameters = parameters, parallel = FALSE,
const = const, nstart = nstart)

predict class labels
predict.labels <- predict(object = tune.object, newdata = data$X[, , 81:100],

type = "response”)
print predicted labels
predict.labels
End(Not run)
print.tunecpfa Print Method for Tuning for Classification with Parallel Factor Anal-
ysis

Description

Prints summary of a "tunecpfa’ model object generated by function tunecpfa.

20 print.tunecpfa

Usage
S3 method for class 'tunecpfa’
print(x, ...)
Arguments
X A fit object of class ’tunecpfa’ from function tunecpfa.
Additional print arguments.
Details

Prints names of the models and methods used to create the input ’tunecpfa’ model object. Prints
misclassification error rates and estimation times in seconds.
Value

Returns a summary of the "tunecpfa’ model object.

Author(s)

Matthew Asisgress <mattgress @ protonmail.ch>

References

See help file for function tunecpfa for a list of references.

Examples

#iHHHH#HH##H# Parafac example with 3-way array and binary response #it#i#t##t####
Not run:

set seed and simulate a three-way array connected to a binary response
set.seed(5)

define list of arguments specifying distributions for A and G weights
techlist <- list(distA = list(dname = "poisson”,

lambda = 3), # for A weights
distG = list(dname = "gamma”, shape = 2,
scale = 4)) # for G weights

define target correlation matrix for columns of C mode weights matrix
cormat <- matrix(c(1, .6, .6, .6, 1, .6, .6, .6, 1), nrow = 3, ncol = 3)

simulate a three-way array connected to a response

data <- simcpfa(arraydim = c(11, 12, 100), model = "parafac”, nfac = 3,
nclass = 2, nreps = 1e2, onreps = 10, corresp = rep(.6, 3),
meanpred = rep(2, 3), modes = 3, corrpred = cormat,
technical = techlist, smethod = "eigende")

initialize
alpha <- seq(@, 1, length = 2)
gamma <- c(0, 0.01)

simcepfta 21

cost <- c(1, 2)

method <- c(”PLR”, "SVM")

family <- "binomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost)
model <- "parafac”

nfolds <- 3

nstart <- 3

constrain first mode weights to be orthogonal
const <- c("orthog"”, "uncons"”, "uncons")

fit Parafac models and use third mode to tune classification methods

tune.object <- tunecpfa(x = data$X, y = as.factor(datas$y), model = model,
nfac = 3, nfolds = nfolds, method = method,
family = family, parameters = parameters,
parallel = FALSE, const = const, nstart = nstart)

print summary of output
print(tune.object)

End(Not run)

simcpfa Simulate Data for Classification with Parallel Factor Analysis

Description

Simulates a three-way or four-way data array and a set of class labels that are related to the simulated
array through one mode of the array. Data array is simulated using either a Parafac or Parafac2
model with no constraints. Weights for mode weight matrices can be drawn from 12 common
probability distributions. Alternatively, custom weights can be provided for any mode.

Usage
simcpfa(arraydim = NULL, model = "parafac”, nfac = 2, nclass = 2,
smethod = "logistic”, nreps = 100, onreps = 10, props = NULL,
corresp = c(0.3, -0.3), meanpred = c(0@, @), modes = 3,
corrpred = matrix(c(1, 0.2, 0.2, 1), nrow = 2), pf2num = NULL,
Amat = NULL, Bmat = NULL, Cmat = NULL, Dmat = NULL, Gmat = NULL,
Emat = NULL, technical = list())
Arguments
arraydim Numeric vector containing the number of dimensions for each mode of the sim-
ulated data array. Must contain integers greater than or equal to 2.
model Character specifying the model to use for simulating the data array. Must be
either ’parafac’ or ’parafac2’.
nfac Number of components in the Parafac or Parafac2 model. Must be an integer

greater than or equal to 1.

22

nclass

smethod

nreps

onreps

props

corresp

meanpred

modes

corrpred

pf2num

Amat

Bmat

Cmat

simcpfta

Number of classes in simulated class labels. Must be an integer greater than or
equal to 2.

Simulation method, either "logistic" or "eigende". The former implements an
iterative Monte Carlo rejection sampling technique based on the generalized
linear model (slower). The latter uses a multivariate normal distribution and
constructs a joint covariance matrix, employing a eigendecomposition and as-
suming class labels arise from discretizing continuous latent variables (faster).

Number of replications for simulating class labels for a given set of classification
mode component weights.

Number of replications for simulating a set of classification mode component
weights.

Target proportions for simulated class labels in output ’y’.

Numeric vector of target correlations between simulated class labels and columns
of the classification mode component weight matrix. Must have length equal to
"nfac’.

Numeric vector of means used to generate the classification mode component
weights. Must be real numbers. Operates as the mean vector parameterizing
a multivariate normal distribution from which classification mode component
weights are generated. Length must be equal to input nfac.

Single integer of either 3 or 4, indicating whether to simulate a three-way or
four-way data array, respectively.

A positive definite correlation matrix containing the target correlations for the
classification mode component weights. Must have number of rows and columns
equal to input 'nfac’. Operates as the covariance matrix parameterizing a multi-
variate normal distribution from which classification mode component weights
are generated.

When model = 'parafac2', number of rows for each simulated matrix in the
list of matrices Amat. Replaces the first element of input arraydim because, for
the Parafac2 model, the number of rows in each simulated matrix can vary. If
not specified when model = 'parafac2', defaults to rep(c((nfac + 1), (nfac
+2), (nfac+3)), length.out = arraydim[modes]).

When model = 'parafac’, a matrix of A mode weights with number of rows
equal to the first element of input "arraydim’ and with number of columns equal
to input 'nfac’. When model = 'parafac2’, a list with length equal to the last
element of input ’arraydim’, where each list element contains a matrix with
number of rows of at least 2 and with number of columns equal to input ’nfac’.
When provided, replaces a simulated Amat.

A matrix of B mode weights with number of rows equal to the second element
of input ’arraydim’ and with number of columns equal to the input *nfac’. When
provided, replaces a simulated Bmat.

A matrix of C mode weights with number of rows equal to the third element of
input "arraydim’ and with number of columns equal to the input *nfac’. When
provided, replaces a simulated Cmat when modes = 4. When modes = 3, replaces
the simulated classification mode weight matrix. If provided when modes = 3,
onreps is reduced to one.

simcepfta 23

Dmat A matrix of D mode weights with number of rows equal to the fourth element of
input "arraydim’ and with number of columns equal to the input *nfac’. When
modes = 4, replaces the simulated classification mode weight matrix. When
modes = 3, this argument is ignored. If provided when modes = 4, onreps is
reduced to one.

Gmat When model = 'parafac2’, a matrix of G mode weights with number of rows
equal to input ’nfac’ and with number of columns equal to input 'nfac’. When
provided, replaces a simulated Gmat.

Emat When model = 'parafac’', an array containing noise to be added to the corre-
sponding elements in the simulated data array. Error array dimensions must be
equal to the values contained in arraydim. When model = 'parafac2’, a list
containing either matrices (i.e., when modes = 3) or three-way arrays (i.e., when
modes = 4) whose elements contain noise to be added to corresponding elements
in the simulated data array. When provided, replaces a simulated Emat.

technical List containing arguments related to distributions from which to simulate data.
When specified, must contain one or more of the following:

distA List containing arguments specifying the distribution from which devi-
ates are drawn for A mode weights contained in Amat. Defaults to standard
normal distribution when not specified. See Details section for additional
information on acceptable arguments.

distB List containing arguments specifying the distribution from which deviates
are drawn for B mode weights contained in Bmat. Defaults to standard
normal distribution when not specified. See Details section for additional
information on acceptable arguments.

distC For when modes = '4', list containing arguments specifying the distribu-
tion from which deviates are drawn for C mode weights contained in Cmat.
Defaults to standard normal distribution when not specified. See Details
section for additional information on acceptable arguments.

distG For when model = 'parafac2’, list containing arguments specifying the
distribution from which deviates are drawn for G weights contained in
Gmat. Defaults to standard normal distribution when not specified. See
Details section for additional information on acceptable arguments.

distE List containing arguments specifying the distribution from which devi-
ates are drawn for error contained in Emat. Defaults to standard normal
distribution when not specified. See Details section for additional informa-
tion on acceptable arguments.

Details

By selecting smethod = "logistic”, the data array simulation consists of two steps. First, a Monte
Carlo simulation is conducted to simulate class labels using a binomial logistic (i.e., in the binary
case) or multinomial logistic (i.e., in the multiclass case) regression model. Specifically, columns of
the classification mode weights matrix (e.g., Cmat when modes = 3) are generated from a multivari-
ate normal distribution with mean vector meanpred and with covariance matrix corrpred. Values
are then drawn randomly from a uniform or a normal distribution and serve as beta coefficients.
A linear combination of these beta coefficients and the generated classification weights produces a
linear systematic part, which is passed through the logistic function (i.e., the sigmoid) in the binary

24

simcpfta

case or through the softmax function in the multiclass case. Resulting probabilities are used to as-
sign class labels. The simulation repeats classification weights generation onreps times and repeats
class label generation, within each onreps iteration, a total of nreps times. The generated class
labels that correlate best with the generated classification weights (i.e., with correlations closest to
corresp) are retained as the final class labels with corresponding final classification weights. An
adaptive sampling technique is used during the simulation such that optimal beta coefficients from
previous iterations are used to parameterize a normal distribution, from which new coefficients are
drawn in subsequent iterations. Note that, if any simulation replicate produces a set of class labels
where all labels are the same (i.e., have no variance), that replicate is discarded. Note also that
onreps is ignored when the classification mode weight matrix (i.e., Cmat when modes = 3 or Dmat
when modes = 4) is provided; in this case, class labels are simulated with respect to the provided
classification mode weight matrix.

Second, depending on the chosen model (i.e., Parafac or Parafac2) specified via model, and depend-
ing on the number of modes specified via modes, component matrices are randomly generated for
each mode of the data array. A data array is then constructed using a Parafac or Parafac2 structure
from these weight matrices, including the generated classification mode weight matrix (i.e., Cmat
or Dmat) from the first step. Alternatively, weight matrices can be provided to override random
generation for any weight matrix with the exception of the classification mode. When provided,
weight matrices are used to form the final data array. Finally, random noise is added to each value
in the array. The resulting output is a synthetic multiway data array paired, through one mode of
the array, with a simulated binary or multiclass response.

Alternatively, by selecting smethod = "eigende”, the function simulates component weights and
a latent response variable simultaneously from a joint multivariate normal distribution using an
eigendecomposition. The covariance structure is defined by corrpred and a corrected version of
corresp that accounts for the attenuation in correlation caused by discretizing the latent response.
This continuous latent response vector is then discretized into class labels using quantile cuts de-
fined by the cumulative sum of props. This method offers an efficient, non-iterative alternative that
satisfies the target covariance structure without rejection sampling.

The technical argument controls the probability distributions used to simulate weights for differ-
ent modes. Currently, technical is highly structured. In particular, technical must be provided
as a named list whose elements must be one of ’distA’, ’distB’, ’distC’, 'distG’, or ’distE’, with
the last letter of each name designating a mode or, in the case of ’distE’, designating error. Each
element provided must itself be a list where the first inner list element is named *dname’, specifying
the distribution to be used to generate weights for a given mode or for error. There are 12 ’dname’
options: 'normal’, uniform’, ’gamma’, ’beta’, *binomial’, ’poisson’, ’exponential’, ’geometric’,
’negbinomial’, "hypergeo’, ’lognormal’, and ’cauchy’. Additional arguments can be added to each
inner list to parameterize the probability distribution being used. These arguments can be one of the
following, for each distribution allowed:

For dname = 'normal"', allowed arguments are mean or sd (i.e., function rnorm is called).

For dname = 'uniform', allowed arguments are min or max (i.e., function runif is called).

For dname = 'gamma', allowed arguments are shape or scale (i.e., function rgamma is called).
For dname = 'beta’', allowed arguments are shapel or shape?2 (i.e., function rbeta is called).
For dname = 'binomial’, allowed arguments are size or prob (i.e., function rbinom is called).
For dname = 'poisson', allowed argument is 1ambda (i.e., function rpois is called).

For dname = 'exponential', allowed argument is rate (i.e., function rexp is called).

simcepfta 25

For dname = 'geometric’, allowed argument is prob (i.e., function rgeom is called).
For dname = 'negbinomial', allowed arguments are size or prob (i.e., function rnbinomis called).
For dname = "hypergeo', allowed arguments are m, n, or k (i.e., function rhyper is called).

For dname = 'lognormal’, allowed arguments are meanlog or sdlog (i.e., function rlnorm is
called).

For dname = 'cauchy', allowed arguments are location or scale (i.e., function rcauchy is called).

Note that if a weight matrix and technical information are both provided for a given mode (or for
error), the weight matrix is used while technical information is ignored. See Examples below for an
example of how to set up technical.

Value

X Simulated data array with dimensions specified by arraydim and, when model
= 'parafac2', also by pf2num. When model = 'parafac', X is an object of
class "array’. When model = 'parafac2’, X is an object of class "list’.

y Simulated class labels provided as an object of class 'matrix’, with number of
rows equal to the last element of arraydim and with number of columns equal
to 1.

model Character value indicating whether Parafac or Parafac2 model was used to sim-
ulate the data array.

Amat Simulated A mode weights. When model = 'parafac’, output is a matrix with
number of rows equal to the first element of arraydim and with number of
columns equal to the number of components nfac. When model = 'parafac2’,
output is a list of matrices with number of rows for each matrix equal to those
specified by pf2num and with number of columns equal to nfac. If Amat was
supplied, returns original Amat instead of a simulated Amat.

Bmat Simulated B mode weights provided as a matrix with number of rows equal
to the second element of arraydim and with number of columns equal to the
number of components nfac. If Bmat was supplied, returns original Bmat instead
of a simulated Bmat.

Cmat Simulated C mode weights provided as a matrix with number of rows equal to
the third element of arraydim and with number of columns equal to the number
of components nfac. If Cmat was supplied when modes = 4, returns original
Cmat instead of a simulated Cmat.

Dmat Simulated D mode weights provided when modes = 4. QOutput is a matrix with
number of rows equal to the fourth element of arraydim and with number of
columns equal to the number of components nfac.

Gmat Simulated G weights provided when model = 'parafac2'. Provided as a matrix
with number of rows and columns equal to nfac. If Gmat was supplied, returns
original Gmat instead of a simulated Gmat.

Emat Error array or list containing noise added to corresponding elements of simu-
lated data array. Output has dimensions specified by arraydim and, when model
= 'parafac2', also by pf2num. When model = 'parafac', Emat is an object of
class "array’. When model = 'parafac2’, Emat is an object of class ’list’.

26 tunecpfa

Author(s)

Matthew Asisgress <mattgress @ protonmail.ch>

References

See help file for function cpfa for a list of references.

Examples

#iHHHHHHA# Parafac2 example with 4-way array and multiclass response #it#t#H##H
Not run:

set seed for reproducibility

set.seed(5)

define list of arguments specifying distributions for A and G weights

techlist <- list(distA = list(dname = "poisson”,
lambda = 3), # for A weights
distG = list(dname = "gamma”, shape = 2,
scale = 4)) # for G weights

define target correlation matrix for columns of D mode weights matrix
cormat <- matrix(c(1, .6, .6, .6, 1, .6, .6, .6, 1), nrow = 3, ncol = 3)

simulate a four-way ragged array connected to a response

data <- simcpfa(arraydim = c(10, 11, 12, 100), model = "parafac2”, nfac = 3,
nclass = 3, nreps = 1e2, onreps = 10, corresp = rep(.6, 3),
meanpred = rep(2, 3), modes = 4, corrpred = cormat,
technical = techlist, smethod = "eigende")

examine correlations among columns of classification mode matrix Dmat
cor(data$bmat)

examine correlations between columns of classification mode matrix Dmat and
simulated class labels

cor(data$Dmat, datas$y)

End(Not run)

tunecpfa Tuning for Classification with Parallel Factor Analysis

Description

Fits Richard A. Harshman’s Parallel Factor Analysis-1 (Parafac) model or Parallel Factor Analysis-
2 (Parafac2) model to a three-way or four-way data array. Allows for multiple constraint options
on tensor modes. Uses component weights from a single mode of the model as predictors to tune
parameters for one or more classification methods via a k-fold cross-validation procedure. Supports
binary and multiclass classification.

tunecpfa

Usage

27

tunecpfa(x, y, model = c("parafac”, "parafac2"), nfac = 1, nfolds = 10,

method
family
foldid

= (:(IIPLRIIy HSVMH, HRFII’ IINNII, HRDAII, IIGBMII),
= c("binomial”, "multinomial”), parameters = list(),
= NULL, prior = NULL, cmode = NULL, parallel = FALSE,

cl = NULL, verbose = TRUE, ...)

Arguments

X

model
nfac
nfolds

method

family

parameters

For Parafac or Parafac2, a three-way or four-way data array. For Parafac2, can
be a list where each element is a matrix or three-way array. Array or list must
contain real numbers. See note below.

A vector containing at least two unique class labels. Should be a factor that
contains two or more levels. For binary case, ensure the order of factor levels
(left to right) is such that negative class is first and positive class is second.

Character designating the Parafac model to use, either model = "parafac” to fit
the Parafac model or model = "parafac2” to fit the Parafac2 model.

Number of components for each Parafac or Parafac2 model to fit. Default is
nfac=1.

Numeric value specifying the number of folds for k-fold cross-validation. Must
be 2 or greater. Default is nfolds = 10.

Character vector indicating classification methods to use. Possible methods in-
clude penalized logistic regression (PLR); support vector machine (SVM); ran-
dom forest (RF); feed-forward neural network (NN); regularized discriminant
analysis (RDA); and gradient boosting machine (GBM). If none selected, de-
fault is to use all methods.

Character value specifying binary classification (family = "binomial") or mul-
ticlass classification (family = "multinomial”). If not provided, number of
levels of input y is used, where two levels is binary, and where three or more
levels is multiclass.

List containing arguments related to classification methods. When specified,
must contain one or more of the following:

alpha Values for penalized logistic regression alpha parameter; default is alpha
=seq(@, 1, length = 6). Must be numeric and contain only real numbers
between 0 and 1, inclusive.

lambda Optional user-supplied lambda sequence for cv.glmnet for penalized
logistic regression. Default is NULL.

cost Values for support vector machine cost parameter; default is cost = c(1,
2,4,8,16, 32, 64). Must be numeric and contain only real numbers
greater than or equal to 0.

gamma Values for support vector machine gamma parameter; default is gamma
=c(0,0.01,0.1, 1, 10, 100, 1000). Must be numeric and greater than
or equal to 0.

ntree Values for random forest number of trees parameter; default is ntree =
c(100, 200, 400, 600, 800, 1600, 3200). Must be numeric and contain
only integers greater than or equal to 1.

28

foldid

prior

cmode

parallel

cl

tunecpfa

nodesize Values for random forest node size parameter; default is nodesize
=c(1, 2, 4, 8, 16, 32, 64). Must be numeric and contain only integers
greater than or equal to 1.

size Values for neural network size parameter; default is size = c(1, 2, 4, 8,
16, 32, 64). Must be numeric and contain only integers greater than or
equal to 0.

decay Values for neural network decay parameter; default is decay = c(@.001,
0.01,0.1, 1, 2, 4, 8, 16). Must be numeric and contain only real num-
bers.

rda.alpha Values for regularized discriminant analysis alpha parameter; default
is rda.alpha =seq(@, 0.999, length = 6). Must be numeric and contain
only real numbers between 0 (inclusive) and 1 (exclusive).

delta Values for regularized discriminant analysis delta parameter; default is
delta=c(0, 0.1, 1, 2, 3, 4). Must be numeric and contain only real
numbers greater than or equal to 0.

eta Values for gradient boosting machine eta parameter; defaultiseta = c(0@.1,
0.3,0.5,0.7, 0.9). Must be numeric and contain only real numbers
greater than 0 and less than 1.

max.depth Values for gradient boosting machine max.depth parameter; default
is max.depth =c(1, 2, 3, 4). Must be numeric and contain only integers
greater than or equal to 1.

subsample Values for gradient boosting machine subsample parameter; de-
fault is subsample =c(0.6, 0.7, 0.8, 0.9). Must be numeric and con-
tain only real numbers greater than 0 and less than or equal to 1.

nrounds Values for gradient boosting machine nrounds parameter; default is
nrounds = c(100, 200, 300, 500). Must be numeric and contain only in-
tegers greater than or equal to 1.

Vector containing fold IDs for k-fold cross-validation. Can be of class integer,
numeric, or data frame. Should contain integers from 1 through the number of
folds. If not provided, fold IDs are generated randomly for observations using 1
through the number of folds nfolds.

Prior probabilities of class membership. If specified, the probabilities should be
in the order of the factor levels of input y. If unspecified, the observed class
proportions for input y are used. Based on prior, inverse probability weights
are calculated to account for class imbalance. Note that RF and RDA ignore
prior and use uniform priors to handle imbalance.

Integer value of 1, 2, or 3 (or 4 if x is a four-way array) specifying the mode
whose component weights will be predictors for classification. Defaults to the
last mode of the input array (i.e., defaults to 3 for three-way array, and to 4 for
four-way array). If model = "parafac2”, last mode will be used.

Logical indicating whether to use parallel computing. If TRUE, the package
parallel is used for parallel computing. For all classification methods except
penalized logistic regression, the doParallel package is used as a wrapper. De-
faults to FALSE, which implements sequential computing.

Cluster for parallel computing, which is used when parallel = TRUE. Note that

if parallel = TRUE and cl = NULL, then the cluster is defined as makeCluster (detectCores()).

tunecpfa 29

verbose If TRUE, progress is printed.

Additional arguments to be passed to function parafac for fitting a Parafac
model or function parafac2 for fitting a Parafac2 model. Example: can impose
different constraints on different modes of the input array using the argument
const. See help file for function parafac or for function parafac?2 for addi-
tional details.

Details

After fitting a Parafac or Parafac2 model using package multiway (see parafac or parafac2 in
multiway for details), the estimated classification mode weight matrix is passed to one or more clas-
sification methods—including penalized logistic regression (PLR); support vector machine (SVM);
random forest (RF); feed-forward neural network (NN); regularized discriminant analysis (RDA);
and gradient boosting machine (GBM).

Package glmnet fits models for PLR. PLR tunes penalty parameter lambda while the elastic net
parameter alpha is set by the user (see the help file for function cv.glmnet in package glmnet).
For SVM, package e1071 is used with a radial basis kernel. Penalty parameter cost and radial basis
parameter gamma are used (see svm in package e1071). For RF, package randomForest is used
and implements Breiman’s random forest algorithm. The number of predictors sampled at each
node split is set at the default of sqrt(R), where R is the number of Parafac or Parafac2 compo-
nents. Two tuning parameters allowed are ntree, the number of trees to be grown, and nodesize, the
minimum size of terminal nodes (see randomForest in package randomForest). For NN, package
nnet fits a single-hidden-layer, feed-forward neural network model. Penalty parameters size (i.e.,
number of hidden layer units) and decay (i.e., weight decay) are used (see nnet). For RDA, package
rda fits a shrunken centroids regularized discriminant analysis model. Tuning parameters include
rda.alpha, the shrinkage penalty for the within-class covariance matrix, and delta, the shrinkage
penalty of class centroids towards the overall dataset centroid. For GBM, package xgboost fits a
gradient boosting machine model. Four tuning parameters are allowed: (1) eta, the learning rate;
(2) max.depth, the maximum tree depth; (3) subsample, the fraction of samples per tree; and (4)
nrounds, the number of boosting trees to build.

For all six methods, k-fold cross-validation is implemented to tune classification parameters where
the number of folds is set by argument nfolds.

Value

Returns an object of class tunecpfa with the following elements:

opt.model List containing optimal model for tuned classification methods for each Parafac
or Parafac2 model that was fit.

opt.param Data frame containing optimal parameters for tuned classification methods.

kcv.error Data frame containing KCV misclassification error for optimal parameters for

tuned classification methods.

est.time Data frame containing times for fitting Parafac or Parafac2 model and for tuning
classification methods.

method Numeric indicating classification methods used. Value of ’1’ indicates "PLR’;
value of ’2’ indicates ’SVM’; value of 3’ indicates 'RF’; value of ’4’ indicates
’NN’; value of 5’ indicates 'RDA’; and value of 6’ indicates "GBM’.

30

Aweights

Bweights

Cweights

Phi

const

cmode

family

xdim

1xdim

train.weights

priorweights

Note

tunecpfa

Three-way or four-way array used. If a list was used with model = "parafac2”,
returns list of matrices or three-way arrays used.

Factor containing class labels used. Note that output y is recoded such that the
input labels of y are converted to numeric integers from O through the number
of levels, which are then applied as labels for output y.

List containing estimated A weights for each Parafac or Parafac2 model that was
fit.

List containing estimated B weights for each Parafac or Parafac2 model that was
fit.

List containing estimated C weights for each Parafac or Parafac2 model that was
fit. Null if input argument x was a three-way array.

If model = "parafac2”, alist containing estimated Phi from the Parafac2 model.
Phi is the common cross product matrix shared by all levels of the last mode (see
help file for function parafac2 in package multiway for additional details).
NULL if model = "parafac”.

Constraints used in fitting Parafac or Parafac2 models. If argument const was
not provided, no constraints will be used.

Integer value of 1, 2, or 3 (or 4 if x is a four-way array) specifying mode whose
component weights were predictors for classification.

Character value specifying whether classification was binary (family = "binomial")

or multiclass (family = "multinomial”).

Numeric value specifying number of levels for each mode of input x. If model
= "parafac2”, number of levels for first mode is designated as NA because the
number of levels can differ across levels of the last mode.

Numeric value specifying number of modes of input x.

List containing classification component weights for each fit Parafac or Parafac2
model, for possibly different numbers of components. The weights used to train
classifiers.

List containing three elements based on input prior: (1) weight, inverse proba-
bility weights per observation, used to balance classes for PLR, NN, and GBM,;
(2) frac, inverse probability weights per class, used to balance classes for SVM;
and (3) pricorrect, uniform priors used to balance classes for RF and RDA.

For fitting the Parafac model, if argument cmode is not NULL, input array x is reshaped with func-
tion aperm such that the cmode dimension of x is ordered last. Estimated mode A and B (and mode
C for a four-way array) weights that are outputted as Aweights and Bweights (and Cweights) re-
flect this permutation. For example, if x is a four-way array and cmode = 2, the original input modes
1, 2, 3, and 4 will correspond to output modes 1, 3, 4, 2. Here, output A =input 1; B=3,and C=4
(i.e., the second mode specified by cmode has been moved to the D mode/last mode). For model =
"parafac2”, classification mode is assumed to be the last mode (i.e., mode C for three-way array
and mode D for four-way array).

In addition, note that the following combination of arguments will give an error: nfac =1, family
= "multinomial”, method = "PLR". The issue arises from providing glmnet: :cv.glmnet input x

tunecpfa 31

with a matrix that has a single column. The issue is resolved for family = "binomial” because a
column of Os is appended to the single column, but this solution does not appear to work for the
multiclass case. As such, this combination of arguments is not currently allowed. This issue will be
resolved in a future update.

Applications of this function to real datasets can be explored at the following repository: https:
//github.com/matthewasisgress/multiway-classification/.

Author(s)

Matthew A. Asisgress <mattgress @protonmail.ch>

References

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano,
L., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., Yuan, J. (2025). xgboost: Extreme gradient
boosting. R Package Version 1.7.9.1.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of
Statistics, 29(5), 1189-1232.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American Statistical
Association, 84(405), 165-175.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1), 1-22.

Gaujoux, R. (2025). doRNG: Generic reproducible parallel backend for ’foreach’ loops. R Package
Version 1.8.6.2.

Guo, Y., Hastie, T., and Tibshirani, R. (2007). Regularized linear discriminant analysis and its
application in microarrays. Biostatistics, 8(1), 86-100.

Guo, Y., Hastie, T., and Tibshirani, R. (2023). rda: Shrunken centroids regularized discriminant
analysis. R Package Version 1.2-1.

Harshman, R. (1970). Foundations of the PARAFAC procedure: Models and conditions for an
"explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1-84.
Harshman, R. (1972). PARAFAC2: Mathematical and technical notes. UCLA Working Papers in
Phonetics, 22, 30-44.

Harshman, R. and Lundy, M. (1994). PARAFAC: Parallel factor analysis. Computational Statistics
and Data Analysis, 18, 39-72.

Helwig, N. (2017). Estimating latent trends in multivariate longitudinal data via Parafac2 with
functional and structural constraints. Biometrical Journal, 59(4), 783-803.

Helwig, N. (2025). multiway: Component models for multi-way data. R Package Version 1.0-7.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomForest. R News 2(3),
18-22.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2024). e1071: Misc func-
tions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R
Package Version 1.7-16.

https://github.com/matthewasisgress/multiway-classification/
https://github.com/matthewasisgress/multiway-classification/

32 tunecpfa

Ripley, B. (1994). Neural networks and related methods for classification. Journal of the Royal
Statistical Society: Series B (Methodological), 56(3), 409-437.

Venables, W. and Ripley, B. (2002). Modern applied statistics with S. Fourth Edition. Springer,
New York. ISBN 0-387-95457-0.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320.

Examples

#iHHHHHHA# Parafac example with 3-way array and binary response ##HH##HH##
Not run:

set seed and simulate a three-way array connected to a binary response
set.seed(5)

define list of arguments specifying distributions for A and G weights
techlist <- list(distA = list(dname = "poisson”,

lambda = 3), # for A weights
distG = list(dname = "gamma", shape = 2,
scale = 4)) # for G weights

define target correlation matrix for columns of C mode weights matrix
cormat <- matrix(c(1, .6, .6, .6, 1, .6, .6, .6, 1), nrow = 3, ncol = 3)

simulate a three-way array connected to a response

data <- simcpfa(arraydim = c(11, 12, 100), model = "parafac”, nfac = 3,
nclass = 2, nreps = 1e2, onreps = 10, corresp = rep(.6, 3),
meanpred = rep(2, 3), modes = 3, corrpred = cormat,
technical = techlist, smethod = "eigende")

initialize

alpha <- seq(@, 1, length = 2)

gamma <- c(0, 0.01)

cost <- c(1, 2)

ntree <- c(100, 200)

nodesize <- c(1, 2)

size <- c(1, 2)

decay <- c(0, 1)

rda.alpha <- c(0.1, 0.6)

delta <- c(0.1, 2)

eta <- c(0.3, 0.7)

max.depth <- c(1, 2)

subsample <- ¢(0.75)

nrounds <- c(100)

method <- c("PLR", "SVM", "RF", "NN”, "RDA", "GBM")

family <- "binomial”

parameters <- list(alpha = alpha, gamma = gamma, cost = cost, ntree = ntree,
nodesize = nodesize, size = size, decay = decay,
rda.alpha = rda.alpha, delta = delta, eta = eta,
max.depth = max.depth, subsample = subsample,
nrounds = nrounds)

model <- "parafac”

nfolds <- 3

tunecpfa 33

nstart <- 3

constrain first mode weights to be orthogonal
const <- c("orthog"”, "uncons"”, "uncons")

fit Parafac models and use third mode to tune classification methods

tune.object <- tunecpfa(x = data$X, y = as.factor(datas$y), model = model,
nfac = 3, nfolds = nfolds, method = method,
family = family, parameters = parameters,
parallel = FALSE, const = const, nstart = nstart)

print tuning object
tune.object

End(Not run)

Index

cpfa, 2
cpm, 9
cpm.all, 12

plotcpfa, 14
predict.tunecpfa, 17
print.tunecpfa, 19

simcpfa, 21

tunecpfa, 26

34

	cpfa
	cpm
	cpm.all
	plotcpfa
	predict.tunecpfa
	print.tunecpfa
	simcpfa
	tunecpfa
	Index

