Package ‘blvim’

January 14, 2026

Title Boltzmann—Lotka—Volterra Interaction Model
Version 0.1.1

Description Estimates Boltzmann—Lotka—Volterra (BLV) interaction model
efficiently. Enables programmatic and graphical exploration of the solution
space of BLV models when parameters are varied. See Wilson, A. (2008)
<dx.doi.org/10.1098/rsif.2007.1288>.

License GPL (>=3)

Encoding UTF-8

RoxygenNote 7.3.3

LinkingTo Rcpp, ReppArmadillo
Imports cli, collapse, Rcpp, rlang, stats

Suggests callr, covr, dplyr, ggplot2, ggrepel, knitr, pkgload,
rmarkdown, sf, sloop, testthat (>= 3.0.0), vctrs, vdiffr, withr

Config/testthat/edition 3
Config/testthat/parallel true

URL https://fabrice-rossi.github.io/blvim/

https://fabrice-rossi.r-universe.dev/blvim

BugReports https://github.com/fabrice-rossi/blvim/issues
VignetteBuilder knitr

Depends R (>=3.5)

LazyData true

NeedsCompilation yes

Author Fabrice Rossi [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-4638-1286>)

Maintainer Fabrice Rossi <Fabrice.Rossi@apiacoa.org>
Repository CRAN
Date/Publication 2026-01-14 18:00:13 UTC

https://fabrice-rossi.github.io/blvim/
https://fabrice-rossi.r-universe.dev/blvim
https://github.com/fabrice-rossi/blvim/issues
https://orcid.org/0000-0003-4638-1286

2 Contents

Contents
as.data.frame.sim_list L 3
attraCtiVenesS i e e e e e e 4
autoplot.sim e e 5
autoplot.sim_df 9
autoplot.sim_list. L. e e 10
bIvim e e e e e e e 13
CSIM_LISt . . o . e e e e e e e e e e e e 16
COSES & & v vt e e e e e e e 17
costs.sim_LiSt s 18
destination_flow e 19
destination_NamesS vt e e e e e e e e e e 19
destination_positions e e e e e e 20
diversity e e e 21
HOWS . . . o e e e e e 24
flows_df e 25
fortify.sim 26
fortify.sim_list 29
french_cities e 31
french_cities_distances e e e 32
french_departments e 33
french_regions 33
grid_attraCtiveness o . i e e e e e e e e e e 34
grid_autoplot L. 35
grid_blvim. 37
grid_destination_flow 39
grid_diversity e 40
grid_is_terminal L. e e e 41
grid_sim_converged e e 42
grid_sim_iterations L. L. e e 43
grid_var_autoplot oL 44
INVELSE_COSE . o v v v o o o e e e e e e e e e 46
is_terminal L e 47
Jocation_NameS e e e e e e e 48
location_poSitions e e e e e e e e e 49
median.sim_list L e e e 50
names<-.sim_df e e e 52
nd_graph 53
OFIgIN_NAMES v o et vttt et e e e e e e 54
OFgIN_POSIIONS v vttt s e e e e e e 55
productiono e 56
quantile.sim_LiSt. e e e 57
return_to_scale e 58
sim_column e e e e e 59
sim_converged L e e e 60
sSim_df . . e, 61

sim_df extract e e 62

as.data.frame.sim_list

SIM_dIStanCe e e e e e e
sim_is_bipartite L e e e e e
SIM_ItErationsS v o v o e e e e e e e
SIMULISt . . . e,
static_bIVIM e e
summary.sim_listo
terminalS L L e e e e e e e e

Index

as.data.frame.sim_list
Coerce to a Data Frame

Description

This function creates a data frame with a single column storing its collection of spatial interac-
tion models. The default name of the column is "sim” (can be modified using the sim_column

parameter). An more flexible alternative is provided by the sim_df () function.

Usage
S3 method for class 'sim_list'
as.data.frame(x, ..., sim_column = "sim")
Arguments
X a collection of spatial interaction models, an object of class sim_list

additional parameters (not used currently)

sim_column the name of the sim_list column (default "sim")

Value

a data frame

See Also
sim_df ()

Examples

distances <- french_cities_distances[1:15, 1:15] / 1000 ## convert to km
production <- log(french_cities$population[1:15])
attractiveness <- log(french_cities$areal[1:15])
all_flows_log <- grid_blvim(
distances, production, c(1.1, 1.25, 1.5),
c(1, 2, 3, 4) / 500, attractiveness,
epsilon = 0.1,
bipartite = FALSE,

4 attractiveness

iter_max = 750

)
as.data.frame(all_flows_log, sim_column = "log flows")
attractiveness Extract the attractivenesses from a spatial interaction model object
Description

Extract the attractivenesses from a spatial interaction model object

Usage
attractiveness(sim, ...)
Arguments
sim a spatial interaction model object
additional parameters
Value

a vector of attractivenesses at the destination locations

See Also

production(), destination_flow()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- log(french_cities$population[1:10])

attractiveness <- log(french_cities$areal[1:10])

model <- static_blvim(distances, production, 1.5, 1 / 250, attractiveness)
attractiveness(model)

the names of the attractiveness vector are set from the distance matrix
we remove them for testing equality
all.equal(as.numeric(attractiveness(model)), attractiveness)

autoplot.sim 5

autoplot.sim Create a complete ggplot for a spatial interaction model

Description

This function represents graphical the flows of a spatial interaction model, in different direct or
aggregated forms.

Usage
S3 method for class 'sim'
autoplot(
object,
flows = c("full”, "destination”, "attractiveness"),

with_names = FALSE,

with_positions = FALSE,

show_destination = FALSE,
show_attractiveness = FALSE,
show_production = FALSE,

cut_off = 100 * .Machine$double.eps”*@.5,
adjust_limits = FALSE,

with_labels = FALSE,

)
Arguments

object a spatial interaction model object

flows "full"” (default), "destination” or "attractiveness”, see details.

with_names specifies whether the graphical representation includes location names (FALSE
by default)

with_positions specifies whether the graphical representation is based on location positions
(FALSE by default)

show_destination
specifies whether the position based "full” flow figure includes a representa-
tion of the destination flows (FALSE by default)

show_attractiveness
specifies whether the position based "full” flow figure includes a representa-
tion of the attractivenesses (FALSE by default)

show_production
specifies whether the position based "full” flow figure includes a representa-
tion of the productions (FALSE by default)

cut_off cut off limit for inclusion of a graphical primitive when with_positions =
TRUE. In the full flow matrix representation, segments are removed when their
flow is smaller than the cut off. In the attractiveness or destination representa-
tion, disks are removed when the corresponding value is below the cut off.

autoplot.sim

adjust_limits if FALSE (default value), the limits of the position based graph are not adjusted

after removing graphical primitives. This eases comparison between graphical
representations with different cut off value. If TRUE, limits are adjusted to the
data using the standard ggplot2 behaviour.

with_labels if FALSE (default value) names are displayed using plain texts. If TRUE, names

Details

are shown using labels.

additional parameters, see details

The graphical representation depends on the values of flows and with_positions. It is based on
the data frame representation produced by fortify.sim().

If with_position is FALSE (default value), the graphical representations are "abstract”". Depending
on flows we have the following representations:

"full”: this is the default case for which the full flow matrix is represented. It is extracted
from the spatial interaction model with flows() and displayed using a matrix representation
with origin locations in rows and destination locations in columns. The colour of a cell corre-
sponds to the intensity of a flow between the corresponding locations. To mimic the standard
top to bottom reading order of a flow matrix, the top row of the graphical representation cor-
responds to the first origin location.

"destination”: the function computes the incoming flows for destination locations (using
destination_flow()) and represents them with a bar plot (each bar is proportional to the
incoming flow);

"attractiveness": the function uses a bar plot to represent the attractivenesses of the des-
tination locations (as given by attractiveness()). This is interesting for dynamic models
where those values are updated during the iterations (see blvim() for details). When the calcu-
lation has converged (see sim_converged()), both "destination” and "attractiveness”
graphics should be almost identical.

When the with_names parameter is TRUE, the location names (Location_names()) are used to label
the axis of the graphical representation. If names are not specified, they are replaced by indexes.

When the with_positions parameter is TRUE, the location positions (location_positions())
are used to produce more "geographically informed" representations. Notice that if no positions are
known for the locations, the use of with_positions = TRUE is an error. Depending on flows we
have the following representations:

"full”: this is the default case for which the full flow matrix is represented. Positions for
both origin and destination locations are needed. The representation uses arrows from origin
location positions to destination location positions. The thickness of the lines (1inewidth aes-
thetics) is proportional to the flows. Only segments that carry a flow above the cut_off value
are included. When the spatial interaction model is not bipartite (see sim_is_bipartite()),
zero length segments corresponding to self exchange are removed. Additional parameters
in ... are submitted to ggplot2::geom_segment(). This can be used to override defaults
parameters used for the arrow shapes, for instance. Those parameters must be named. In
addition to the individual flows, the representation can include location based information. If
show_production is TRUE, the production constraints (obtained by production()) are shown

autoplot.sim 7

as disks centred on the origin locations. If show_destination is TRUE, incoming flows (ob-
tained by destination_flow()) are shown as disks centred on the destination locations. If
show_attractiveness is TRUE, attractivenesses (obtained by attractiveness()) are shown

as disks centred on the destination locations. show_destination and show_attractiveness

are not compatible (only one can be TRUE). show_production is compatible with show_destination
or show_attractiveness for bipartite models only (see sim_is_bipartite()). When disks

are used, segments are drawn without arrows, while the default drawing uses arrows. This can

be modified with the additional parameters.

* "destination”: the function draws a disk at each destination location using for the size
aesthetics the incoming flow at this destination location (using destination_flow()). Only
destinations with an incoming flow above the cut_off value are included.

e "attractiveness"”: the function draws a disk at each destination location using for the
size aesthetics the attractiveness of the destination. When the calculation has converged (see
sim_converged()), both "destination” and "attractiveness” graphics should be almost
identical. Only destinations with an attractiveness above the cut_off value are included.

For the position based representations and when with_names is TRUE, the names of the destinations
are added to the graphical representation . If with_labels is TRUE the names are represented as
labels instead of plain texts (see ggplot2: :geom_label()). If the ggrepel package is installed, its
functions are used instead of ggplot2 native functions. When disks are used to show aggregated
flows, the names match the chosen locations: for destination flow and attractiveness, destination
locations are named, while for production, origin locations are named (they can be both named
when the model is bipartite).

Value

a ggplot object

See Also

fortify.sim()

Examples

positions <- as.matrix(french_cities[1:10, c("th_longitude”, "th_latitude”)])
distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal[1:10])
flows <- blvim(distances, production, 1.5, 1 / 150, attractiveness,
origin_data = list(
names = french_cities$name[1:10],
positions = positions
),
destination_data = list(
names = french_cities$name[1:10],
positions = positions
),
bipartite = FALSE
)
ggplot2: :autoplot(flows)

autoplot.sim

bar plots should be almost identical if convergence occurred
sim_converged(flows)
ggplot2::autoplot(flows, "destination”)
ggplot2::autoplot(flows, "attractiveness”)
names inclusion
ggplot2: :autoplot(flows, "destination”, with_names = TRUE) +
ggplot2::coord_flip()
ggplot2::autoplot(flows, with_names = TRUE) +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90))
positions
ggplot2::autoplot(flows, "attractiveness”, with_positions = TRUE) +
ggplot2::scale_size_continuous(range = c(@, 6)) +
ggplot2::coord_sf(crs = "epsg:4326")
ggplot2::autoplot(flows, "destination”,
with_positions = TRUE,
with_names = TRUE
) +
ggplot2::scale_size_continuous(range = c(@, 6)) +
ggplot2::coord_sf(crs = "epsg:4326")
ggplot2::autoplot(flows, "destination”,
with_positions = TRUE,
with_names = TRUE, with_labels = TRUE
) +
ggplot2::scale_size_continuous(range = c(@, 6)) +
ggplot2::coord_sf(crs = "epsg:4326")
ggplot2: :autoplot(flows, with_positions = TRUE) +
ggplot2::scale_linewidth_continuous(range = c(@, 2)) +
ggplot2::coord_sf(crs = "epsg:4326")
ggplot2: :autoplot(flows,
with_positions = TRUE,
arrow = ggplot2::arrow(length = ggplot2::unit(@.025, "npc”))
) +
ggplot2::scale_linewidth_continuous(range = c(@, 2)) +
ggplot2::coord_sf(crs = "epsg:4326")
individual flows combined with destination flows
no arrows
ggplot2: :autoplot(flows,
with_positions = TRUE,
show_destination = TRUE
) +
ggplot2::scale_linewidth_continuous(range = c(0, 2)) +
ggplot2::coord_sf(crs = "epsg:4326")
readding arrows
ggplot2: :autoplot(flows,
with_positions = TRUE,
show_destination = TRUE,
arrow = ggplot2::arrow(length = ggplot2::unit(0.025, "npc"))
)+
ggplot2::scale_linewidth_continuous(range = c(@, 2)) +
ggplot2::coord_sf(crs = "epsg:4326")

autoplot.sim_df 9

autoplot.sim_df Create a complete ggplot for a spatial interaction models data frame

Description

This function uses a tile plot from ggplot2 to display a single value for each of the parameter pairs
used to produce the collection of spatial interaction models.

Usage
S3 method for class 'sim_df'
autoplot(object, value, inverse = TRUE, ...)
Arguments
object a data frame of spatial interaction models, an object of class sim_df
value the value to display, default to diversity if unspecified
inverse whether to use the cost scale parameter (default)

additional parameters (not used currently)

Details

The value to display is specified via an expression evaluated in the context of the data frame. It
defaults to the diversity as computed by diversity(). See the below for examples of use.

The horizontal axis is used by default for the cost scale parameter, that is 1//3. This is in general
easier to read than using the inverse cost scale. The inverse parameter can be used to turn off this
feature. The vertical axis is used by default for the return to scale parameter.

Value

a ggplot object

See Also

sim_df (), diversity()

Examples

positions <- as.matrix(french_cities[1:10, c("th_longitude”, "th_latitude")])
distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal1:10])
all_flows <- grid_blvim(distances, production, seq(1.05, 1.45, by = 0.1),
seq(1, 3, by = 0.5) / 400,
attractiveness,
bipartite = FALSE,
epsilon = 0.1, iter_max = 1000,

10 autoplot.sim_list

)
all_flows_df <- sim_df(all_flows)

default display: Shannon diversity

ggplot2::autoplot(all_flows_df)

iterations

ggplot2::autoplot(all_flows_df, iterations)

we leverage non standard evaluation to compute a different diversity
ggplot2: :autoplot(all_flows_df, diversity(sim, "RW"))

or to refer to columns of the data frame, either default ones
ggplot2::autoplot(all_flows_df, converged)
ggplot2::autoplot(all_flows_df, iterations)

or added ones

all_flows_df["Nystuen & Dacey”] <- diversity(sim_column(all_flows_df), "ND")
ggplot2: :autoplot(all_flows_df, “Nystuen & Dacey™)

autoplot.sim_list Create a complete variability for a collection of spatial interaction
models

Description

This function represents graphically the variability of the flows represented by the spatial interaction
models contained in a collection (a sim_list object).

Usage
S3 method for class 'sim_list'
autoplot(
object,
flows = c("full”, "destination”, "attractiveness"),

with_names = FALSE,

with_positions = FALSE,

cut_off = 100 * .Machine$double.eps”*@.5,
adjust_limits = FALSE,

with_labels = FALSE,

gmin = 0.05,
gmax = 0.95,
normalisation = c("none”, "origin", "full"),
)
Arguments
object a collection of spatial interaction models, a sim_list

flows "full"” (default), "destination” or "attractiveness”, see details.

autoplot.sim_list 11

with_names specifies whether the graphical representation includes location names (FALSE
by default)

with_positions specifies whether the graphical representation is based on location positions
(FALSE by default)

cut_off cut off limit for inclusion of a graphical primitive when with_positions =

TRUE. In the attractiveness or destination representation, circles are removed
when the corresponding upper quantile value is below the cut off.

adjust_limits if FALSE (default value), the limits of the position based graph are not adjusted
after removing graphical primitives. This eases comparison between graphical
representations with different cut off value. If TRUE, limits are adjusted to the
data using the standard ggplot2 behaviour.

with_labels if FALSE (default value) names are displayed using plain texts. If TRUE, names
are shown using labels.

gmin lower quantile, see details (default: 0.05)
gmax upper quantile, see details (default: 0.95)

normalisation when flows="full", the flows can be reported without normalisation (normalisation="none",
the default value) or they can be normalised, either to sum to one for each origin
location (normalisation="origin") or to sum to one globally (normalisation="full").

additional parameters, not used currently

Details

The graphical representation depends on the values of flows and with_positions. It is based on
the data frame representation produced by fortify.sim_list(). In all cases, the variations of
the flows are represented via quantiles of their distribution over the collection of models (computed
with quantile.sim_list()). For instance, when flows is "destination”, the function computes
the quantiles of the incoming flows observed in the collection at each destination. We consider three
quantiles:

* alower quantile gmin defaulting to 0.05;
¢ the median;

* aupper quantile gmax defaulting to 0.95.

If with_position is FALSE (default value), the graphical representations are "abstract". Depending
on flows we have the following representations:

e "full”: the function displays the quantiles over the collection of models of the flows using
nested squares (flows()). The graph is organised as matrix with origin locations on rows and
destination locations on columns. At each row and column intersection, three nested squares
represent respectively the lower quantile, the median and the upper quantile of the distribution
of the flows between the corresponding origin and destination locations over the collection of
models. The median square borders are thicker than the other two squares. The area of each
square is proportional to the represented value.

e "destination”: the function displays the quantiles over the collection of models of the in-
coming flows for each destination location (using destination_flow()). Quantiles are rep-
resented using ggplot2: :geom_crossbar(): each location is represented by a rectangle that
spans from its lower quantile to its upper quantile. An intermediate thicker bar represents the
median quantile.

12 autoplot.sim_list

* "attractiveness": the function displays the quantiles over the collection of models of the
attractiveness of each destination location (as given by attractiveness()). The graphi-
cal representation is the same as for "destination”. This is interesting for dynamic models
where those values are updated during the iterations (see blvim() for details). When the calcu-
lation has converged (see sim_converged()), both "destination” and "attractiveness”
graphics should be almost identical.

When the with_names parameter is TRUE, the location names (Location_names()) are used to label
the axis of the graphical representation. If names are not specified, they are replaced by indexes.

When the with_positions parameter is TRUE, the location positions (location_positions())
are used to produce more "geographically informed" representations. Notice that if no positions are
known for the locations, the use of with_positions = TRUE is an error. Moreover, flows = "full”
is not supported: the function will issue a warning and revert to the position free representation if
this value is used.

The representations for flows="destination"” and flows="attractiveness" are based on the
same principle. Each destination location is represented by a collection of three nested circles
centred on the corresponding location position, representing respectively the lower quantile, the
median and the upper quantile of the incoming flows or of the attractivenesses. The diameters
of the circles are proportional to the quantities they represent. The border ot the median circle is
thicker than the ones of the other circles.

When both with_positions and with_names are TRUE, the names of the destinations are added to
the graphical representation. If with_labels is TRUE the names are represented as labels instead
of plain texts (see ggplot2: :geom_label()). If the ggrepel package is installed, its functions are
used instead of ggplot2 native functions.

Value

a ggplot object

See Also

fortify.sim_list(), quantile.sim_list()

Examples

positions <- as.matrix(french_cities[1:10, c("th_longitude”, "th_latitude")])
distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal[1:10])
all_flows <- grid_blvim(distances, production, seq(1.05, 1.45, by = 0.1),
seq(1, 3, by = 0.5) / 400,
attractiveness,
bipartite = FALSE,
epsilon = 0.1, iter_max = 1000,
destination_data = list(
names = french_cities$name[1:10],
positions = positions
),
origin_data = list(
names = french_cities$name[1:10],

blvim 13

positions = positions
)
)
ggplot2::autoplot(all_flows, with_names = TRUE) +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90))
ggplot2::autoplot(all_flows, with_names = TRUE, normalisation = "none") +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90))
ggplot2::autoplot(all_flows,

flow = "destination”, with_names = TRUE,
gmin = @, gmax = 1
) +

ggplot2: :theme(axis.text.x = ggplot2::element_text(angle = 90))
ggplot2::autoplot(all_flows,
flow = "destination"”, with_positions = TRUE,
gmin = @, gmax = 1
) + ggplot2::scale_size_continuous(range = c(@, 6)) +
ggplot2::coord_sf(crs = "epsg:4326")
ggplot2: :autoplot(all_flows,

flow = "destination”, with_positions = TRUE,
gmin = @, gmax = 1,
cut_off = 1.1

) +

ggplot2::coord_sf(crs = "epsg:4326")
ggplot2::autoplot(all_flows,

flow = "destination”, with_positions = TRUE,

with_names = TRUE,

with_labels = TRUE,

gmin = @, gmax = 1,

cut_off = 1.1
)+

ggplot2::coord_sf(crs = "epsg:4326")

blvim Compute an equilibrium solution of the Boltzmann-Lotka-Volterra
model

Description

This function computes flows between origin locations and destination locations at an equilibrium
solution of A. Wilson’s Boltzmann-Lotka-Volterra (BLV) interaction model. The BLV dynamic
model is initialised with the production constraints at the origin locations and the initial values of
the the attractiveness of destination locations. Iterations update the attractivenesses according the
received flows.

Usage

blvim(
costs,
X,

14

alpha,

beta,

z,

bipartite = TRUE,
origin_data = NULL,
destination_data = NULL,
epsilon = 0.01,

iter_max = 50000,
conv_check = 100,
precision = 1e-06,

blvim

quadratic

Arguments
costs
X
alpha
beta
z
bipartite

origin_data

FALSE

a cost matrix

a vector of production constraints

the return to scale parameter

the inverse cost scale parameter

a vector of initial destination attractivenesses

when TRUE (default value), the origin and destination locations are considered to
be distinct. When FALSE, a single set of locations plays the both roles. This has
only consequences in functions specific to this latter case such as terminals().

NULL or a list of additional data about the origin locations (see details)

destination_data

epsilon
iter_max
conv_check
precision

quadratic

Details

NULL or a list of additional data about the destination locations (see details)
the update intensity

the maximal number of steps of the BLV dynamic

number of iterations between to convergence test

convergence threshold

selects the update rule, see details.

In a step of the BLV model, flows are computed according to the production constrained entropy
maximising model proposed by A. Wilson and implemented in static_blvim(). Then the flows
received at a destination are computed as follows

Vi, Dj=_ Y
i=1

for destination j. This enables updating the attractivenesses by making them closer to the received
flows, i.e. trying to reduce |D; — Z;|.

A. Wilson and co-authors proposed two different update strategies:

blvim 15

1. The original model proposed in Harris & Wilson (1978) updates the Z; as follows
t+1 __ 7t t t
Z;7 =Z;+eDj - Zj)
2. In Wilson (2008), the update is given by

t+1 t t t t
Z;" =Zj+e(Dj~Z;)Z

j

In both cases, € is given by the epsilon parameter. It should be smaller than 1. The first update
is used when the quadratic parameter is FALSE which is the default value. The second update is
used when quadratic is TRUE.

Updates are performed until convergence or for a maximum of iter_max iterations. Convergence
is checked every conv_check iterations. The algorithm is considered to have converged if

1240 = Z8 < 812]| +0),

where J is given by the precision parameter.

Value

an object of class sim(and sim_blvim) for spatial interaction model that contains the matrix of flows
between the origin and the destination locations as well as the final attractivenesses computed by
the model.

Location data

While models in this package do not use location data beyond X and Z, additional data can be stored
and used when analysing spatial interaction models.

Origin and destination location names:

Spatial interaction models can store names for origin and destination locations, using origin_names<-()
and destination_names<-(). Names are taken by default from names of the cost matrix costs.

More precisely, rownames(costs) is used for origin location names and colnames(costs) for
destination location names.

Origin and destination location positions:

Spatial interaction models can store the positions of the origin and destination locations, using
origin_positions<-() and destination_positions<-().

Specifying location data:

In addition to the functions mentioned above, location data can be specified directly using the
origin_data and destination_data parameters. Data are given by a list whose components
are not interpreted excepted the following ones:

* names is used to specify location names and its content has to follow the restrictions docu-
mented in origin_names<-() and destination_names<-()

* positions is used to specify location positions and its content has to follow the restrictions
documented in origin_positions<-() and destination_positions<-()

16 c.sim_list

References

Harris, B., & Wilson, A. G. (1978). "Equilibrium Values and Dynamics of Attractiveness Terms in
Production-Constrained Spatial-Interaction Models", Environment and Planning A: Economy and
Space, 10(4), 371-388. do0i:10.1068/a100371

Wilson, A. (2008), "Boltzmann, Lotka and Volterra and spatial structural evolution: an integrated
methodology for some dynamical systems", J. R. Soc. Interface.5865-871 doi:10.1098/rsif.2007.1288

See Also

grid_blvim() for systematic exploration of parameter influence, static_blvim() for the static
model.

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)

attractiveness <- log(french_cities$areal[1:10])

rescale to production

attractiveness <- attractiveness / sum(attractiveness) * sum(production)
flows <- blvim(distances, production, 1.5, 1 / 250, attractiveness)
flows

c.sim_list Combine multiple sim_list objects into a single one

Description

This function combines the sim_list and sim objects use as arguments in a single sim_list,
provided they are compatible. Compatibility is defined as in sim_list(): all spatial interaction
models must share the same costs as well as the same origin and destination data.

Usage
S3 method for class 'sim_list'
c(...)
Arguments
sim_list and sim to be concatenated.
Value

A combined object of class sim_list.

https://doi.org/10.1068/a100371
https://doi.org/10.1098/rsif.2007.1288

COSts

Examples

distances <- french_cities_distances[1:15, 1:15] / 1000 ## convert to km
production <- log(french_cities$population[1:15])
attractiveness <- log(french_cities$areal[1:15])
all_flows_log <- grid_blvim(
distances, production, c(1.1, 1.25, 1.5),
c(1, 2, 3, 4) / 500, attractiveness,
epsilon = 0.1,
bipartite = FALSE,
iter_max = 750
)
production <- rep(1, 15)
attractiveness <- rep(1, 15)
all_flows_unit <- grid_blvim(
distances, production, c(1.1, 1.25, 1.5),
c(1, 2, 3, 4) / 500, attractiveness,
epsilon = 0.1,
bipartite = FALSE,
iter_max = 750
)
all_flows <- c(all_flows_log, all_flows_unit)

17

costs Extract the cost matrix used to compute this model

Description

Extract the cost matrix used to compute this model

Usage
costs(sim, ...)
Arguments
sim a spatial interaction model with a cost matrix
additional parameters
Value

the cost matrix

Examples

positions <- matrix(rnorm(1@ * 2), ncol = 2)

distances <- as.matrix(dist(positions))

production <- rep(1, 10)

attractiveness <- c(2, rep(1, 9))

model <- static_blvim(distances, production, 1.5, 1, attractiveness)

18 costs.sim_list

costs(model) ## should be equal to distances above
all.equal(costs(model), distances)

costs.sim_list Extract the common cost matrix from a collection of spatial interaction
models

Description

Extract the common cost matrix from a collection of spatial interaction models

Usage
S3 method for class 'sim_list'
costs(sim, ...)
Arguments
sim a collection of spatial interaction models, an object of class sim_list

additional parameters

Value

the cost matrix

See Also

costs(), grid_blvim()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal[1:10])
all_flows <- grid_blvim(
distances, production, c(1.25, 1.5),
c(1, 2, 3, 4) / 500, attractiveness
)
should be TRUE
identical(distances, costs(all_flows))

destination_flow 19

destination_flow Compute the flows incoming at each destination location

Description

Compute the flows incoming at each destination location

Usage
destination_flow(sim, ...)
Arguments
sim a spatial interaction model object
additional parameters
Value

a vector of flows incoming at destination locations

See Also

production(), attractiveness()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- log(french_cities$population[1:10])

attractiveness <- log(french_cities$areal[1:10])

model <- static_blvim(distances, production, 1.5, 1 / 250, attractiveness)
destination_flow(model)

should be different from the attractiveness as the model is static
attractiveness(model)

destination_names Names of destination locations in a spatial interaction model

Description

Functions to get or set the names of the destination locations in a spatial interaction model (or in a
collection of spatial interaction models).

Usage

destination_names(sim)

destination_names(sim) <- value

20 destination_positions

Arguments
sim a spatial interaction model object (an object of class sim) or a collection of
spatial interaction models (an object of class sim_list)
value a character vector of length equal to the number of destination locations, or NULL
(vectors of adapted length are converted to character vectors)
Value

for destination_names NULL or a character vector with one name per destination locations in the
model. for destination_names<- the modified sim object or sim_list object.

See Also

location_names(), origin_names()

Examples

distances <- french_cities_distances[1:10, 1:10]

production <- rep(1, 10)

attractiveness <- rep(1, 10)

the row/column names of the cost matrix are used for the location

model <- static_blvim(distances, production, 1.5, 1 / 250000, attractiveness)
destination_names(model)

destination_names(model) <- french_cities$name[1:10]

destination_names(model)

destination_positions positions of destination locations in a spatial interaction model

Description

Functions to get or set the positions of the destination locations in a spatial interaction model.

Usage

destination_positions(sim)

destination_positions(sim) <- value

Arguments
sim a spatial interaction model object
value a matrix with as many rows as the number of destination locations and 2 or 3

columns, or NULL

diversity 21

Value

for destination_positions NULL or coordinate matrix for the destination locations. for destination_positions<-
the modified sim object

Positions

Location positions are given by numeric matrices with 2 or 3 columns. The first two columns are
assumed to be geographical coordinates while the 3rd column can be used for instance to store
altitude. Coordinates are interpreted as is in graphical representations (see autoplot.sim()). They
are not matched to the costs as those can be derived from complex movement models and other non
purely geographic considerations.

See Also

location_positions(), origin_positions()

Examples

positions <- as.matrix(french_cities[1:10, c("th_longitude”, "th_latitude”)])
distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)

attractiveness <- rep(1, 10)

model <- static_blvim(distances, production, 1.5, 1, attractiveness)
destination_positions(model) <- positions

destination_positions(model)

diversity Compute the diversity of the destination locations in a spatial interac-
tion model

Description

This function computes the diversity of the destination locations according to different definitions
that all aim at estimating a number of active destinations, i.e., the number of destination locations
that receive a "significant fraction" of the total flow or that are attractive enough. The function
applies also to a collection of spatial interaction models as represented by a sim_list.

Usage
diversity(
sim,
definition = c("shannon”", "renyi”, "ND", "RW"),
order = 1L,
activity = c("destination”, "attractiveness"),
)

S3 method for class 'sim'

22 diversity

diversity(
sim,
definition = c("shannon”, "renyi”, "ND", "RW"),
order = 1L,
activity = c("destination”, "attractiveness"),
)
S3 method for class 'sim_list'
diversity(
sim,
definition = c("shannon”, "renyi”, "ND", "RW"),
order = 1L,
activity = c("destination”, "attractiveness"),
)
Arguments
sim a spatial interaction model object (an object of class sim) or a collection of
spatial interaction models (an object of class sim_list)
definition diversity definition "shannon” (default), "renyi” (see details) or a definition
supported by terminals()
order order of the Rényi entropy, used only when definition="renyi”
activity specifies whether the diversity is computed based on the destination flows (for
activity="destination"”, the default case) or on the attractivenesses (for activity="attractiveness
additional parameters
Details

In general, the activity of a destination location is measured by its incoming flow a.k.a. its destina-
tion flow. If Y is a flow matrix, the destination flows are computed as follows

Vi, D;j =YY
i=1

for each destination j (see destination_flow()). This is the default calculation mode in this
function (when the parameter activity is set to "destination”).

For dynamic models produced by blvim(), the destination attractivenesses can be also considered
as activity measures. When convergence occurs, the values are identical, but prior convergence
they can be quite different. When activity is set to "attractiveness”, the diversity mea-
sures are computed using the same formula as below but with D; replaced by Z; (as given by
attractiveness()).

To compute their diversity using entropy based definitions, the activities are first normalised to be
interpreted as a probability distribution over the destination locations. For instance for destination
flows, we use

diversity 23

D.
Vi, pj=—=mt—.
.]) pj 2’221 Dk;

The most classic diversity index is given by the exponential of Shannon’s entropy (parameter
definition="shannon"). This gives

diversity(p, Shannon) = exp (Z i In pk> .
k=1

Rényi generalized entropy can be used to define a collection of other diversity metrics. The Rényi
diversity of order -y is the exponential of the Rényi entropy of order of the p distribution, that is

1 n
L T y
diversity(p, Rényi, v) = exp (1 — In (; pk>> .

This is defined directly only for v €]0, 1[U]1, oo[, but extensions to the limit case are straightfor-
ward:

* v = 1is Shannon’s entropy/diversity

* v = 0 is the max-entropy, here In(n) and thus the corresponding diversity is the number of
locations

1
maxy, pk

* v = o0 is the min-entropy, here — log maxy, pi and thhe corresponding diversity is

The definition parameter specifies the diversity used for calculation. The default value is shannon
for Shannon’s entropy (in this case the order parameter is not used). Using renyi gives access to
all Rényi diversities as specified by the order parameter. Large values of order tend to generate
underflows in the calculation that will trigger the use of the min-entropy instead of the exact Rényi
entropy.

In addition to those entropy based definition, terminal based calculations are also provided. Using
any definition supported by the terminals() function, the diversity is the number of terminals
identified. Notice this applies only to interaction models in which origin and destination locations
are identical, i.e. when the model is not bipartite. In addition, the notion of terminals is based on
destination flows and cannot be used with activities based on attractivenesses. definition can be:

* "ND" for the original Nystuen and Dacey definition

* "RW" for the variant by Rihll and Wilson

See terminals() for details.

When applied to a collection of spatial interaction models (an object of class sim_list) the function
uses the same parameters (definition and order) for all models and returns a vector of diversities.
This is completely equivalent to grid_diversity().

Value

the diversity of destination flows (one value per spatial interaction model)

24 flows

References

Jost, L. (2006), "Entropy and diversity", Oikos, 113: 363-375. doi:10.1111/5.2006.00301299.14714.x

See Also

destination_flow(), attractiveness(), terminals(), sim_is_bipartite()

Examples

distances <- french_cities_distances[1:15, 1:15] / 1000 ## convert to km

production <- log(french_cities$population[1:15])

attractiveness <- rep(1, 15)

flows <- blvim(distances, production, 1.5, 1 / 100, attractiveness,
bipartite = FALSE

)

diversity(flows)

sim_converged(flows)

should be identical because of convergence

diversity(flows, activity = "attractiveness")

diversity(flows, "renyi”, 2)

diversity(flows, "RW")

flows Extract the flow matrix from a spatial interaction model object

Description

Extract the flow matrix from a spatial interaction model object

Usage
flows(sim, ...)
Arguments
sim a spatial interaction model object
additional parameters
Value

a matrix of flows between origin locations and destination locations

See Also

flows_df () for a data frame version of the flows, destination_flow() for destination flows.

https://doi.org/10.1111/j.2006.0030-1299.14714.x

flows_df 25

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- log(french_cities$population[1:10])

attractiveness <- log(french_cities$areal[1:10])

rescale to production

attractiveness <- attractiveness / sum(attractiveness) * sum(production)
model <- static_blvim(distances, production, 1.5, 1 / 500, attractiveness)

flows(model)
flows_df Extract the flow matrix from a spatial interaction model object in data
frame format
Description

Extract the flow matrix from a spatial interaction model object in data frame format

Usage
flows_df (sim, ...)

Arguments
sim a spatial interaction model object
additional parameters (not used currently)
Details

This function extracts the flow matrix in a long format. Each row contains the flow between an
origin location and a destination location. The resulting data frame has at least three columns:

» origin_idx: identifies the origin location by its index from 1 to the number of origin locations

* destination_idx: identifies the destination location by its index from 1 to the number of
destination locations

» flow: the flow between the corresponding location
In addition, if location information is available, it will be included in the data frame as follows:

* location names are included using columns origin_name or destination_name

* positions are included using 2 or 3 columns (per location type, origin or destination) de-
pending on the number of dimensions used for the location. The names of the columns are
by default origin_x, origin_y and origin_z (and equivalent names for destination loca-
tion) unless coordinate names are specified in the location positions. In this latter case, the
names are prefixed by origin_ or destination_. For instance, if the destination location
position coordinates are named "longitude” and "latitude”, the resulting columns will be
destination_longitude and destination_latitude.

26 fortity.sim

Value

a data frame of flows between origin locations and destination locations with additional content if
available (see Details).

See Also

location_positions(), location_names(), flows()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- log(french_cities$population[1:10])
attractiveness <- log(french_cities$areal[1:10])
rescale to production
attractiveness <- attractiveness / sum(attractiveness) * sum(production)
simple case (no positions and default names)
model <- static_blvim(distances, production, 1.5, 1 / 500, attractiveness)
head(flows_df (model))
with location data
positions <- as.matrix(french_cities[1:10, c("th_longitude”, "th_latitude")])
model <- static_blvim(distances, production, 1.5, 1 / 500, attractiveness,
origin_data = list(positions = positions),
destination_data = list(positions = positions)
)
head (flows_df (model))
with names
origin_names(model) <- french_cities$name[1:10]
destination_names(model) <- french_cities$name[1:10]
head(flows_df (model))

fortify.sim Turn a spatial interaction model into a data frame

Description

This function extracts from a spatial interaction model different types of data frame that can be
used to produce graphical representations. autoplot.sim() leverages this function to produce its
graphical representations.

Usage
S3 method for class 'sim'
fortify(
model,
data,
flows = c("full”, "destination”, "attractiveness”),

with_names = FALSE,
with_positions = FALSE,

fortity.sim 27

cut_off = 100 * .Machine$double.eps”0.5,

)
Arguments
model a spatial interaction model object
data not used
flows "full” (default), "destination” or "attractiveness”, see details.
with_names specifies whether the extracted data frame includes location names (FALSE by
default)
with_positions specifies whether the extracted data frame is based on location positions (FALSE
by default)
cut_off cut off limit for inclusion of a flow row in the final data frame.
additional parameters, not used currently
Details

The data frame produced by the method depends on the values of flows and with_positions.
The general principal is to have one row per flow, either a single flow from an origin location to a
destination location, or an aggregated flow to a destination location. Flows are stored in one column
of the data frame, while the other columns are used to identify origin and destination.

If with_position is FALSE (default value), data frames are simple. Depending on flows, the
function extracts different data frames:

e "full": this is the default case for which the full flow matrix is extracted. The data frame has
three variables:
— origin: identifies the origin location by its index from 1 to the number of origin locations
— destination: identifies the destination location by its index from 1 to the number of
destination locations
— flow: the flow between the corresponding location It is recommend to use flows_df ()
for more control over the extraction outside of simple graphical representations.

e "destination”: the data frame has only two or three columns:
— destination: identifies the destination location by its index from 1 to the number of
destination locations
— flow: the incoming flows (see destination_flow())
— name: the name of the destination location if with_names is TRUE
e "attractiveness": the data frame has also two ot three columns, destination and name as

in the previous case and attractiveness which contains the attractivenesses of the destina-
tions (see attractiveness()).

When the with_positions parameter is TRUE, the location positions (location_positions()) are
used to produce more "geographically informed" extractions. Notice that if no positions are known
for the locations, the use of with_positions = TRUE is an error. Depending on flows we have the
following representations:

28

fortity.sim

e "full": this is the default case for which the full flow matrix is extracted. Positions for both

origin and destination locations are needed. The data frame contains five columns:

— the first two columns are used for the coordinates of the origin locations (see below for
the names of the columns)

— xend and yend are used for the coordinates of the destination locations

— flow is used for the flows

"destination” and "attractiveness” produce both a data frame with three or four columns.
As when with_positions is FALSE, one column is dedicated either to the incoming flows
(destination_flow()) for flows="destination” (the name of the column is destination)
or to the attractivenesses (attractiveness()), in which case its name is attractiveness.
The other two columns are used for the positions of the destination locations. Their names are
the names of the columns of the positions (colnames(destination_location(object))) or
"x" and "y", when such names are not specified. If with_names is TRUE, a name column is
included and contains the names of the destination locations.

In the position based data frames, rows are excluded from the returned data frames when the flow
they represent are small, i.e. when they are smaller than the cut_off value.

Value

a data frame, see details

See Also

autoplot.sim(), flows_df ()

Examples

positions <- matrix(rnorm(1@ * 2), ncol = 2)
colnames(positions) <- c("X", "Y")

distances <- as.matrix(dist(positions))

production <- rep(1, 10)

attractiveness <- c(2, rep(1, 9))

flows <- blvim(distances, production, 1.5, 4, attractiveness,

)

origin_data =

list(names = LETTERS[1:10], positions = positions),
destination_data =

list(names = LETTERS[1:10], positions = positions)

ggplot2: :fortify(flows)

ggplot2::fortify(flows, flows = "destination")

ggplot2::fortify(flows, flows = "attractiveness")

positions

ggplot2::fortify(flows, flows = "attractiveness”, with_positions = TRUE)
names and positions

ggplot2::fortify(flows,

)

flows = "destination”, with_positions = TRUE,
with_names = TRUE

ggplot2::fortify(flows, with_positions = TRUE, cut_off = 0.1)

fortity.sim_list

29

fortify.sim_list

Turn a collection of spatial interaction models into a data frame

Description

This function extracts from a collection of spatial interaction models (represented by a sim_list) a
data frame in a long format, with one flow per row. This can be seen a collection oriented version of
fortify.sim(). The resulting data frame is used by autoplot.sim_list() to produce summary

graphics.
Usage
S3 method for class 'sim_list'
fortify(
model,
data,
flows = c("full”, "destination”, "attractiveness"),
with_names = FALSE,
normalisation = c("none”, "origin”, "full"),
)
Arguments
model a collection of spatial interaction models, a sim_list
data not used
flows "full"” (default), "destination” or "attractiveness”, see details.

with_names

specifies whether the extracted data frame includes location names (FALSE by
default), see details.

normalisation when flows="full", the flows can be reported without normalisation (normalisation="none",
the default value) or they can be normalised, either to sum to one for each origin
location (normalisation="origin") or to sum to one globally (normalisation="full").
additional parameters, not used currently
Details

The data frame produced by the method depends on the values of flows and to a lesser extent on
the value of with_names. In all cases, the data frame has a configuration column that identify
from which spatial interaction model the other values have been extracted: this is the index of the
model in the original sim_list. Depending on flows we have the following representations:

e if flows="full": this is the default case for which the full flow matrix of each spatial inter-
action model is extracted. The data frame contains 4 columns:

— origin_idx: identifies the origin location by its index from 1 to the number of origin
locations

30 fortify.sim_list

— destination_idx: identifies the destination location by its index from 1 to the number
of destination locations

— flow: the flow between the corresponding location. By default, flows are normalised
by origin location (when normalisation="origin"): the total flows originating from
each origin location is normalised to 1. If normalisation="full", this normalisation is
global: the sum of all flows in each model is normalised to 1. If normalisation="none"
flows are not normalised.

— configuration: the spatial interaction model index
e if flows="destination"” or flows="attractiveness”, the data frame contains 3 or 4 columns:

— destination: identifies the destination location by its index from 1 to the number of
destination locations

— flow or attractiveness depending on the value of "flows": this contains either the
destination_flow() or the attractiveness() of the destination location

— configuration: the spatial interaction model index

— name: the destination location names if with_names=TRUE (the column is not present if
with_names=FALSE)

The normalisation operated when flows="full" can improve the readability of the graphical rep-
resentation proposed in autoplot.sim_list() when the production constraints differ significantly
from one origin location to another.

Value

a data frame, see details

See Also

autoplot.sim_list()

Examples

positions <- matrix(rnorm(10 * 2), ncol = 2)

distances <- as.matrix(dist(positions))

production <- rep(1, 10)

attractiveness <- c(2, rep(1, 9))

flows_1 <- blvim(distances, production, 1.5, 1, attractiveness)

flows_2 <- blvim(distances, production, 1.25, 2, attractiveness)
all_flows <- sim_list(list(flows_1, flows_2))
ggplot2::fortify(all_flows) ## somewhat similar to a row bind of sim_df results
ggplot2::fortify(all_flows, flows = "destination")
destination_names(all_flows) <- letters[1:10]
ggplot2::fortify(all_flows, flows = "attractiveness”, with_names = TRUE)

french_cities 31

french_cities French cities

Description

French cities with 50,000 inhabitants or more.

Usage

french_cities

Format
A data.frame with 121 rows and 9 columns

id The INSEE code of the city according to the official geographical code of 2025 (OGC)
name The name of the city

department The code of the department of the city in the OGC (see french_departments)
region The code of the region of the city in the OGC (see french_regions)

population The population of the city in 2022

area Area of the city in squared kilometers

th_latitude The latitude of the of town hall the city (epsg:4326)

th_longitude The longitude of the town hall of the city (epsg:4326)

center_latitude The latitude of the centre of the city (epsg:4326)

center_longitude The longitude of the centre of the city (epsg:4326)

Details

This data set describes all Metropolitan France cities with 50,000 or more inhabitants in 2022,
excluding Corsican cities. It contains 121 cities described by 8 variables. The data frame is
sorted in decreasing population order, making it straightforward to select the most populated cities.
The same order is used for rows and columns in distance matrices french_cities_distances and
french_cities_times.

The population and administrative information was collected from the INSEE open data in Novem-
ber 2025. These data are distributed under the French "Open Licence". Geographical coordinates
and areas have been obtained from the Geo API in November 2025 and are also available under the
French "Open Licence".

Source
INSEE Population census - Main extraction (2022) https://catalogue-donnees.insee.fr/en/
catalogue/recherche/DS_RP_POPULATION_PRINC

INSEE Official Geographical Code (2025) https://www.data.gouv.fr/datasets/code-officiel-geographique-cog/
https://www.data.gouv.fr/api/1/datasets/r/91a95bee-c7c8-45f9-a8aa-f14cc4697545

Geo API (2025) https://geo.api.gouv.fr/

https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
https://geo.api.gouv.fr/
https://catalogue-donnees.insee.fr/en/catalogue/recherche/DS_RP_POPULATION_PRINC
https://catalogue-donnees.insee.fr/en/catalogue/recherche/DS_RP_POPULATION_PRINC
https://www.data.gouv.fr/datasets/code-officiel-geographique-cog/
https://www.data.gouv.fr/api/1/datasets/r/91a95bee-c7c8-45f9-a8aa-f14cc4697545
https://geo.api.gouv.fr/

32 french_cities_distances

See Also

french_departments, french_regions, french_cities_distances and french_cities_times

french_cities_distances
French cities distances

Description

Distances in meters and in minutes between the French cities with at least 50,000 inhabitants
(french_cities).

Usage

french_cities_distances

french_cities_times

Format

matrices with 121 rows and 121 columns

An object of class matrix (inherits from array) with 121 rows and 121 columns.

Details

Both data sets are square matrices of dimension (121, 121). If D is one of the matrix, D[i, j]
is the distance from city of id rownames(D)[i] to city id colnames(D)[j] expressed in meters
(french_cities_distances) or in minutes (french_cities_times). The distance is measured
along the fastest path from i to j on the French road networks as computed using OSRM engine
(see details below). Ids in column and row names can be used to get information on the cities in the
french_cities data set (column id). Rows and columns are sorted in decreasing population order, as
in french_cities. Note that the matrices are not symmetric.

Distance calculation

The distances and durations have been computed using the OSRM engine in version 6.0.0.
Calculations are based on the car profile included in OSRM sources for the 6.0.0 version.

France roads are provided by OpenStreetMap under the Open Data Commons Open Database Li-
cense (ODbL) using the GeoFabrik export dated 2025-11-07T21:20:50Z was used.

Source

Geo API (2025) https://geo.api.gouv.fr/

OpenStreetMap https://www.openstreetmap.org

GeoFabrik https://download.geofabrik.de/europe/france.html
OSRM https://project-osrm.org/

https://project-osrm.org/
https://project-osrm.org/
https://github.com/Project-OSRM/osrm-backend/releases/tag/v6.0.0
https://www.openstreetmap.org
https://opendatacommons.org/licenses/odbl/
https://opendatacommons.org/licenses/odbl/
https://download.geofabrik.de/europe/france.html
https://geo.api.gouv.fr/
https://www.openstreetmap.org
https://download.geofabrik.de/europe/france.html
https://project-osrm.org/

french_departments 33

french_departments French departments

Description

This data set contains the list of all French departments. It can be joined with the french_regions or
the french_cities data set. The data set was extracted from the INSEE open data in November 2025.
These data are distributed under the French "Open Licence".

Usage

french_departments

Format
A data.frame with 101 rows and 3 columns
department The code of the department in the official geographical code of 2025 (OGC)

region The code of the region of the city in the OGC (see french_regions)

name The name of the department

Source
INSEE Official Geographical Code (2025) https://www.data.gouv.fr/datasets/code-officiel-geographique-cog/
https://www.data.gouv.fr/api/1/datasets/r/91a95bee-c7c8-45f9-a8aa-f14cc4697545

See Also

french_cities and french_regions

french_regions French regions

Description

This data set contains the list of all French regions It can be joined with the french_departments or
the french_cities data set. The data set was extracted from the INSEE open data in November 2025.
These data are distributed under the French "Open Licence".

Usage

french_regions

https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
https://www.data.gouv.fr/datasets/code-officiel-geographique-cog/
https://www.data.gouv.fr/api/1/datasets/r/91a95bee-c7c8-45f9-a8aa-f14cc4697545
https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf

34 grid_attractiveness

Format
A data. frame with 18 rows and 2 columns

region The code of the region in the official geographical code of 2025 (OGC)

name The name of the region

Source

INSEE Official Geographical Code (2025) https://www.data.gouv.fr/datasets/code-officiel-geographique-cog/
https://www.data.gouv.fr/api/1/datasets/r/91a95bee-c7c8-45f9-a8aa-f14cc4697545

See Also

french_departments and french_cities

grid_attractiveness Extract all the attractivenesses from a collection of spatial interaction
models

Description

The function extract attractivenesses from all the spatial interaction models of the collection and
returns them in a matrix in which each row corresponds to a model and each column to a destination

location.
Usage
grid_attractiveness(sim_list, ...)
Arguments
sim_list a collection of spatial interaction models, an object of class sim_list
additional parameters for the attractiveness() function
Value

a matrix of attractivenesses at the destination locations

See Also

attractiveness() and grid_blvim()

https://www.data.gouv.fr/datasets/code-officiel-geographique-cog/
https://www.data.gouv.fr/api/1/datasets/r/91a95bee-c7c8-45f9-a8aa-f14cc4697545

grid_autoplot 35

Examples

distances <- french_cities_distances[1:15, 1:15] / 1000 ## convert to km
production <- log(french_cities$population[1:15])
attractiveness <- log(french_cities$areal1:15])
all_flows <- grid_blvim(
distances, production, c(1.1, 1.25, 1.5),
c(1, 2, 3, 4) / 500, attractiveness,
epsilon = 0.1
)
g_Z <- grid_attractiveness(all_flows)
should be 12 rows (3 times 4 parameter pairs) and 15 columns (15
destination locations)
dim(g_2)

grid_autoplot Create a complete ggplot for spatial interaction models in a data frame

Description

This function combines spatial interaction model representations similar to the ones produced by
autoplot.sim() into a single ggplot. It provides an alternative graphical representation to the one
produced by autoplot.sim_df () for collection of spatial interaction models in a sim_df object.

Usage
grid_autoplot(
sim_df,
key,
flows = c("full”, "destination”, "attractiveness”),

with_names = FALSE,

with_positions = FALSE,

show_destination = FALSE,
show_attractiveness = FALSE,
show_production = FALSE,

cut_off = 100 * .Machine$double.eps”*@.5,
adjust_limits = FALSE,

with_labels = FALSE,

max_sims = 25,

fw_params = NULL,

)
Arguments
sim_df a data frame of spatial interaction models, an object of class sim_df
key the wrapping variable which acts as an identifier for spatial interaction models

flows "full"” (default), "destination” or "attractiveness”, see details.

36 grid_autoplot

with_names specifies whether the graphical representation includes location names (FALSE
by default)

with_positions specifies whether the graphical representation is based on location positions
(FALSE by default)

show_destination
specifies whether the position based "full” flow figure includes a representa-
tion of the destination flows (FALSE by default)

show_attractiveness
specifies whether the position based "full” flow figure includes a representa-
tion of the attractivenesses (FALSE by default)

show_production
specifies whether the position based "full” flow figure includes a representa-
tion of the productions (FALSE by default)

cut_off cut off limit for inclusion of a graphical primitive when with_positions =
TRUE. In the full flow matrix representation, segments are removed when their
flow is smaller than the cut off. In the attractiveness or destination representa-
tion, disks are removed when the corresponding value is below the cut off.

adjust_limits if FALSE (default value), the limits of the position based graph are not adjusted
after removing graphical primitives. This eases comparison between graphical
representations with different cut off value. If TRUE, limits are adjusted to the
data using the standard ggplot2 behaviour.

with_labels if FALSE (default value) names are displayed using plain texts. If TRUE, names
are shown using labels.

max_sims the maximum number of spatial interaction models allowed in the sim_df data
frame
fw_params parameters for the ggplot2::facet_wrap call (if non NULL)

additional (named) parameters passed to autoplot.sim()

Details

The rationale of autoplot.sim_df() is to display a single value for each spatial interaction model
(SIM) in the sim_df data frame. On the contrary, this function produces a full graphical represen-
tation of each SIM. It is therefore limited to small collection of SIMs (as specified by the max_sims
parameter which default to 25).

Under the hood, the function uses fortify.sim() and shares code with autoplot.sim() to have
identical representations. It is simply based on facet wrapping facility of ggplot2. In particular
the key parameter is used as the wrapping variable in the call to ggplot2::facet_wrap(). If not
specified, the function generates an id variable which ranges from 1 to the number of SIMs in
the sim_df data frame. If specified, it is evaluated in the context of the data frame and used for
wrapping. Notice that if the expression evaluates to identical values for different SIMs, they will be
drawn on the same panel of the final figure, which may end up with meaningless representations.
Parameters of ggplot2: : facet_wrap() can be set using the fw_params parameter (in a list).

Value

a ggplot object

grid_blvim

Examples

positions <- as.matrix(french_cities[1:10, c("th_longitude”, "th_latitude")])
distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal[1:10])
all_flows <- grid_blvim(distances, production, seq(1.05, 1.35, by = 0.1),
seq(1, 2.5, by = 0.5) / 400,
attractiveness,
bipartite = FALSE,
epsilon = 0.1, iter_max = 1000,
destination_data = list(
names = french_cities$name[1:10],
positions = positions
),
origin_data = list(
names = french_cities$name[1:10],
positions = positions
)

)
all_flows_df <- sim_df(all_flows)

default display: flows as matrices

grid_autoplot(all_flows_df)

custom wrapping variable

grid_autoplot(all_flows_df, paste(alpha, "~", beta))

bar plots

grid_autoplot(all_flows_df, flows = "attractiveness")

with positions

grid_autoplot(all_flows_df, with_positions = TRUE, show_destination = TRUE) +
ggplot2::scale_linewidth_continuous(range = c(@, 1)) +
ggplot2::scale_size_continuous(range = c(@, 2)) +
ggplot2::coord_sf(crs = "epsg:4326")

37

grid_blvim

Compute a collection of Boltzmann-Lotka-Volterra model solutions

Description

This function computes a collection of flows between origin locations and destination locations us-
ing blvim() on a grid of parameters. The flows use the same costs, same production constraints
and same attractivenesses. Each flow is computed using one of all the pairwise combinations be-
tween the alpha values given by alphas and the beta values given by betas. The function returns
an object of class sim_list which contains the resulting flows.

Usage

grid_blvim(
costs,
X,

38 grid_blvim

alphas,

betas,

z,

bipartite = TRUE,
origin_data = NULL,
destination_data = NULL,
epsilon = 0.01,
iter_max = 50000,
conv_check = 100,
precision = 1e-06,
quadratic = FALSE,
progress = FALSE

)
Arguments

costs a cost matrix

X a vector of production constraints

alphas a vector of return to scale parameters

betas a vector of cost inverse scale parameters

z a vector of initial destination attractivenesses

bipartite when TRUE (default value), the origin and destination locations are considered to
be distinct. When FALSE, a single set of locations plays the both roles. This has
only consequences in functions specific to this latter case such as terminals().

origin_data NULL or a list of additional data about the origin locations (see details)

destination_data
NULL or a list of additional data about the destination locations (see details)

epsilon the update intensity

iter_max the maximal number of steps of the BLV dynamic

conv_check number of iterations between to convergence test

precision convergence threshold

quadratic selects the update rule, see details.

progress if TRUE, a progress bar is shown during the calculation (defaults to FALSE)
Value

an object of class sim_list

Location data

While models in this package do not use location data beyond X and Z, additional data can be stored
and used when analysing spatial interaction models.

Origin and destination location names:

Spatial interaction models can store names for origin and destination locations, using origin_names<-()
and destination_names<-(). Names are taken by default from names of the cost matrix costs.

grid_destination_flow 39

More precisely, rownames(costs) is used for origin location names and colnames(costs) for
destination location names.

Origin and destination location positions:

Spatial interaction models can store the positions of the origin and destination locations, using
origin_positions<-() and destination_positions<-().

Specifying location data:

In addition to the functions mentioned above, location data can be specified directly using the
origin_data and destination_data parameters. Data are given by a list whose components
are not interpreted excepted the following ones:

* names is used to specify location names and its content has to follow the restrictions docu-
mented in origin_names<-() and destination_names<-()

* positions is used to specify location positions and its content has to follow the restrictions
documented in origin_positions<-() and destination_positions<-()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal1:10])
all_flows <- grid_blvim(
distances, production, c(1.25, 1.5),
c(1, 2, 3, 4) / 500, attractiveness
)
all_flows
length(all_flows)
all_flows[[2]1]

grid_destination_flow Extract all the destination flows from a collection of spatial interaction
models

Description

The function extract destination flows from all the spatial interaction models of the collection and
returns them in a matrix in which each row corresponds to a model and each column to a destination

location.
Usage
grid_destination_flow(sim_list, ...)
Arguments
sim_list a collection of spatial interaction models, an object of class sim_list

additional parameters for the destination_flow() function

40 grid_diversity

Value

a matrix of destination flows at the destination locations

See Also

destination_flow() and grid_blvim()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal[1:10])
all_flows <- grid_blvim(
distances, production, c(1.1, 1.25, 1.5),
c(1, 2, 3, 4) / 500, attractiveness,
epsilon = 0.1
)
g_df <- grid_destination_flow(all_flows)
should be 12 rows (3 times 4 parameter pairs) and 10 columns (10
destination locations)
dim(g_df)

grid_diversity Compute diversities for a collection of spatial interaction models

Description

The function computes for each spatial interaction model of its sim_1ist parameter the diversity()
of the corresponding destination flows and returns the values as a vector. The type of diversity and
the associated parameters are identical for all models.

Usage
grid_diversity(
sim,
definition = c("shannon”, "renyi”, "ND", "RW"),
order = 1L,
activity = c("destination”, "attractiveness"),
)
Arguments
sim a collection of spatial interaction models, an object of class sim_list
definition diversity definition "shannon” (default), "renyi” (see details) or a definition

supported by terminals()

order order of the Rényi entropy, used only when definition="renyi”

grid_is_terminal 41

activity specifies whether the diversity is computed based on the destination flows (for
activity="destination"”, the default case) or on the attractivenesses (for activity="attractiveness

additional parameters

Details

See diversity() for the definition of the diversities. Notice that diversity() is generic and can
be applied directly to sim_list objects. The current function is provided to be explicit in R code
about what is a unique model and what is a collection of models (using function names that start
with "grid_")

Value

a vector of diversities, one per spatial interaction model

See Also

diversity() and grid_blvim()

Examples

distances <- french_cities_distances[1:15, 1:15] / 1000 ## convert to km
production <- log(french_cities$population[1:15])
attractiveness <- log(french_cities$areal[1:15])
all_flows <- grid_blvim(

distances, production, c(1.1, 1.25, 1.5),

c(1, 2, 3, 4) / 500, attractiveness,

epsilon = 0.1,

bipartite = FALSE
)
diversities <- grid_diversity(all_flows)
diversities ## should be a length 12 vector
grid_diversity(all_flows, "renyi"”, 3)

grid_is_terminal Extract all terminal status from a collection of spatial interaction mod-
els

Description

The function extract terminal status from all the spatial interaction models of the collection and
returns them in a matrix in which each row corresponds to a model and each column to a destination
location. The value at row i and column j is TRUE if destination j is a terminal in model i. This
function applies only to non bipartite models.

Usage

grid_is_terminal(sim_list, definition = c("ND", "RW"), ...)

42 grid_sim_converged
Arguments
sim_list a collection of non bipartite spatial interaction models, an object of class sim_list
definition terminal definition, either "ND" (for Nystuen & Dacey, default) or "RW" (for
Rihll & Wilson), see details.
additional parameters for the is_terminal () function
Details

See terminals() for the definition of terminal locations.

Value

a matrix of terminal status at the destination locations

See Also

is_terminal() and grid_blvim()

Examples

di
pr
at
al

)

g_
HH
#H
di

stances <- french_cities_distances[1:15, 1:15] / 1000 ## convert to km
oduction <- log(french_cities$population[1:15])

tractiveness <- log(french_cities$areal[1:15])

1_flows <- grid_blvim(

distances, production, c(1.1, 1.25, 1.5),

c(1, 2, 3, 4) / 500, attractiveness,

epsilon = 0.1,

bipartite = FALSE

df <- grid_is_terminal(all_flows)

should be 12 rows (3 times 4 parameter pairs) and 15 columns (15
destination locations)

m(g_df)

grid_sim_converged Reports the convergence statuses of a collection of spatial interaction

models

Description

The function reports for each spatial interaction model of its sim_list parameter its convergence
status, as defined in sim_converged().

Usage

grid_sim_converged(sim, ...)

grid_sim_iterations 43

Arguments
sim a collection of spatial interaction models, an object of class sim_list
additional parameters
Details

Notice that sim_converged() is generic and can be applied directly to sim_list objects. The
current function is provided to be explicit in R code about what is a unique model and what is a
collection of models (using function names that start with "grid_")

Value

a vector of convergence status, one per spatial interaction model

See Also

sim_converged(), grid_sim_iterations() and grid_blvim()

Examples

distances <- french_cities_distances[1:15, 1:15] / 1000 ## convert to km
production <- log(french_cities$population[1:15])
attractiveness <- log(french_cities$areal[1:15])
all_flows <- grid_blvim(
distances, production, c(1.1, 1.25, 1.5),
c(1, 2, 3, 4) / 500, attractiveness,
epsilon = 0.1,
bipartite = FALSE,
iter_max = 750
)

grid_sim_converged(all_flows)

grid_sim_iterations Returns the number of iterations used to produce of a collection of
spatial interaction models

Description

The function reports for each spatial interaction model of its sim_list parameter the number of
iterations used to produce it (see sim_iterations())

Usage
grid_sim_iterations(sim, ...)
Arguments
sim a collection of spatial interaction models, an object of class sim_list

additional parameters

44 grid_var_autoplot

Details

Notice that sim_iterations() is generic and can be applied directly to sim_list objects. The
current function is provided to be explicit in R code about what is a unique model and what is a
collection of models (using function names that start with "grid_")

Value

a vector of numbers of iteration, one per spatial interaction model

See Also

sim_iterations(), grid_sim_converged() and grid_blvim()

Examples

distances <- french_cities_distances[1:15, 1:15] / 1000 ## convert to km
production <- log(french_cities$population[1:15])
attractiveness <- log(french_cities$areal[1:15])
all_flows <- grid_blvim(
distances, production, c(1.1, 1.25, 1.5),
c(1, 2, 3, 4) / 500, attractiveness,
epsilon = 0.1,
bipartite = FALSE,
iter_max = 750
)

grid_sim_iterations(all_flows)

grid_var_autoplot Create a complete variability plot for spatial interaction models in a
data frame

Description

This function combines spatial variability interaction model representations similar to the ones pro-
duced by autoplot.sim_list() into a single ggplot. It provides an alternative graphical repre-
sentation to the one produced by autoplot.sim_df () and by grid_autoplot() for collection of
spatial interaction models in a sim_df object.

Usage
grid_var_autoplot(
sim_df,
key,
flows = c("full”, "destination”, "attractiveness”),

with_names = FALSE,

with_positions = FALSE,

cut_off = 100 * .Machine$double.eps”*@.5,
adjust_limits = FALSE,

grid_var_autoplot 45

with_labels = FALSE,

gmin = 0.05,
gmax = 0.95,
normalisation = c("origin”, "full”, "none"),

fw_params = NULL,

)
Arguments

sim_df a data frame of spatial interaction models, an object of class sim_df

key the wrapping variable which acts as group identifier for spatial interaction mod-
els

flows "full"” (default), "destination” or "attractiveness”, see details.

with_names specifies whether the graphical representation includes location names (FALSE
by default)

with_positions specifies whether the graphical representation is based on location positions
(FALSE by default)

cut_off cut off limit for inclusion of a graphical primitive when with_positions =

TRUE. In the attractiveness or destination representation, circles are removed
when the corresponding upper quantile value is below the cut off.

adjust_limits if FALSE (default value), the limits of the position based graph are not adjusted
after removing graphical primitives. This eases comparison between graphical
representations with different cut off value. If TRUE, limits are adjusted to the
data using the standard ggplot2 behaviour.

with_labels if FALSE (default value) names are displayed using plain texts. If TRUE, names
are shown using labels.

gmin lower quantile, see details (default: 0.05)
gmax upper quantile, see details (default: 0.95)

normalisation when flows="full", the flows can be reported without normalisation (normalisation="none",
the default value) or they can be normalised, either to sum to one for each origin
location (normalisation="origin") or to sum to one globally (normalisation="full").

fw_params parameters for the ggplot2::facet_wrap call (if non NULL)

additional parameters passed to autoplot.sim_list()

Details

The rationale of autoplot.sim_df() is to display a single value for each spatial interaction model
(SIM) in the sim_df data frame. On the contrary, this function produces a graphical representation
of the variability of a partition of the SIMs in the data frame, using autoplot.sim_list() as the
graphical engine.

The key parameter is used to partition the collection of SIMs. It can be any expression which
can be evaluated in the context of the sim_df parameter. The function uses this parameter as the
wrapping variable in a call to ggplot2::facet_wrap(). It also uses it as a way to specific a
partition of the SIMs: each panel of the final figure is essentially the variability graph generated by

46 inverse_cost

autoplot.sim_list() for the subset of the SIMs in sim_df that match the corresponding value of
key.

Parameters of ggplot2: :facet_wrap() can be set using the fw_params parameter (in a list).

Value

a ggplot object

Examples

positions <- as.matrix(french_cities[1:10, c("th_longitude”, "th_latitude”)])
distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal[1:10])
all_flows <- grid_blvim(distances, production, seq(1.05, 1.45, by = 0.1),
seq(1, 3, by = 0.5) / 400,
attractiveness,
bipartite = FALSE,
epsilon = 0.1, iter_max = 1000,
destination_data = list(
names = french_cities$name[1:10],
positions = positions
),
origin_data = list(
names = french_cities$name[1:10],
positions = positions
)
)
all_flows_df <- sim_df(all_flows)
group models by iteration number
grid_var_autoplot(all_flows_df, iterations)
or by convergence status (showing destination)
grid_var_autoplot(all_flows_df, converged,
flow = "destination”,
with_names = TRUE
) + ggplot2::coord_flip()
using positions
grid_var_autoplot(all_flows_df, iterations,

flow = "destination”,
with_positions = TRUE
) +

ggplot2::scale_size_continuous(range = c(@, 3)) +
ggplot2::coord_sf(crs = "epsg:4326")

inverse_cost Extract the inverse cost scale parameter used to compute this model

Description

Extract the inverse cost scale parameter used to compute this model

is_terminal 47

Usage
inverse_cost(sim, ...)
Arguments
sim a spatial interaction model with a inverse cost scale parameter
additional parameters
Value

the inverse cost scale parameter

Examples

positions <- matrix(rnorm(1@ * 2), ncol = 2)

distances <- as.matrix(dist(positions))

production <- rep(1, 10)

attractiveness <- c(2, rep(1, 9))

model <- static_blvim(distances, production, 1.5, 1, attractiveness)
inverse_cost(model) ## should be 1

is_terminal Report whether locations are terminal sites or not

Description

This function returns a logical vector whose length equals the number of locations. The value in
position i is TRUE if location number i is a terminal and FALSE if it is not. For the definition of
terminals, see terminals().

Usage
is_terminal(sim, definition = c(”"ND", "RW"), ...)
Arguments
sim a spatial interaction model object
definition terminal definition, either "ND" (for Nystuen & Dacey, default) or "RW" (for
Rihll & Wilson), see details.
additional parameters
Value

a logical vector with TRUE at the positions of locations that are terminals and FALSE for other loca-
tions.

48 location_names

See Also

terminals()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km

production <- rep(1, 10)

attractiveness <- rep(1, 10)

model <- blvim(distances, production, 1.3, 1 / 500, attractiveness,
bipartite = FALSE

)

destination_names(model) <- french_cities$name[1:10]

is_terminal(model)

dist_times <- french_cities_times[1:10, 1:10]

tmodel <- blvim(dist_times, production, 1.3, 1 / 10000, attractiveness,
bipartite = FALSE

)

destination_names(tmodel) <- french_cities$name[1:10]

is_terminal(tmodel)

location_names Names of origin and destination locations in a spatial interaction
model

Description

Those functions provide low level access to origin and destination local names. It is recommended
touse origin_names() and destination_names() instead of location_names and location_names<-.

Usage

location_names(sim)

location_names(sim) <- value

Arguments
sim a spatial interaction model object (an object of class sim) or a collection of
spatial interaction models (an object of class sim_list)
value a list with two components (see the returned value) or NULL
Value

for location_names NULL or a list with two components: origin for the origin location names
and destination for the destination location names. For location_names<-() the modified sim
object or sim_list object.

location_positions 49

See Also

origin_names(), destination_names()

Examples

distances <- french_cities_distances[1:10, 1:10]
production <- rep(1, 10)
attractiveness <- rep(1, 10)
the row/column names of the cost matrix are used for the location
model <- static_blvim(distances, production, 1.5, 1 / 250000, attractiveness)
location_names(model)
location_names(model) <- NULL
location_names(model)
location_names(model) <- list(
origin = french_cities$name[1:10],
destination = LETTERS[1:10]
)
destination_names(model)
origin_names(model)

location_positions Positions of origin and destination locations in a spatial interaction
model

Description

These functions provide low level access to origin and destination local positions. It is recom-
mended touse origin_positions() and destination_positions() instead of location_positions
and location_positions<-.

Usage

location_positions(sim)

location_positions(sim) <- value

Arguments

sim a spatial interaction model object

value a list with two components (see the returned value) or NULL
Value

for location_positions NULL or a list with two components: origin for the origin location po-
sitions and destination for the destination location positions. For location_positions<-() the
modified sim object.

50 median.sim_list

Positions

Location positions are given by numeric matrices with 2 or 3 columns. The first two columns are
assumed to be geographical coordinates while the 3rd column can be used for instance to store
altitude. Coordinates are interpreted as is in graphical representations (see autoplot.sim()). They
are not matched to the costs as those can be derived from complex movement models and other non
purely geographic considerations.

See Also

origin_positions(), destination_positions()

Examples

positions <- as.matrix(french_cities[1:10, c("th_longitude”, "th_latitude")])
distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- rep(1, 10)
model <- static_blvim(distances, production, 1.5, 1 / 250, attractiveness)
No positions
location_positions(model) <- list(
origin = positions,
destination = positions
)
destination_positions(model)
origin_positions(model)

median.sim_list Compute the "median" of a collection of spatial interaction models

Description

This function computes all pairwise distances between spatial interaction models (SIMs) of its
X parameter, using sim_distance() with the specified distance parameters. Then it returns the
"median" of the collection defined as the SIM that is in average the closest to all the other SIMs.
Tie breaking uses the order of the SIMs in the collection.

Usage
S3 method for class 'sim_list'
median(
X7
na.rm = FALSE,
flows = c("full”, "destination”, "attractiveness”),

method = c("euclidean”),
return_distances = FALSE,

median.sim_list 51

Arguments
X a collection of spatial interaction models, an object of class sim_list
na.rm not used
flows "full"” (default), "destination” or "attractiveness”, see details.
method the distance measure to be used. Currently only "euclidean” is supported

return_distances
should the distances computed to find the median be returned as a distances
attribute of the resulting object? (defaults to FALSE)

additional parameters (not used currently)

Details

As distance calculation can be slow in a large collection of SIMs, the distance object can be returned
as a distances attribute of the median SIM by setting the return_distances parameter to TRUE.
In addition, the returned SIM has always two attributes:

* index gives the index of the mode in the original sim_list

» distortion gives the mean of the distances from the median SIM to all the other SIMs

Value

a spatial interaction model, an object of class sim with additional attributes

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal1:10])
all_flows <- grid_blvim(distances, production, seq(1.05, 1.45, by = 0.1),
seq(1, 3, by = 0.5) / 400,
attractiveness,
bipartite = FALSE,
epsilon = 0.1, iter_max = 1000,
)
all_flows_median <- median(all_flows)
attr(all_flows_median, "index")
attr(all_flows_median, "distortion”)
median(all_flows, flows = "destination”)
median(all_flows, flows = "attractiveness")

52 names<-.sim_df

names<-.sim_df Set the column names of a SIM data frame

Description

Set the column names of a SIM data frame. Renaming the sim_list column is supported and
tracked, but renaming any core column turns the sim_df into a standard data. frame.

Usage

S3 replacement method for class 'sim_df'
names(x) <- value

Arguments
X data frame of spatial interaction models, an object of class sim_df
value unique names for the columns of the data frame

Value

a sim_df data frame if possible, a standard data.frame when this is not possible.

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal1:10])
all_flows <- grid_blvim(distances, production, seq(1.05, 1.45, by = 0.2),
seq(1, 3, by = 0.5) / 400,
attractiveness,
bipartite = FALSE,
epsilon = 0.1, iter_max = 1000,
)
all_flows_df <- sim_df(all_flows)
names(all_flows_df)
names(all_flows_df)[6] <- "my_sim”
names(all_flows_df)
still a sim_df
class(all_flows_df)
names(all_flows_df)[1] <- "return to scale”
names(all_flows_df)
not a sim_df
class(all_flows_df)

nd_graph 53

nd_graph Compute the Nystuen and Dacey graph for a spatial interaction model

Description

This function computes the most important flows in a spatial interaction model according to the
approach outlined by J. D. Nystuen and M. F. Dacey (Nystuen & Dacey, 1961. In this work, a nodal
flow is the largest flow sent from a non terminal location (based on the definition of terminals re-
called in terminals()). The nodal structure is the collection of those flows. They form an oriented
graph that has interesting properties. In particular each weakly connected component contains a
single terminal location which can be seen as the dominant location of the component. Notice that
because nodal flows are based on terminals, this function applies only to the non bipartite setting.

Usage

nd_graph(sim, definition = c(”"ND", "RW"), ...)

S3 method for class 'sim'

nd_graph(sim, definition = c(”"ND", "RW"), ...)
Arguments
sim a spatial interaction model object
definition terminal definition, either "ND" (for Nystuen & Dacey, default) or "RW" (for

Rihll & Wilson), see details.

additional parameters

Details

In practice, the function computes first the terminals and non terminals according to either Nystuen
& Dacey (1961) or Rihll and Wilson (1991). Then it extracts the nodal flows. The result of the
analysis is returned as a data frame with three columns:

e from: the index of the non terminal origin location

* to: the index of destination location of the nodal flow of from

» flow: the value of the nodal flow
An important aspect of the node structure is that is does not contain isolated terminals. If a location

is a terminal but is never the receiver of a nodal flow it will not appear in the collection of nodal
flows. It constitutes a a trivial connected component in itself.

Value

a data frame describing the Nystuen and Dacey graph a.k.a. the nodal structure of a spatial interac-
tion model

54 origin_names

References

Nystuen, J.D. and Dacey, M.F. (1961), "A graph theory interpretation of nodal regions", Papers and
Proceedings of the Regional Science Association 7: 29-42. doi:10.1007/bf01969070

Rihll, T., and Wilson, A. (1991), "Modelling settlement structures in ancient Greece: new ap-
proaches to the polis", In City and Country in the Ancient World, Vol. 3, Edited by J. Rich and A.
Wallace-Hadrill, 58-95. London: Routledge.

See Also

sim_is_bipartite(), is_terminal(), terminals()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km

production <- rep(1, 10)

attractiveness <- rep(1, 10)

model <- blvim(distances, production, 1.3, 1 / 250, attractiveness,
bipartite = FALSE

)

destination_names(model) <- french_cities$name[1:10]

nd_graph(model)

dist_times <- french_cities_times[1:15, 1:15]

tmodel <- blvim(dist_times, rep(1, 15), 1.3, 1 / 5000, rep(1, 15),
bipartite = FALSE

)

destination_names(tmodel) <- french_cities$name[1:15]

terminals(tmodel, definition = "RW")

nd_graph(tmodel, "RW")

origin_names Names of origin locations in a spatial interaction model

Description

Functions to get or set the names of the origin locations in a spatial interaction model (or in a
collection of spatial interaction models).

Usage

origin_names(sim)

origin_names(sim) <- value

Arguments
sim a spatial interaction model object (an object of class sim) or a collection of
spatial interaction models (an object of class sim_list)
value a character vector of length equal to the number of origin locations, or NULL

(vectors of adapted length are converted to character vectors)

https://doi.org/10.1007/bf01969070

origin_positions 55

Value

for origin_names NULL or a character vector with one name per origin locations in the model. for
origin_names<- the modified sim object or sim_list object.

See Also

location_names(), destination_names()

Examples

distances <- french_cities_distances[1:10, 1:10]

production <- rep(1, 10)

attractiveness <- rep(1, 10)

the row/column names of the cost matrix are used for the location

model <- static_blvim(distances, production, 1.5, 1 / 250000, attractiveness)
origin_names(model)

origin_names(model) <- french_cities$name[1:10]

origin_names(model)

origin_positions Positions of origin locations in a spatial interaction model

Description

Functions to get or set the positions of the origin locations in a spatial interaction model.

Usage

origin_positions(sim)

origin_positions(sim) <- value

Arguments
sim a spatial interaction model object
value a matrix with as many rows as the number of origin locations and 2 or 3 columns,
or NULL
Value

fororigin_positions NULL or the coordinate matrix for the origin locations. for origin_positions<-
the modified sim object

Positions

Location positions are given by numeric matrices with 2 or 3 columns. The first two columns are
assumed to be geographical coordinates while the 3rd column can be used for instance to store
altitude. Coordinates are interpreted as is in graphical representations (see autoplot.sim()). They
are not matched to the costs as those can be derived from complex movement models and other non
purely geographic considerations.

56 production

See Also

location_positions(), destination_positions()

Examples

positions <- as.matrix(french_cities[1:10, c("th_longitude”, "th_latitude”)])
distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)

attractiveness <- rep(1, 10)

model <- static_blvim(distances, production, 1.5, 1 / 250, attractiveness)
origin_positions(model) <- positions

origin_positions(model)

production Extract the production constraints from a spatial interaction model
object

Description

Extract the production constraints from a spatial interaction model object

Usage
production(sim, ...)
Arguments
sim a spatial interaction model object
additional parameters
Value

a vector of production constraints at the origin locations

See Also

attractiveness(), destination_flow()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- log(french_cities$population[1:10])

attractiveness <- log(french_cities$areal[1:10])

model <- static_blvim(distances, production, 1.5, 1 / 250, attractiveness)
production(model)

the names of the production vector are set from the distance matrix

we remove them for testing equality
all.equal(as.numeric(production(model)), production)

quantile.sim_list 57

quantile.sim_list Compute quantiles of the flows in a collection of spatial interaction
models

Description

The function computes the specified quantiles for individual or aggregated flows in a collection of
spatial interaction models.

Usage
S3 method for class 'sim_list'
quantile(
X,
flows = c("full”, "destination”, "attractiveness”),
probs = seq(@, 1, 0.25),
normalisation = c("none”, "origin”, "full"),
)
Arguments
X a collection of spatial interaction models, a sim_list
flows "full"” (default), "destination” or "attractiveness”, see details.
probs numeric vector of probabilities with values in [0, 1].

normalisation when flows="full", the flows are used as is, that without normalisation (normalisation="none",
default case) or they can be normalised prior the calculation of the quantiles,
either to sum to one for each origin location (normalisation="origin") or to
sum to one globally (normalisation="full"). This is useful for autoplot.sim_list().

additional parameters, not used currently

Details

The exact behaviour depends on the value of flows. In all cases, the function returns a data frame.
The data frame has one column per quantile, named after the quantile using a percentage based
named, as in the default stats: :quantile(). For a graphical representation of those quantiles, see
autoplot.sim_list().

 if flows="full": this is the default case in which the function computes for each pair of
origin o and destination d locations the quantiles of the distribution of the flow from o to d in
the collection of models (the flows maybe normalised before quantile calculations, depending
on the value of normalisation). In addition to the quantiles, the data frame has two columns:

— origin_idx: identifies the origin location by its index from 1 to the number of origin
locations;

— destination_idx: identifies the destination location by its index from 1 to the number
of destination locations.

58 return_to_scale

 if flows="destination", the function computes quantiles for each destination d location
of the distribution of its incoming flow (destination_flow()) in the collection of models.
In addition to the quantiles, the data frame has one column destination that identifies the
destination location by its index from 1 to the number of destination locations.

* if flows="attractiveness”, the function computes quantiles for each destination d loca-
tion of the distribution of its attractiveness (attractiveness()) in the collection of models.
In addition to the quantiles, the data frame has one column destination that identifies the
destination location by its index from 1 to the number of destination locations.

Value

a date frame, see details

See Also

fortify.sim_list() autoplot.sim_list()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_citiess$areal1:10])
all_flows <- grid_blvim(distances, production, seq(1.05, 1.45, by = 0.1),
seq(1, 3, by = @.5) / 400,
attractiveness,
bipartite = FALSE,
epsilon = 0.1, iter_max = 1000
)
head(quantile(all_flows))
head(quantile(all_flows, flows = "destination"))
head(quantile(all_flows,

flows = "attractiveness”,
probs = c(0.1, 0.3, 0.6, 0.9)
)
return_to_scale Extract the return to scale parameter used to compute this model
Description

Extract the return to scale parameter used to compute this model

Usage
return_to_scale(sim, ...)
Arguments
sim a spatial interaction model with a return to scale parameter

additional parameters

sim_column 59

Value

the return to scale parameter

Examples

positions <- matrix(rnorm(10 * 2), ncol = 2)

distances <- as.matrix(dist(positions))

production <- rep(1, 10)

attractiveness <- c(2, rep(1, 9))

model <- static_blvim(distances, production, 1.5, 1, attractiveness)
return_to_scale(model) ## should be 1.5

sim_column Get the collection of spatial interaction models from a SIM data frame

Description

Get the collection of spatial interaction models from a SIM data frame

Usage

sim_column(sim_df)

Arguments

sim_df a data frame of spatial interaction models, an object of class sim_df

Value

the collection of spatial interaction models in the sim_df object, as a sim_list object

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal1:10])
all_flows <- grid_blvim(distances, production, seq(1.05, 1.45, by = 0.2),
seq(1, 3, by = 0.5) / 400,
attractiveness,
bipartite = FALSE,
epsilon = 0.1, iter_max = 1000,
)
all_flows_df <- sim_df(all_flows, sim_colum = "my_col")
names(all_flows_df)
sim_column(all_flows_df)

60 sim_converged

sim_converged Reports whether the spatial interaction model construction converged

Description

Some spatial interaction models are the result of an iterative calculation, see for instance blvim().
This calculation may have been interrupted before convergence. The present function returns TRUE
if the calculation converged, FALSE if this was not the case and NA if the spatial interaction model
is not the result of an iterative calculation. The function applies also to a collection of spatial
interaction models as represented by a sim_list.

Usage
sim_converged(sim, ...)
Arguments
sim a spatial interaction model object (an object of class sim) or a collection of
spatial interaction models (an object of class sim_list)
additional parameters
Value

TRUE, FALSE or NA, as described above. In the case of a sim_list the function returns a logical
vector with one value per model.

See Also

sim_iterations(), blvim(), grid_blvim()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- log(french_cities$population[1:10])

attractiveness <- log(french_cities$areal[1:10])

model <- static_blvim(distances, production, 1.5, 1 / 250, attractiveness)
destination_flow(model)

sim_converged(model) ## must be NA

sim_df 61

sim_df Create a spatial interaction models data frame from a collection of
interaction models

Description

This function build a data frame from a collection of spatial interaction models. The data frame has
a list column sim of type sim_list which stores the collection of models and classical columns
that contain characteristics of the models. The name of the list column can be set to something else
than sim (but not a name used by other default columns). See details for the default columns.

Usage
sim_df(x, sim_column = "sim")

Arguments
X a collection of spatial interaction models, an object of class sim_list
sim_column the name of the sim_list column (default "sim")

Details

The data frame has one row per spatial interaction model and the following columns:

¢ sim (default name): the last column that contains the models

* alpha: the return to scale parameter used to build the model

* beta: the cost inverse scale parameter used to build the model

e diversity: model default diversity() (Shannon’s diversity)

* iterations: the number of iterations used to produce the model (1 for a static model)

* converged: TRUE is the iterative calculation of the model converged (for models produced by

blvim() and related approaches), FALSE for no convergence and NA for static models

The resulting object behaves mostly like a data.frame and support standard extraction and re-
placement operators. The object tries to keep its sim_df class during modifications. In particular,
names<-.sim_df () tracks name change for the sim_list column. If a modification or an extrac-
tion operation changes the type of the sim_list column or drops it, the resulting object is a standard
data.frame. See [.sim_df and names<-.sim_df () for details.

Value

a data frame representation of the spatial interaction model collection with classes sim_df and
data.frame

62 sim_df extract

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal[1:10])
all_flows <- grid_blvim(distances, production, seq(1.05, 1.45, by = 0.2),
seq(1, 3, by = 0.5) / 400,
attractiveness,
bipartite = FALSE,
epsilon = 0.1, iter_max = 1000,
)
all_flows_df <- sim_df(all_flows)
all_flows_df$converged
change the name of the sim column
names(all_flows_df)[6] <- "models”
still a sim_df
class(all_flows_df)
get the models
sim_column(all_flows_df)

sim_df_extract Extract or replace parts of a SIM data frame

Description

Extract or replace subsets of SIM data frames. The behaviour of the functions is very close to the
one of the corresponding data. frame functions, see [.data. frame. However, modifications of the
SIM columns or suppression of core columns will turn the object into a standard data.frame to
void issues in e.g. graphical representations, see below for details.

Usage

S3 replacement method for class 'sim_df"'
x$name <- value

S3 replacement method for class 'sim_df'
x[[i, j11 <- value

S3 method for class 'sim_df'
x[i, j, ..., drop]

S3 replacement method for class 'sim_df"'
x[i, j1 <- value
Arguments

X data frame of spatial interaction models, an object of class sim_df

name a literal character string

sim_df extract

value

i9, ...

drop

Details

63

a suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section in [.data. frame. If
NULL, deletes the column if a single column is selected.

elements to extract or replace. For [and [[, these are numeric or character or,
for [only, empty or logical. Numeric values are coerced to integer as if by
as.integer. For replacement by [, a logical matrix is allowed.

If TRUE the result is coerced to the lowest possible dimension. The default is to
drop if only one column is left, but not to drop if only one row is left.

In a sim_df, the core columns are derived from the sim_list column. Replacement functions
maintain this property by updating the columns after any modification of the sim_list column.
Modifications of the core columns are rejected (removing a core column is accepted but this turns
the sim_df into a standard data. frame).

In addition, the sim_list column obeys to restriction on sim_list modifications (i.e, a sim_list
contains a homogeneous collection of spatial interaction models).

Extraction functions keep the sim_df class only if the result is a data frame with a sim_list col-
umn, the core columns and potentially additional columns.

Value

For [a sim_df, a data. frame or a single column depending on the values of i and j.

For [[a column of the sim_df (or NULL) or an element of a column when two indices are used.
For $ a column of the sim_df (or NULL).

For [<-, [[<-, and $<- a sim_df or a data frame (see details).

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km

production <- rep(1, 10)

attractiveness <- log(french_cities$areal[1:10])

all_flows <- grid_blvim(distances, production, seq(1.05, 1.45, by = 0.2),
seq(1, 3, by = 0.5) / 400,

attractiveness,
bipartite

epsilon

)

FALSE,
0.1, iter_max = 1000,

all_flows_df <- sim_df(all_flows)

the models as a sim_list

all_flows_df[, "sim"]

sub data frame, a sim_df

all_flows_df[1:5, 1]

sub data frame, not a sim_df (alpha is missing)

all_flows_df[6:10, 2:6]

all_flows_2 <- grid_blvim(distances, log(french_cities$population[1:10]),
seq(1.05, 1.45, by = 0.2),
seq(1, 3, by = 0.5) / 400,

attractiveness,

64 sim_distance

bipartite = FALSE,

epsilon = 0.1, iter_max = 1000,
)
replace the sim_list column by the new models
before

all_flows_df$diversity

all_flows_df$sim <- all_flows_2

after (all core columns have been updated)
all_flows_df$diversity

sim_distance Compute all pairwise distances between the spatial interaction models
in a collection

Description

This function extracts from each spatial interaction model of the collection a vector representation
derived from its flow matrix (see details). This vector is then used to compute distances between
the models.

Usage

sim_distance(
sim_list,
flows = c("full”, "destination”, "attractiveness”),
method = c("euclidean”),

)
Arguments
sim_list a collection of spatial interaction models, an object of class sim_list
flows "full” (default), "destination” or "attractiveness”, see details.
method the distance measure to be used. Currently only "euclidean” is supported
additional parameters (not used currently)
Details

The vector representation is selected using the flows parameters. Possible values are
e "full” (default value): the representation is obtained by considering the matrix of flows()
as a vector (with the standard as.vector () function);

* "destination”: the representation is the destination_flow() vector associated to each
spatial interaction model;

* "attractiveness”: the representation is the attractiveness() vector associated to each
spatial interaction model.

sim_is_bipartite 65

Value

an object of class "dist”

See Also
dist()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal[1:10])
all_flows <- grid_blvim(
distances, production, c(1.25, 1.5),
c(1, 2, 3, 4) / 500, attractiveness,
epsilon = 0.1
)
flows_distances <- sim_distance(all_flows)
inflows_distances <- sim_distance(all_flows, "destination")

sim_is_bipartite Reports whether the spatial interaction model is bipartite

Description

The function returns TRUE is the spatial interaction model (SIM) is bipartite, that is if the origin
locations are distinct from the destination locations (at least from the analysis point of view). The
function return FALSE when the SIM uses the same locations for origin and destination.

Usage

sim_is_bipartite(sim)

Arguments

sim a spatial interaction model object

Value

TRUE if the spatial interaction model is bipartite, FALSE if not.

Examples

positions <- matrix(rnorm(1@ * 2), ncol = 2)

distances <- as.matrix(dist(positions))

production <- rep(1, 10)

attractiveness <- c(2, rep(1, 9))

model <- static_blvim(distances, production, 1.5, 1, attractiveness)
returns TRUE despite the use of a single set of positions

66 sim_iterations

sim_is_bipartite(model)

now we are clear about the non bipartite nature of the model

model <- static_blvim(distances, production, 1.5, 1, attractiveness,
bipartite = FALSE

)

sim_is_bipartite(model)

sim_iterations Returns the number of iterations used to produce this spatial interac-
tion model

Description

Returns the number of iterations used to produce this spatial interaction model

Usage
sim_iterations(sim, ...)
Arguments
sim a spatial interaction model object (an object of class sim) or a collection of
spatial interaction models (an object of class sim_list)
additional parameters
Value

a number of iterations that may be one if the spatial interaction model has been obtained using a
static model (see static_blvim()). In the case of a sim_list the function returns a vector with
iteration number per model.

See Also

sim_converged()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- log(french_cities$population[1:10])

attractiveness <- log(french_cities$areal1:10])

model <- static_blvim(distances, production, 1.5, 1 / 250, attractiveness)
destination_flow(model)

sim_iterations(model) ## must be one

sim_list 67

sim_list Create a sim_list object from a list of spatial interaction objects

Description
The collection of sim objects represented by a sim_list object is assumed to be homogeneous, that
is to correspond to a fix set of origin and destination locations, associated to a fixed cost matrix.
Usage

sim_list(sims, validate = TRUE)

Arguments
sims a list of homogeneous spatial interaction objects
validate should the function validate the homogeneity of the list of spatial interaction
objects (defaults to TRUE)
Value

asim_list object

Examples

positions <- matrix(rnorm(1@ * 2), ncol = 2)

distances <- as.matrix(dist(positions))

production <- rep(1, 10)

attractiveness <- c(2, rep(1, 9))

flows_1 <- blvim(distances, production, 1.5, 1, attractiveness)
flows_2 <- blvim(distances, production, 1.25, 2, attractiveness)
all_flows <- sim_list(list(flows_1, flows_2))

static_blvim Compute flows between origin and destination locations

Description

This function computes flows between origin locations and destination locations according to the
production constrained entropy maximising model proposed by A. Wilson.

68 static_blvim

Usage

static_blvim(
costs,
X,
alpha,
beta,
zZ,
bipartite = TRUE,
origin_data = NULL,
destination_data = NULL

)
Arguments

costs a cost matrix

X a vector of production constraints

alpha the return to scale parameter

beta the inverse cost scale parameter

Z a vector of destination attractivenesses

bipartite when TRUE (default value), the origin and destination locations are considered to
be distinct. When FALSE, a single set of locations plays the both roles. This has
only consequences in functions specific to this latter case such as terminals().

origin_data NULL or a list of additional data about the origin locations (see details)

destination_data
NULL or a list of additional data about the destination locations (see details)
Details
The model computes flows using the following parameters:

* costs (¢) is an X p matrix whose (, j) entry is the cost of having a "unitary" flow from origin
location 7 to destination location j

X (X) is a vector of size n containing non negative production constraints for the n origin
locations

* alpha («) is a return to scale parameter that enhance (or reduce if smaller that 1) the attrac-
tivenesses of destination locations when they are larger than 1

* beta (f) is the inverse of a cost scale parameter, i.e., costs are multiplied by beta in the model

* Z(Z)1is a vector of size p containing the positive attractivenesses of the p destination locations

According to Wilson’s model, the flow from origin location ¢ to destination location j, Y;;, is given
by

Xj,Z](-l GXp(—ﬂcqjj)
1 21 exp(—Peir)

Y =

The model is production constrained because

static_blvim 69

that is the origin location ¢ sends a total flow of exactly X;.

Value

an object of class sim (and sim_wpc) for spatial interaction model that contains the matrix of flows
from the origin locations to the destination locations (see (Y;;)1<i<n,1<j<p above) and the attrac-
tivenesses of the destination locations.

Location data

While models in this package do not use location data beyond X and Z, additional data can be stored
and used when analysing spatial interaction models.

Origin and destination location names:

Spatial interaction models can store names for origin and destination locations, using origin_names<-()
and destination_names<-(). Names are taken by default from names of the cost matrix costs.

More precisely, rownames(costs) is used for origin location names and colnames(costs) for
destination location names.

Origin and destination location positions:

Spatial interaction models can store the positions of the origin and destination locations, using
origin_positions<-() and destination_positions<-().

Specifying location data:

In addition to the functions mentioned above, location data can be specified directly using the
origin_data and destination_data parameters. Data are given by a list whose components
are not interpreted excepted the following ones:

* names is used to specify location names and its content has to follow the restrictions docu-
mented in origin_names<-() and destination_names<-()

* positions is used to specify location positions and its content has to follow the restrictions
documented in origin_positions<-() and destination_positions<-()
References
Wilson, A. (1971), "A family of spatial interaction models, and associated developments", Environ-
ment and Planning A: Economy and Space, 3(1), 1-32 doi:10.1068/a030001

See Also

origin_names(), destination_names(), origin_positions(), destination_positions()

https://doi.org/10.1068/a030001

70 summary.sim_list

Examples

positions <- as.matrix(french_cities[1:10, c("th_longitude”, "th_latitude")])
distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km
production <- rep(1, 10)
attractiveness <- log(french_cities$areal1:10])
model <- static_blvim(distances, production, 1.5, 1 / 500, attractiveness,
origin_data = list(
names = french_cities$name[1:10],
positions = positions
),
destination_data = list(
names = french_cities$name[1:10],
positions = positions
)
)
model
location_names(model)
location_positions(model)

summary.sim_list Summary of a collection of spatial interaction models

Description

This function computes summary statistics on a collection of spatial interaction models (ina sim_list).

Usage

S3 method for class 'sim_list'
summary (object, ...)

S3 method for class 'summary_sim_list'

print(x, ...)
Arguments
object a collection of spatial interaction models, an object of class sim_list summary.sim_list()
additional parameters (not used currently)
X an object of class summary_sim_list produced by
Details

The list returned by the function contains the following elements:

» median: the median of the collection, as return by the median.sim_list() function
* distortion: the average distance of all elements of the collection to the median model

* withinss: the sum of all pairwise distances between the elements of the collection

terminals 71

* nb_sims: the size of the collection

In addition, if the collection contains non bipartite models, the result has another element, nb_configurations
which gives the number of distinct terminal sets in the collection, where the terminals are computed
by terminals(), using the "RW" definition.

Value

an object of class summary_sim_list and list with a set of summary statistics computed on the
collection of spatial interaction models

See Also

median.sim_list(), terminals()

Examples

positions <- matrix(rnorm(15 * 2), ncol = 2)
distances <- as.matrix(dist(positions))
production <- rep(1, 15)

attractiveness <- rep(1, 15)

all_flows <- grid_blvim(distances,

production,

c(1.1, 1.25, 1.5),
c(1, 2, 3),
attractiveness,

epsilon = 0.1,
bipartite = FALSE,
)

summary(all_flows)

terminals Compute terminals for a spatial interaction model

Description

This function identifies terminals in the locations underlying the given spatial interaction model.
Terminals are locally dominating locations that essentially send less to other locations than they
receive (see details for formal definitions). As we compare incoming flows to outgoing flows,
terminal computation is restricted to interaction models in which origin and destination locations
are identical, i.e. models that are not bipartite.

Usage

terminals(sim, definition = c(”ND", "RW"), ...)

72 terminals
Arguments
sim a spatial interaction model object
definition terminal definition, either "ND" (for Nystuen & Dacey, default) or "RW" (for
Rihll & Wilson), see details.
additional parameters
Details

The notion of terminal used in this function is based on seminal work by J. D. Nystuen and M. F.
Dacey (Nystuen & Dacey, 1961), as well as on the follow up variation from Rihll & Wislon (1987
and 1991). We assume given a square flow matrix (Y;;)1<;<n,1<j<n. The incoming flow at location
j is given by

p
D; =YYy,
Jj=t

and is used as a measure of importance of this location. Then in Nystuen & Dacey (1961), location
7 is a "terminal point" (or a "central city") if

Dj > Dpyjy,

where m(j) is such that

Vi, Y < Yimg)-

In words, j is a terminal if the location m () to which it sends its largest flow is less important than
j itself, in terms of incoming flows. This is the definition used by the function when definition is
IINDII .

Rihll & Wilson (1987) use a modified version of this definition described in details in Rihll and
Wilson (1991). With this relaxed version, location j is a terminal if

Vi, D;>Yi;.

In words, j is a terminal if it receives more flows than it is sending to each other location. It is easy
to see that each Nystuen & Dacey terminal is a Rihll & Wilson terminal, but the reverse is false in
general. The function use the Rihll & Wilson definition when definition is "RW"

Value

a vector containing the indexes of the terminals identified from the flow matrix of the interaction
model.

terminals 73

References

Nystuen, J.D. and Dacey, M.F. (1961), "A graph theory interpretation of nodal regions", Papers and
Proceedings of the Regional Science Association 7: 29-42. doi:10.1007/bf01969070

Rihll, T.E., and Wilson, A.G. (1987). "Spatial interaction and structural models in historical analy-
sis: some possibilities and an example", Histoire & Mesure 2: 5-32. doi:10.3406/hism.1987.1300

Rihll, T., and Wilson, A. (1991), "Modelling settlement structures in ancient Greece: new ap-
proaches to the polis", In City and Country in the Ancient World, Vol. 3, Edited by J. Rich and A.
Wallace-Hadrill, 58-95. London: Routledge.

See Also

sim_is_bipartite(), is_terminal(), grid_is_terminal()

Examples

distances <- french_cities_distances[1:10, 1:10] / 1000 ## convert to km

production <- rep(1, 10)

attractiveness <- rep(1, 10)

model <- blvim(distances, production, 1.3, 1 / 250, attractiveness,
bipartite = FALSE

)

destination_names(model) <- french_cities$name[1:10]

terminals(model)

dist_times <- french_cities_times[1:10, 1:10]

tmodel <- blvim(dist_times, production, 1.3, 1 / 5000, attractiveness,
bipartite = FALSE

)

destination_names(tmodel) <- french_cities$name[1:10]

terminals(tmodel)

terminals(tmodel, definition = "RW")

https://doi.org/10.1007/bf01969070
https://doi.org/10.3406/hism.1987.1300

Index

+ datasets
french_cities, 31
french_cities_distances, 32
french_departments, 33
french_regions, 33
[.data.frame, 62, 63
[.sim_df, 61
[.sim_df (sim_df_extract), 62
[<-.sim_df (sim_df_extract), 62
[[<-.sim_df (sim_df_extract), 62
$<-.sim_df (sim_df_extract), 62

as.data.frame.sim_list, 3
as.vector(), 64
attractiveness, 4
attractiveness(), 6, 7, 12,19, 22, 24, 27,
28, 30, 34, 56, 58, 64
autoplot.sim, 5
autoplot.sim(), 21, 26, 28, 35, 36, 50, 55
autoplot.sim_df, 9
autoplot.sim_df (), 35, 36, 44, 45
autoplot.sim_list, 10
autoplot.sim_list(), 29, 30, 44-46, 57, 58

blvim, 13
blvim(),6, 12,22, 37,60, 61

c.sim_list, 16
costs, 17
costs(), I8
costs.sim_list, 18

destination_flow, 19
destination_flow(), 4,6, 7,11, 22,24, 27,
28, 30, 39, 40, 56, 58, 64

destination_names, 19
destination_names(), 48, 49, 55, 69
destination_names<-
(destination_names), 19
destination_positions, 20

74

destination_positions(), 49, 50, 56, 69

destination_positions<-
(destination_positions), 20

dist(), 65

diversity, 21

diversity(), 9,40, 41, 61

flows, 24
flows(), 6, 11, 26, 64
flows_df, 25
flows_df (), 24, 27, 28
fortify.sim, 26
fortify.sim(), 6, 7, 29, 36
fortify.sim_list, 29
fortify.sim_list(), 11, 12,58
french_cities, 31, 32-34
french_cities_distances, 31, 32, 32
french_cities_times, 3/, 32
french_cities_times
(french_cities_distances), 32
french_departments, 3/-33, 33, 34
french_regions, 3/-33, 33

:facet_wrap, 36, 45
:facet_wrap(), 36, 45, 46
:geom_crossbar(), 11
ggplot2::geom_label(), 7, 12
ggplot2: :geom_segment(), 6
grid_attractiveness, 34
grid_autoplot, 35
grid_autoplot(), 44
grid_blvim, 37
grid_blvim(Q), 16, 18, 34, 40—44, 60
grid_destination_flow, 39
grid_diversity, 40
grid_diversity(), 23
grid_is_terminal, 41
grid_is_terminal(), 73
grid_sim_converged, 42
grid_sim_converged(), 44

ggplot2:
ggplot2:
ggplot2:

INDEX

grid_sim_iterations, 43
grid_sim_iterations(), 43
grid_var_autoplot, 44

inverse_cost, 46
is_terminal, 47
is_terminal(), 42, 54,73

location_names, 48
location_names(), 6, 12, 20, 26, 55
location_names<- (location_names), 48
location_positions, 49
location_positions(), 6, 12, 21, 26, 27, 56
location_positions<-
(location_positions), 49

median.sim_list, 50
median.sim_list(), 71

names<-.sim_df, 52
nd_graph, 53

origin_names, 54

origin_names(), 20, 48, 49, 69

origin_names<- (origin_names), 54

origin_positions, 55

origin_positions(), 21, 49, 50, 69

origin_positions<- (origin_positions),
55

print.summary_sim_list
(summary.sim_list), 70

production, 56

production(), 4, 6, 19

quantile.sim_list, 57
quantile.sim_list(), 11, 12

return_to_scale, 58

sim_column, 59

sim_converged, 60
sim_converged(), 6, 7, 12, 42, 43, 66
sim_df, 61

sim_df (), 3,9

sim_df_extract, 62
sim_distance, 64
sim_is_bipartite, 65
sim_is_bipartite(), 6, 7,24, 54,73
sim_iterations, 66

sim_iterations(), 43, 44, 60
sim_list, 67
static_blvim, 67
static_blvim(), 14, 16, 66
stats::quantile(), 57
summary.sim_list, 70
summary.sim_list(), 70

terminals, 71

terminals(), 14, 22-24, 38, 40, 42, 47, 48,

53,54,68,71

75

	as.data.frame.sim_list
	attractiveness
	autoplot.sim
	autoplot.sim_df
	autoplot.sim_list
	blvim
	c.sim_list
	costs
	costs.sim_list
	destination_flow
	destination_names
	destination_positions
	diversity
	flows
	flows_df
	fortify.sim
	fortify.sim_list
	french_cities
	french_cities_distances
	french_departments
	french_regions
	grid_attractiveness
	grid_autoplot
	grid_blvim
	grid_destination_flow
	grid_diversity
	grid_is_terminal
	grid_sim_converged
	grid_sim_iterations
	grid_var_autoplot
	inverse_cost
	is_terminal
	location_names
	location_positions
	median.sim_list
	names<-.sim_df
	nd_graph
	origin_names
	origin_positions
	production
	quantile.sim_list
	return_to_scale
	sim_column
	sim_converged
	sim_df
	sim_df_extract
	sim_distance
	sim_is_bipartite
	sim_iterations
	sim_list
	static_blvim
	summary.sim_list
	terminals
	Index

