Package ‘clusterability’

January 12, 2026

Title Performs Tests for Cluster Tendency of a Data Set
Version 0.2.2.0

Description Test for cluster tendency (clusterability) of a data set.
The methods implemented -
reducing the data set to a single dimension using principal component analysis or computing
pairwise distances, and performing a multimodality test like the Dip Test or Silverman's Criti-
cal Bandwidth Test -
are described in Adolfsson, Ackerman, and Brown-
stein (2019) <doi:10.1016/j.patcog.2018.10.026>. Such methods can inform whether cluster-
ing algorithms
are appropriate for a data set.

Depends R (>=3.4.0)

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Imports diptest, splines, sparsepca, elasticnet
Suggests testthat, plotly, bench
NeedsCompilation no

Author Zachariah Neville [aut, cre],
Naomi Brownstein [aut],
Maya Ackerman [aut],
Andreas Adolfsson [aut]

Maintainer Zachariah Neville <zachariahneville@outlook.com>
Repository CRAN
Date/Publication 2026-01-12 06:20:02 UTC

Contents

clusterability L
clusterabilitytest L.

https://doi.org/10.1016/j.patcog.2018.10.026

2 clusterability

normalsl . . . L e 8
normals2 L. e e e e e e e e e 9
normals3 e e e e e 9
normalsd . . .o L e 10
normalsSo L e e 11
print.clusterability 11

Index 12

clusterability clusterability: a package to perform tests of clusterability
Description

The clusterabilitytest function tests for clusterability of a dataset, and the print function
displays output in the console. Below, code is included to use with the provided example datasets.
Please see the clusterabilitytest() function for documentation on available parameters.

Examples

Normals1
data(normals1)
normals1 <- normalsi[, -3]
norml_dippca <- clusterabilitytest(normals1, "dip")
norml_dipdist <- clusterabilitytest(normalsl, "dip”,
distance_standardize = "NONE",
reduction = "distance”
)
norml_silvpca <- clusterabilitytest(normalsl, "silverman”, s_setseed = 123)
norml_silvdist <- clusterabilitytest(normalsl, "silverman”,
distance_standardize = "NONE",
reduction = "distance”, s_setseed = 123

)

print(norml1_dippca)
print(norml_dipdist)
print(normi_silvpca)
print(norml_silvdist)

Normals?2
data(normals2)
normals2 <- normals2[, -3]
norm2_dippca <-
clusterabilitytest(normals2, "dip")
norm2_dipdist <-
clusterabilitytest(normals2, "dip”, reduction = "distance”, distance_standardize = "NONE")
norm2_silvpca <- clusterabilitytest(normals2, "silverman”, s_setseed = 123)
norm2_silvdist <- clusterabilitytest(normals2, "silverman",
reduction = "distance”,

clusterability

distance_standardize = "NONE", s_setseed = 123

)

print(norm2_dippca)
print(norm2_dipdist)
print(norm2_silvpca)
print(norm2_silvdist)

Normals3
data(normals3)
normals3 <- normals3[, -3]
norm3_dippca <- clusterabilitytest(normals3, "dip")
norm3_dipdist <- clusterabilitytest(normals3, "dip”,
reduction = "distance”,
distance_standardize = "NONE"
)
norm3_silvpca <- clusterabilitytest(normals3, "silverman”, s_setseed = 123)
norm3_silvdist <- clusterabilitytest(normals3, "silverman",
reduction = "distance”,
distance_standardize = "NONE", s_setseed = 123

)

print(norm3_dippca)
print(norm3_dipdist)
print(norm3_silvpca)
print(norm3_silvdist)

Normals4
data(normals4)
normals4 <- normals4[, -4]
norm4_dippca <- clusterabilitytest(normals4, "dip")
norm4_dipdist <- clusterabilitytest(normals4, "dip”,
reduction = "distance”,
distance_standardize = "NONE"
)
norm4_silvpca <- clusterabilitytest(normals4, "silverman”, s_setseed = 123)
norm4_silvdist <- clusterabilitytest(normals4, "silverman",
reduction = "distance”,
distance_standardize = "NONE", s_setseed = 123

)

print(norm4_dippca)
print(norm4_dipdist)
print(norm4_silvpca)
print(norm4_silvdist)

Normals5

clusterability

data(normals5)
normals5 <- normals5[, -4]
norm5_dippca <- clusterabilitytest(normals5, "dip")
norm5_dipdist <- clusterabilitytest(normals5, "dip”,
reduction = "distance”,
distance_standardize = "NONE"
)
norm5_silvpca <- clusterabilitytest(normals5, "silverman”, s_setseed = 123)
norm5_silvdist <- clusterabilitytest(normals5, "silverman”,
reduction = "distance”,
distance_standardize = "NONE", s_setseed = 123

)

print(norm5_dippca)
print(norm5_dipdist)
print(norm5_silvpca)
print(norm5_silvdist)

iris
data(iris)
newiris <- iris[, c(1:4)]
iris_dippca <- clusterabilitytest(newiris, "dip")
iris_dipdist <- clusterabilitytest(newiris, "dip”,
reduction = "distance”,
distance_standardize = "NONE"
)
iris_silvpca <- clusterabilitytest(newiris, "silverman”, s_setseed = 123)
iris_silvdist <- clusterabilitytest(newiris, "silverman”,
reduction = "distance”,
distance_standardize = "NONE", s_setseed = 123

)

print(iris_dippca)
print(iris_dipdist)
print(iris_silvpca)
print(iris_silvdist)

cars
data(cars)

cars_dippca <- clusterabilitytest(cars, "dip")
cars_dipdist <- clusterabilitytest(cars, "dip”,
reduction = "distance”,
distance_standardize = "NONE"
)
cars_silvpca <- clusterabilitytest(cars, "silverman”, s_setseed = 123)
cars_silvdist <- clusterabilitytest(cars, "silverman",
reduction = "distance”,
distance_standardize = "NONE", s_setseed = 123

)

clusterabilitytest 5

print(cars_dippca)
print(cars_dipdist)
print(cars_silvpca)
print(cars_silvdist)

clusterabilitytest Perform a test of clusterability

Description

Performs tests for clusterability of a data set and returns results in a clusterability object. Di-
mension reduction via PCA, sparse PCA, or pairwise distances and data standardization can be
performed prior to performing the test.

Usage

clusterabilitytest(
data,
test,
reduction = "pca”,
distance_metric = "euclidean”,
distance_standardize = "std",
pca_center = TRUE,
pca_scale = TRUE,
spca_method = "EN",
spca_EN_para = 0.01,
spca_EN_lambda = 1e-06,
spca_VP_center = TRUE,
spca_VP_scale = TRUE,
spca_VP_alpha = 0.001,
spca_VP_beta = 0.001,
is_dist_matrix = FALSE,
completecase = FALSE,
d_simulatepvalue = FALSE,
d_reps = 2000,

s_m = 999,
s_adjust = TRUE,
s_digits = 6,

s_setseed = NULL,
s_outseed = FALSE

)
Arguments
data the data set to be used in the test. Must contain only numeric data.
test the test to be performed. Either "dip” or "silverman”. See ’Details’ section

below for how to pick a test.

clusterabilitytest

reduction any dimension reduction that is to be performed.

* "none” performs no dimension reduction.
* "pca” uses the scores from the first principal component.
* "spca” uses the scores from the first sparse principal component.
* "distance” computes pairwise distances (using distance_metric as the
metric).
For multivariate data, dimension reduction is required.
distance_metric
if applicable, the metric to be used in computing pairwise distances.

i

The "euclidean” (default), "maximum”, "manhattan”, "canberra”, "binary’
choices work the same as in dist. The Minkowski metric is available by provid-
ing "minkowski(p)".

Additional choices are:

* "sgeuc"”: squared Euclidean distances.

* "cov": covariance similarity coefficient,

e "corr": correlation similarity coefficient

e "sqcorr": squared correlation similarity coefficient.
CAUTION: Not all of these have been tested, but instead are provided to poten-
tially be useful. If in doubt, use the default "euclidean”.

distance_standardize

how the variables should be standardized, if at all.

* "none”: no standardization is performed

e "std" (default): each variable standardized to have mean 0 and standard
deviation 1

* "mean”: each variable standardized to have mean O (standard deviation is
unchanged)

e "median”: each variable standardized to have median O (standard deviation
is unchanged)

pca_center if applicable, a logical value indicating whether the variables should be shifted
to be zero centered (see prcomp for more details). Default is TRUE.

pca_scale if applicable, a logical value indicating whether the variables should be scaled
to have unit variance before the analysis takes place (see prcomp for details).
Default is TRUE.

spca_method if applicable, the sparse PCA method to use. Either "EN" for the elasticnet
implementation or "VP" for the variable projection implementation.

spca_EN_para if applicable, a positive number used as a penalty parameter. Default is @.01.
spca_EN_lambda if applicable, the quadratic penalty parameter. Default is 1e-6.

spca_VP_center if applicable, a logical value indicating whether the variables should be shifted
to be zero centered. Default is TRUE.

spca_VP_scale if applicable, a logical value indicating whether the variables should be scaled
to have unit variance. Default is TRUE.

spca_VP_alpha if applicable, the sparsity controlling parameter. Default is 1e-3.

clusterabilitytest

spca_VP_beta

is_dist_matrix

completecase

if applicable, the amount of ridge shrinkage to apply in order to improve condi-
tioning. Default is Te-3.

a logical value indicating whether the data argument is a distance matrix. If
TRUE then the lower triangular portion of data will be extracted and be used in
the multimodality test.

a logical value indicating whether a complete case analysis should be performed.
For both tests, missing data must be removed before the test can be performed.
This can be done manually by the user or by setting completecase = TRUE.

d_simulatepvalue

d_reps

s_adjust

s_digits

s_setseed

s_outseed

Value

for Dip Test, a logical value indicating whether p~values should be obtained via
Monte Carlo simulation (see dip.test for details).

for Dip Test, a positive integer. The number of replicates used in Monte Carlo
simulation. Only used if d_simulatepvalue is TRUE.

for Silverman Test, a positive integer. The number of bootstrap replicates used
in the test. Default is 999.

for Silverman Test, a logical value indicating whether p-values are adjusted us-
ing work by Hall and York.

for Silverman Test, a positive integer indicating the number of digits to round
the p value. Default is 6 and is only used when s_adjust = TRUE.

for Silverman Test, an integer used to set the seed of the random number gener-
ator. If the default value of NULL is used, then no seed will be set.

for Silverman Test, a logical value indicating whether to return the state of the
random number generator as part of the output. This is used in limited cases for
troubleshooting, so the default is FALSE.

clusterabilitytest returns a clusterability object containing information on the test per-
formed and results. Can be printed using the print.clusterability function.

References

Hall, P. and York, M., 2001. On the calibration of Silverman’s test for multimodality. Statistica
Sinica, pp.515-536.

Silverman, B.W., 1981. Using kernel density estimates to investigate multimodality. Journal of the
Royal Statistical Society. Series B (Methodological), pp.97-99.

Martin Maechler (2016). diptest: Hartigan’s Dip Test Statistic for Unimodality - Corrected. R
package version 0.77-2. https://CRAN.R-project.org/package=diptest

Schwaiger F, Holzmann H. Package which implements the silvermantest; 2013. Available from:
https://www.mathematik.uni-marburg.de/stochastik/R packages/.

See Also

print.clusterability

8 normals1

Examples

Quick start #HHt

Load data and remove Species
data(iris)

iris_numeric <- iris[, -5]
plot(iris_numeric)

Run test using default options
clusterability_result <- clusterabilitytest(iris_numeric, "dip")

Print results
print(clusterability_result)

#i## Longer Example: Specifying Parameters #i#
Load data and plot to visualize
data(normals2)

plot(normals2)

Using Silverman's test, pairwise distances to reduce dimension,
1,000 bootstrap replicates, with an RNG seed of 12345
clusterability_result2 <- clusterabilitytest(normals2, "silverman",
reduction = "distance”,
s_m = 1000, s_setseed = 12345

Print result
print(clusterability_result2)

normalsi Data generated from a single multivariate Normal distribution, 2 di-
mensions.

Description

A dataset containing 150 observations generated from a multivariate Normal distribution. The dis-
tribution has mean vector (0, 4), each variable has unit variance, and the variables are uncorrelated.
This dataset is not clusterable.

The cluster variable is 1 for all observations because all were sampled from the same distribution.
Remove the variable before using the dataset in any tests.

Usage

normals1

normals2 9

Format
A data frame with 150 rows and 3 variables:
X X variable

y y variable

cluster Distribution from which the observation was sampled

normals2 Data generated from a mixture of two multivariate Normal distribu-
tions, 2 dimensions.

Description

A dataset containing 150 observations generated from a mixture of two multivariate Normal dis-
tributions. 75 observations come from a distribution with mean vector (-3, -2) with each variable
having unit variance and uncorrelated with each other. 75 observations come from a distribution
with mean vector (1, 1) with each variable having unit variance and uncorrelated with each other.
The dataset is clusterable.

Remove the cluster variable before using the dataset in any tests.

Usage

normals2

Format
A data frame with 150 rows and 3 variables:
X X variable

y y variable

cluster Distribution from which the observation was sampled

normals3 Data generated from a mixture of three multivariate Normal distribu-
tions, 2 dimensions.

Description

A dataset containing 150 observations generated from a mixture of three multivariate Normal dis-
tributions. 50 observations are from a distribution with mean vector (3, 0), 50 observations from a
distribution with mean vector (0, 3), and 50 observations from a distribution with mean vector (3, 6).
For each of these three distributions, the x and y variables have unit variance and are uncorrelated.
The dataset is clusterable.

Remove the cluster variable before using the dataset in any tests.

10 normals4

Usage

normals3

Format

A data frame with 150 rows and 3 variables:

X X variable
y y variable

cluster Distribution from which the observation was sampled

normals4 Data generated from a mixture of two multivariate Normal distribu-
tions, 3 dimensions.

Description

A dataset containing 150 observations generated from a mixture of two multivariate Normal distri-
butions. 75 observations come from a distribution with mean vector (1, 3, 2) and 75 observations
come from a distribution with mean vector (4, 6, 0). For each distribution, the variables each have
unit variance and are uncorrelated. The dataset is clusterable.

Remove the cluster variable before using the dataset in any tests.

Usage

normals4

Format

A data frame with 150 rows and 4 variables:

X X variable
y y variable
z 7 variable

cluster Distribution from which the observation was sampled

normals5 11

normals5 Data generated from a mixture of three multivariate Normal distribu-
tions, 3 dimensions.

Description

A dataset containing 150 observations generated from a mixture of three multivariate Normal dis-
tributions. 50 observations come from a distribution with mean vector (1, 3, 3), 50 observations
come from a distribution with mean vector (4, 6, 0), and 50 observations come from a distribution
with mean vector (2, 8, -3). For each distribution, the variables each have unit variance and are
uncorrelated. The dataset is clusterable.

Remove the cluster variable before using the dataset in any tests.

Usage

normals5

Format
A data frame with 150 rows and 4 variables:

X X variable
y y variable
z 7 variable

cluster Distribution from which the observation was sampled

print.clusterability Print a clusterability object

Description

Print function to display results from a clusterability test.

Usage
S3 method for class 'clusterability'
print(x, ...)
Arguments
X An object of class ’clusterability’
Not used
See Also

clusterabilitytest

Index

+ datasets
normals1, 8
normals2, 9
normals3, 9
normals4, 10
normals5s, 11

clusterability, 2
clusterabilitytest, 2,5, 11

dip.test, 7
dist, 6

elasticnet, 6

normals1, 8
normals2, 9
normals3, 9
normals4, 10
normals5s, 11

prcomp, 6
print, 2
print.clusterability, 7, 11

12

	clusterability
	clusterabilitytest
	normals1
	normals2
	normals3
	normals4
	normals5
	print.clusterability
	Index

