
Package ‘LSDinterface’
October 12, 2022

Type Package

Title Interface Tools for LSD Simulation Results Files

Version 1.2.1

Date 2022-5-12

Description Interfaces R with LSD simulation models. Reads object-oriented data in re-
sults files (.res[.gz]) produced by LSD and creates appropriate multi-dimensional ar-
rays in R. Supports multiple core parallel threads of multi-file data reading for increased perfor-
mance. Also provides functions to extract basic information and statis-
tics from data files. LSD (Laboratory for Simulation Development) is free software devel-
oped by Marco Valente and Marcelo C. Pereira (documentation and downloads avail-
able at <https://www.labsimdev.org/>).

Depends R (>= 3.2.0)

Imports stats, boot, utils, parallel, abind, TSdist

Suggests LSDsensitivity

License GPL-3

Language en-US

Encoding UTF-8

NeedsCompilation no

Author Marcelo C. Pereira [aut, cre] (<https://orcid.org/0000-0002-8069-2734>)

Maintainer Marcelo C. Pereira <mcper@unicamp.br>

Repository CRAN

Date/Publication 2022-05-13 20:30:02 UTC

R topics documented:
LSDinterface-package . 2
info.details.lsd . 3
info.dimensions.lsd . 4
info.distance.lsd . 5
info.init.lsd . 8
info.names.lsd . 9

1

https://www.labsimdev.org/
https://orcid.org/0000-0002-8069-2734

2 LSDinterface-package

info.stats.lsd . 10
list.files.lsd . 12
name.check.lsd . 14
name.clean.lsd . 15
name.nice.lsd . 16
name.r.unique.lsd . 17
name.var.lsd . 18
read.3d.lsd . 19
read.4d.lsd . 21
read.list.lsd . 23
read.multi.lsd . 26
read.raw.lsd . 28
read.single.lsd . 30
select.colattrs.lsd . 32
select.colnames.lsd . 34

Index 37

LSDinterface-package Interface Tools for LSD Simulation Results Files

Description

Interfaces R with LSD simulation models. Reads object-oriented data in results files (.res[.gz])
produced by LSD and creates appropriate multi-dimensional arrays in R. Supports multiple core
parallel threads of multi-file data reading for increased performance. Also provides functions to
extract basic information and statistics from data files. LSD (Laboratory for Simulation Develop-
ment) is free software developed by Marco Valente and Marcelo C. Pereira (documentation and
downloads available at <https://www.labsimdev.org/>).

Details

There are specific read.xxx.lsd() functions for different types of LSD data structures.

read.raw.lsd() simply import LSD saved data in tabular (data frame) format (variables in columns
and time steps in rows). read.single.lsd() is appropriate to simple LSD data structures where
each saved variable is single-instanced (inside an object with a single copy). read.multi.lsd()
reads all instances of all variables from the LSD results file, renaming multi-instanced variables.
read.list.lsd() is similar to read.multi.lsd() but saves multiple-instanced variables as R
lists, preventing renaming.

read.3d.lsd() and read.4d.lsd() are specialized versions for extracting data from multiple
LSD results files simultaneously. The files must have the same structure (selected variables and
number of time steps). They are frequently used to acquire data from Monte Carlo experiments
or sensitivity analysis. read.3d.lsd() operates like read.single.lsd() but add each additional
results file into a separate dimension of the produced 3-dimensional array (variable x time step x
file). read.4d.lsd() adds the ability to read each instance of a multi-instanced variable to the
fourth dimension of the generated 4D array (variable x instance x time step x file).

info.details.lsd 3

list.files.lsd() is a helper function to simplify the collection of results files to be used by
the other functions in this package. It can be directly used to supply the files argument in the
read.xxx.lsd() family of functions.

select.colattrs.lsd() and select.colnames.lsd() provide methods to extract/summarize in-
formation from previously imported LSD data structures.

info.xxx.lsd() functions provide information about LSD data structures. name.xxx.lsd() func-
tions offer tools for dealing with LSD variable names in R.

For a complete list of exported functions, use library(help = "LSDinterface").

Author(s)

NA

Maintainer: NA

References

LSD documentation is available at https://www.labsimdev.org/.

The latest LSD binaries and source code can be downloaded at https://github.com/marcov64/
Lsd/.

info.details.lsd Get detailed information from a LSD results file

Description

This function reads, analyze and organize the information from a LSD results file (.res).

Usage

info.details.lsd(file)

Arguments

file the name of the LSD results file which the data are to be read from. If it does
not contain an absolute path, the file name is relative to the current working
directory, getwd(). Tilde-expansion is performed where supported. This can be
a compressed file (see file) and must include the appropriated extension (usually
.res or .res.gz).

Value

Returns a data frame containing detailed description (columns) of all variables (rows) contained in
the selected results file.

Author(s)

Marcelo C. Pereira

https://www.labsimdev.org/
https://github.com/marcov64/Lsd/
https://github.com/marcov64/Lsd/

4 info.dimensions.lsd

See Also

list.files.lsd() info.init.lsd(), info.names.lsd() info.dimensions.lsd()

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

get details about all variables in first file
info.details.lsd(files[1])

info.dimensions.lsd Dimension information for a LSD results file

Description

This function reads some dimension information from a LSD results file (.res): number of time
steps, number of variables and the original column (variable) names.

Usage

info.dimensions.lsd(file)

Arguments

file the name of the LSD results file which the data are to be read from. If it does
not contain an absolute path, the file name is relative to the current working
directory, getwd(). Tilde-expansion is performed where supported. This can be
a compressed file (see file) and must include the appropriated extension (usually
.res or .res.gz).

Details

The returned number of time steps does not include the initial value (t = 0) for lagged variables (the
second line of a .res format file).

Value

Returns a list containing two integer values and a character vector describing the selected results
file.

tSteps Number of time steps in file

nVars Number of variables (including duplicated instances) in file

varNames Names of variables (including duplicated instances) in file, after R name con-
version

info.distance.lsd 5

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() info.details.lsd(), info.names.lsd(), info.init.lsd()

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

get dimensions from second file
info.dimensions.lsd(files[2])

info.distance.lsd Compute distance measure between LSD Monte Carlo time series and
a set of references

Description

This function reads a 3 or 4-dimensional array produced by read.3d.lsd or read.4d.lsd and
computes several types of distance measures between the time series from a set of Monte Carlo
runs and a set of reference time series (like the Monte Carlo average or median).

Usage

info.distance.lsd(array, references, instance = 1,
distance = "euclidean", std.dist = FALSE,
std.val = FALSE, rank = FALSE, weights = 1,
seed = 1, ...)

Arguments

array a 3D or 4D array as produced by read.3d.lsd and read.4d.lsd, where in
the first dimension (rows) you have the time steps, in the second (columns),
the variables and in the third/fourth dimension, the Monte Carlo experiments,
and the instances in the third dimension (4D arrays only). When 4D arrays are
provided, only first instances are used in the computation.

references a 2D matrix containing the reference time series, time in rows and variable
values in named columns, from which the distance measures are to be com-
puted. Columns must be named for the exact match to the names of the desired
variables (contained in array). Only variables contained in both array and
references are considered in the computation. According to the distance
measure chosen, the number of time steps in array and references must be
the same (as in the default Euclidean distance).

6 info.distance.lsd

instance integer: the instance of the variable to be read, for variables that exist in more
than one object (4D array only). The default (1) is to read first instances.

distance string: the distance measure to be used. The default is to compute the Euclidean
distance ("euclidean"). For a comprehensive list of measure options, please
refer to TSDistances. Measure names can be abbreviated.

std.dist a logical value indicating, if TRUE, that the computed distances must be standard-
ized with respect of the number of time steps involved. The default, FALSE, is
not standardizing distances. This is relevant for properly comparing the metrics
of series containing NAs.

std.val a logical value indicating, if TRUE, that the series values must be standardized
before computing the distances. The default, FALSE, is not standardizing val-
ues. This is relevant for properly comparing the metrics of series for different
variables which are not distributed over the same range of values.

rank a logical value indicating, if TRUE, that the Monte Carlo runs must be ranked
in terms of closeness to the references. The default is not computing the run
ranking, as this may be computationally expensive for some distance mea-
sures.

weights a numerical vector containing the weights to be used for each variable in references
when rank = TRUE. If vector has named elements, the vector names must exactly
match the names of variables in references, order is not important, If variable
names not present in vector, the missing ones are not considered in the ranking.
If the vector is not named, the order of the weights must be the same as the
one used for the variables (columns) in the references matrix. If the length of
weigths is smaller the number of variables and not named, the vector is recy-
cled. The default is to use the same weight for all variables.

seed a single value, interpreted as an integer to define the pseudo-random number
generator state used when sampling data, or NULL, to re-initialize the generator
as if no seed had yet been set (a new state is created from the current time and
the process ID).

... additional parameters required by the specific method (see TSDistances).

Details

This function is a front-end to the extensive TSdist package for interfacing it with LSD generated
data. Please check the associated documentation for further information.

TSdist package provides many different distance measure alternatives, including many that allow
for different number of time steps among runs and references.

This function may also search the Monte Carlo run which has the overall smallest (standardized)
distances from the given references. Irrespective of the options std.dist and std.val, the search
uses always standardized values and distances for computation (this does not affect the distance
measure matrix values).

One typical application of distance metrics is to select runs which are closer to the Monte Carlo
average or median, that is, the runs which are more representative of the Monte Carlo Experiment.
As there is no single criteria to define such "closeness", multiple distance measures may help to
identify the set of most interesting runs.

info.distance.lsd 7

Value

Returns a list containing:

dist a named matrix containing the distances for each Monte Carlo run (lines) and
variables (columns) contained both in array and references (and weights, if
provided)

close a named matrix of Monte Carlo run (sample) names, one column per variable,
sorted in increasing distance order (closest runs in first line), which can be used
to index the 3D or 4D array

rank (only if rank = TRUE) a named vector of weighted Monte Carlo run standardized
distances, sorted in increasing distance order (closest run first)

Note

When comparing distance measures between different Monte Carlo runs and variables, it is impor-
tant to standardize the distances and values to ensure consistency. For variables which may present
NA values, setting std.dist = TRUE ensures distance comparability by dividing the absolute dis-
tance of each run-reference pair by the number of effective (non-NA) time steps. When comparing
variables which are dimensionally heterogeneous, std.val = TRUE uses the relative measure (be-
tween 1 and the run value divided by the corresponding reference value) to compute the distances.

When setting std.val = TRUE, all points in which the references’ values are equal to zero are
effectively removed from calculations. This behavior is always applied when searching for the
closest Monte Carlo run(s).

Author(s)

Marcelo C. Pereira

See Also

read.3d.lsd(), read.4d.lsd(), info.stats.lsd()

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

read first instance of all variables from MC files (3D array)
inst1Array <- read.3d.lsd(files)

create statistics data frames for the variables
inst1Stats <- info.stats.lsd(inst1Array)

compute the Euclidean distance to the mean for all variables and runs
inst1dist <- info.distance.lsd(inst1Array, inst1Stats$avg)
inst1dist$dist
inst1dist$close

the same exercise but for a 4D array and Manhattan distance to the median
plus indicating the Monte Carlo run closest to the median

8 info.init.lsd

allArray <- read.4d.lsd(files)
allStats <- info.stats.lsd(allArray, median = TRUE)
allDist <- info.distance.lsd(allArray, allStats$med, distance = "manhattan",

rank = TRUE)
allDist$dist
allDist$close
allDist$rank
names(allDist$rank)[1] # results file name of the closest run

info.init.lsd Read initial conditions from a LSD results file

Description

This function reads the initial condition values from a LSD results file (.res).

Usage

info.init.lsd(file)

Arguments

file the name of the LSD results file which the data are to be read from. If it does
not contain an absolute path, the file name is relative to the current working
directory, getwd(). Tilde-expansion is performed where supported. This can be
a compressed file (see file) and must include the appropriated extension (usually
.res or .res.gz).

Value

Returns a 1 line matrix containing the initial conditions (row 1) of all variables contained in the
selected results file.

Note

The returned matrix contains all variables in the results file, even the ones that don’t have an initial
condition (indicated as NA). Only variables automatically initialized automatically by LSD in t = 1
are included here.

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() info.details.lsd(), info.names.lsd() info.dimensions.lsd()

info.names.lsd 9

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

get initialization data from first and second files
init1 <- info.init.lsd(files[1])
init1[, 4 : 8]

init2 <- info.init.lsd(files[2])
init2[, 4 : 8]

info.names.lsd Read unique variable names from a LSD results file (no duplicates)

Description

This function reads the variable names (columns) from a LSD results file (.res). The names returned
are converted to the original LSD names whenever possible and duplicates are removed.

Usage

info.names.lsd(file)

Arguments

file the name of the LSD results file which the data are to be read from. If it does
not contain an absolute path, the file name is relative to the current working
directory, getwd(). Tilde-expansion is performed where supported. This can be
a compressed file (see file) and must include the appropriated extension (usually
.res or .res.gz).

Value

Returns a character vector containing the names of all unique variables contained in the selected
results file.

Note

Not all names can be automatically reconverted to the original LSD names, using LSD/C++ naming
conventions.

The conversion may be incorrect if the original LSD variable is named in the format "X_...".

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() info.details.lsd(), info.init.lsd() info.dimensions.lsd()

10 info.stats.lsd

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

get variable names from first file
info.names.lsd(files[1])

info.stats.lsd Compute Monte Carlo statistics from a set of LSD runs

Description

This function reads a 3 or 4-dimensional array produced by read.3d.lsd or read.4d.lsd and
produces a list with 2D data frames containing the (Monte Carlo) mean, the standard deviation, the
maximum, the minimum, and other optional statistics for each variable, at each time step.

Usage

info.stats.lsd(array, rows = 1, cols = 2, median = FALSE,
ci = c("none", "mean", "median", "auto"),
ci.conf = 0.95, ci.boot = NULL, boot.R = 999,
seed = 1, na.rm = TRUE, inf.rm = TRUE)

Arguments

array a 3D or 4D array as produced by read.3d.lsd and read.4d.lsd, where in
the first dimension (rows) you have the time steps, in the second (columns), the
variables and in the third/fourth dimension, the Monte Carlo experiments, and
the instances in the third dimension (4D arrays only).

rows an integer array dimension to be used as the rows for the statistics matrices,
default is to use first array dimension.

cols an integer array dimension to be used as the columns for the statistics matrices,
default is to use second array dimension.

median a logical value indicating if (TRUE) the median and the median absolute deviation
should also be computed. The default (FALSE) is not to compute these statistics.

ci a character string specifying the type of confidence interval to compute, must be
one of "none" (default) for no confidence interval computation, "mean", to com-
pute a confidence interval for the mean, "median", for the median, or "auto",
to use the option set for the median argument (above). This option can be ab-
breviated.

ci.conf confidence level of the confidence interval.
ci.boot a character string specifying the type of bootstrap confidence interval to com-

pute, must be one of "basic", "perc" (percentile interval), or "bca" (BCa - ad-
justed percentile interval). If set to NULL or an empty string, a regular asymptotic
confidence interval is produced (no bootstrap), assuming normal distribution for
the mean or using a non-parametric rank test for the median. Non-bootstrap
percentiles are much faster to compute but generally less accurate.

info.stats.lsd 11

boot.R number of bootstrap replicates.

seed a single value, interpreted as an integer to define the pseudo-random number
generator state used for the bootstrap process, or NULL, to re-initialize the gen-
erator as if no seed had yet been set (a new state is created from the current time
and the process ID).

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

inf.rm a logical value indicating whether non-finite values should be stripped before
the computation proceeds.

Value

Returns a list containing four to seven matrices, with the original size and naming of the selected 2
dimensions of the argument.

avg a matrix with the mean of the MC experiments

sd a matrix with the standard deviation of the MC experiments

max a matrix with the maximum value of the MC experiments

min a matrix with the minimum value of the MC experiments

med a matrix with the median of the MC experiments (only present if argument
median = TRUE)

mad a matrix with the median absolute deviation of the MC experiments (only present
if argument median = TRUE)

ci.hi a matrix with the maximum value of the MC experiments (only present if argu-
ment ci is not set to "none")

ci.lo a matrix with the minimum value of the MC experiments (only present if argu-
ment ci is not set to "none")

n a matrix with the number of observations available for computation of statistics

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() read.3d.lsd(), read.4d.lsd(), info.dimensions.lsd()

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

read first instance of all variables from MC files (3D array)
inst1Array <- read.3d.lsd(files)

create statistics data frames for the variables
inst1Stats <- info.stats.lsd(inst1Array)

12 list.files.lsd

print(inst1Stats$avg[10 : 20,])
print(inst1Stats$sd[10 : 20,])

organize the stats, including medians, by variable (dim=2) and file (dim=3)
inst1Stats2 <- info.stats.lsd(inst1Array, rows = 2, cols = 3, median = TRUE)
print(inst1Stats2$med[, 1 : 2])

the same but for all instance of all variables (from a 4D array)
and a normal (non-boostrap) confidence intervals for the means
allArray <- read.4d.lsd(files)
allStats <- info.stats.lsd(allArray, ci = "auto")
print(allStats$ci.lo[3, 1 : 7])
print(allStats$avg[3, 1 : 7])
print(allStats$ci.hi[3, 1 : 7])

organize the stats by file (dim=4) and variable (dim=2)
plus boostrat confidence intervals for the median
allStats2 <- info.stats.lsd(allArray, rows = 4, cols = 2, median = TRUE,

ci = "auto", ci.boot = "bca")
print(allStats2$ci.lo[, 1 : 3])
print(allStats2$med[, 1 : 3])
print(allStats2$ci.hi[, 1 : 3])

list.files.lsd List results files from a set of LSD runs

Description

This function produce a character vector of the names of results files produced after the execution of
LSD simulation runs. The list can be used with all function in this package requiring the argument
files.

Usage

list.files.lsd(path = ".", conf.name = "",
type = c("res", "tot", "csv"),
compressed = NULL, recursive = FALSE,
join = FALSE, full.names = FALSE,
sensitivity = FALSE)

Arguments

path a character vector of full or relative path name to the base directory from where
to search the files; the default corresponds to the working directory, getwd().
Tilde expansion is performed. Alternatively, the full path and name of the corre-
sponding LSD configuration file (including the .lsd extension) can be provided.

list.files.lsd 13

conf.name the LSD configuration file name (optionally including the .lsd extension) used
to generate the desired results files; the default is to return all results files, irre-
spective of the configuration file used. Alternatively, a regular expression can
be supplied. This argument takes precedence of any configuration file name
provided together with the path argument.

type the type (format/extension) of LSD results files to use among the options c(
"res", "tot", "csv"), used to define the extension of the files to be consid-
ered. "res" is the default. This option can be abbreviated.

compressed a logical value indicating if (TRUE) to look only for compressed files with .gz
extension, or uncompressed ones otherwise (FALSE). The default (NULL) is to list
files irrespective if compressed or not.

recursive a logical value indicating if the listing should recurse into sub-directories of
path. The default (FALSE) is to scan just the sub-directory with the same name
as conf.name (without the .lsd extension or numeric tags), if present (regular
expression in conf.name is not considered), and path. If TRUE, the entire sub-
directory tree, starting at path, is scanned for files.

join a logical value indicating if results files from multiple sub-directories should be
joined together in the return list. The default (FALSE) is to list files from just a
single sub-directory, the first one found during the search starting from path.

full.names a logical value specifying if (TRUE) the file names should be expanded to abso-
lute path names. The default (FALSE) is to use relative (to path) file names.

sensitivity a logical value specifying if (TRUE) the target results files are part of a sensitivity
analysis design of experiment (DoE), which are double numbered in a particular
format (conf.name_XXX_YYY.res[.gz]). The default (FALSE) is to assume files
are just single numbered, which is usually inappropriate for DoE results files.
See LSDsensitivity package documentation for details.

Details

The order by which sub-directories are explored may be relevant. By default, the function scans for
results files in a sub-directory named as conf.name, if present, in the given initial directory path.
Next, if conf.name has a numeric suffix in the format name_XXX, where XXX is any number of
algarisms, it searches the sub-directory name, if present. Finally, it scans the initial path itself. If
results files are present in more than one sub-directory, function returns only the files found in first
one (except if join = TRUE), and issues a warning message. If recursive = TRUE, file search starts
from path and proceeds until it encompasses the entire sub-directory tree. In this case, if multiple
sub-directories contain the desired files, only the initial path takes precedence, and the rest of the
tree is recurred in alphabetical order.

Please note that joining files from different sub-directories (join = TRUE) may combine results with
incompatible data which cannot be processed together by the read.xxx.lsd() family of functions.

Value

A character vector containing the names of the found results files in the specified (sub) directories
(empty if there were no files). If a path does not exist or is not a directory or is unreadable it is
skipped.

14 name.check.lsd

Note

File naming conventions are platform dependent. The pattern matching works with the case of file
names as returned by the OS.

path must specify paths which can be represented in the current codepage, and files/directories
below path whose names cannot be represented in that codepage will most likely not be found.

Author(s)

Marcelo C. Pereira

See Also

read.3d.lsd(), read.4d.lsd(), read.raw.lsd(), read.single.lsd(), read.multi.lsd(),
read.list.lsd(), LSDsensitivity package,

Examples

get the names of all files the example directory
list.files.lsd(system.file("extdata", package = "LSDinterface"))

expand search to the entire example directory tree
for results from a configuration file named "Sim1.lsd"
and join files found in all sub-directories conatining data
list.files.lsd(system.file("extdata", package = "LSDinterface"),

"Sim1.lsd", recursive = TRUE, join = TRUE)

name.check.lsd Check a set of LSD variables names against a LSD results file

Description

This function checks if all variable names in a set are valid for a LSD results file (.res). If no name
is provided, the function returns all the valid unique variable names in the file.

Usage

name.check.lsd(file, col.names = NULL, check.names = TRUE)

Arguments

file the name of the LSD results file which the data are to be read from. If it does
not contain an absolute path, the file name is relative to the current working
directory, getwd(). This can be a compressed file (see file) and must include
the appropriated extension (usually .res or .res.gz).

col.names a vector of optional names for the variables. The default is to read all (unique)
variable names.

check.names logical. If TRUE then the names of the variables are checked to ensure that they
are syntactically valid variable names. If necessary they are adjusted to ensure
that there are no duplicates.

name.clean.lsd 15

Value

Returns a string vector containing the (original) valid variable names contained in the results file,
using LSD/C++ naming conventions.

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() info.names.lsd(),

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

check all variable names
name.check.lsd(files[1])

check just two names
name.check.lsd(files[2], col.names = c("GDP", "_growth1"))

name.clean.lsd Get clean (R) variable name

Description

This function produces a more appropriate variable name from R initial column name conversion.

Usage

name.clean.lsd(r.name)

Arguments

r.name a string, a vector of strings, or an object which can be coerced to a character
vector by as.character, from the column names produced by reading a LSD
results file.

Details

The function removes the extra/ending ’.’ characters introduced by R and introduces a ’_’ between
time span values.

Value

A string or a string vector with the same attributes as x (after possible coercion) and the format
NAME.POSITION.INI_END.

16 name.nice.lsd

Author(s)

Marcelo C. Pereira

See Also

name.var.lsd(), name.nice.lsd(), info.names.lsd()

Examples

name.clean.lsd("Var1.1_1..1.100.")

name.clean.lsd(c("Var1.1_1..1.100.", "Var2.1_2_3..50.70."))

name.nice.lsd Get a nice (R) variable name

Description

This function produces a nicer variable name from R initial column name conversion, in particular
removing leading underscores.

Usage

name.nice.lsd(r.name)

Arguments

r.name a string, a vector of strings, or an object which can be coerced to a character
vector by as.character, from the column names produced by reading a LSD
results file.

Details

The function removes the extra/ending ’.’ characters introduced by R and introduces a ’_’ between
time span values and deletes leading underscores (’_’), converted to ’X_’ by R.

Value

A string or a string vector with the same attributes as x (after possible coercion) and the format
NAME[.POSITION.INI_END].

Author(s)

Marcelo C. Pereira

See Also

name.var.lsd(), name.clean.lsd(), info.names.lsd()

name.r.unique.lsd 17

Examples

name.nice.lsd("X_Var1.1_1..1.100.")

name.nice.lsd(c("_Var1.1_1..1.100.", "X_Var2.1_2_3..50.70."))

name.nice.lsd(c("_Var1", "X_Var2"))

name.r.unique.lsd Get valid unique R variable name

Description

This function produces a valid and unique variable name from names produced from multi-instanced
LSD variables (as in read.raw.lsd).

Usage

name.r.unique.lsd(r.name)

Arguments

r.name a string, a vector of strings, or an object which can be coerced to a character
vector by as.character, from the column names produced by reading a LSD
results file.

Details

The function removes the trailing ’.’ characters, and the text between, introduced during the con-
version from LSD results files, add an ’X’ prefix to names started by an ’_’. After this initial trans-
formation, all repeated variable names (originated from multi-instanced variables) are removed.

The produced names are R valid variable names, similar to the original LSD/C++ variable names,
but with an ’X’ prepended to variables starting with an ’_’ (which are invalid in R).

Value

A string or a string vector of converted string(s) including only non-repeated ones.

Author(s)

Marcelo C. Pereira

See Also

name.var.lsd(), name.clean.lsd(), name.nice.lsd(), info.names.lsd()

18 name.var.lsd

Examples

name.r.unique.lsd("Var1.1_1.1_100")

name.r.unique.lsd(c("Var1.1_1.1_100", "_Var2.1_1.1_100", "_Var2.1_2.50_70"))

name.var.lsd Get original LSD variable name

Description

This function generates the original LSD variable name, as it was defined in LSD and before R
adjusts the name, from a R column name (with or without position or timing information appended).

Usage

name.var.lsd(r.name)

Arguments

r.name a string, a vector of strings, or an object which can be coerced to a character
vector by as.character, from the column names produced by reading a LSD
results file.

Details

The conversion may be incorrect if the original LSD variable is named in the format "X_...". No
checking is done to make sure the variable really exists.

Value

A string or a string vector with the same attributes as x (after possible coercion).

Author(s)

Marcelo C. Pereira

See Also

name.clean.lsd(), info.names.lsd()

Examples

name.var.lsd("label")

name.var.lsd(c("label", "X_underlinelabel"))

read.3d.lsd 19

read.3d.lsd Read one instance of LSD variables (time series) from multiple LSD
results files into a 3D array

Description

This function reads the data series associated to a specific instance of each selected variable from a
set of LSD results files (.res) and saves them into a 3-dimensional array (time step x variable x file).

Usage

read.3d.lsd(files, col.names = NULL, nrows = -1, skip = 0,
check.names = TRUE, instance = 1, nnodes = 1,
posit = NULL, posit.match = c("fixed", "glob", "regex"))

Arguments

files a character vector containing the names of the LSD results files which the data
are to be read from. If they do not contain an absolute path, the file names are
relative to the current working directory, getwd(). These can be compressed
files and must include the appropriated extension (usually .res or .res.gz).

col.names a vector of optional names for the variables. The default is to read all variables.

nrows integer: the maximum number of time steps (rows) to read in. Negative and
other invalid values are ignored. The default is to read all rows.

skip integer: the number of time steps (rows) of the results file to skip before begin-
ning to read data. The default is to read from the first time step (t = 1).

check.names logical. If TRUE the names of the variables are checked to ensure that they are
syntactically valid variable names. If necessary they are adjusted (by make.names)
so that they are, and also to ensure that there are no duplicates.

instance integer: the instance of the variable to be read, for variables that exist in more
than one object. This number is based on the position (column) of the variable
in the results file. The default (1) is to read first instances.

nnodes integer: the maximum number of parallel computing nodes (parallel threads) in
the current computer to be used for reading the files. The default, nnodes = 1,
means single thread processing (no parallel threads). If equal to zero, creates up
to one node per CPU core. Only PSOCK clusters are used, to ensure compatibility
with any platform. Please note that each node requires its own memory space,
so memory usage increases linearly with the number of nodes.

posit a string, a vector of strings or an integer vector describing the LSD object posi-
tion of the variable(s) to select. If an integer vector, it should define the position
of a SINGLE LSD object. If a string or vector of strings, each element should
define one or more different LSD objects, so the returning matrix may contain
variables from more than one object. By setting posit.match, globbing (wild-
card), and regular expressions can be used to select multiple objects at once.

20 read.3d.lsd

posit.match a string defining how the posit argument, if provided, should be matched against
the LSD object positions. If equal to "fixed", the default, only exact matching
is done. "glob" allows using simple wildcard characters (’*’ and ’?’) in posit
for matching. If posit.match="regex" interpret posit as POSIX 1003.2 ex-
tended regular expression(s). See regular expressions for details of the dif-
ferent types of regular expressions. Options can be abbreviated.

Details

Selection restriction arguments can be provided as needed; when not specified, all available cases
are considered, but just one instance is considered.

When posit is supplied together with col.names or instance, the selection process is done in
two steps. Firstly, the column names and the instance position set by col.names and instance are
selected. Secondly, the instances defined by posit are selected from the first selection set.

See select.colnames.lsd and select.colattrs.lsd for examples on how to apply advanced
selection options.

Value

Returns a 3D array containing data series from the selected variables.

The array dimension order is: time x variable x file.

Note

If the selected files don’t have the same columns available (names and instances), after column
selection, an error is produced.

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() read.4d.lsd(), read.single.lsd(), read.multi.lsd(), read.list.lsd(),
read.raw.lsd()

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

read first instance of all variables from files (one level each),
pasting the directory where the example files are (not required if in working dir)
inst1Array <- read.3d.lsd(files)
print(inst1Array[5 : 10, 1 : 7, 1])
print(inst1Array[5 : 10, 1 : 7, 2])
print(inst1Array[5 : 10, 1 : 7, 3])

read first instance of a set of variables named _A1p and _growth1
ab1Array <- read.3d.lsd(files, c("_A1p", "_growth1"))

read.4d.lsd 21

print(ab1Array[20 : 25, , 1])
print(ab1Array[20 : 25, , 2])
print(ab1Array[20 : 25, , 3])

read instance 2 of all variables, skipping the initial 20 time steps
and keeping up to 30 time steps (from t = 21 up to t = 30)
inst2Array21_30 <- read.3d.lsd(files, skip = 20, nrows = 30, instance = 2)
print(inst2Array21_30[, , "Sim1_1"]) # use the file name to retrieve
print(inst2Array21_30[, , "Sim1_2"])

read instance 5 of all variables in second-level objects, using up to 2 cores
inst5array2 <- read.3d.lsd(files, instance = 2, posit = "*_*",

posit.match = "glob", nnodes = 2)
print(inst5array2[11 : 20, , 1])

read.4d.lsd Read multiple instances of LSD variables (time series) from a set of
LSD results file into a 4D array

Description

This function reads the data series associated to a set of instances of each selected variable from a
set of LSD results files (.res) and saves them into a 4-dimensional array (time x variable x instance
x file).

Usage

read.4d.lsd(files, col.names = NULL, nrows = -1, skip = 0,
check.names = TRUE, pool = FALSE, nnodes = 1,
posit = NULL, posit.match = c("fixed", "glob", "regex"))

Arguments

files a character vector containing the names of the LSD results files which the data
are to be read from. If they do not contain an absolute path, the file names are
relative to the current working directory, getwd(). These can be compressed
files and must include the appropriated extension (usually .res or .res.gz).

col.names a vector of optional names for the variables. The default is to read all variables.

nrows integer: the maximum number of time steps (rows) to read in. Negative and
other invalid values are ignored. The default is to read all rows.

skip integer: the number of time steps (rows) of the results file to skip before begin-
ning to read data. The default is to read from the first time step (t = 1).

check.names logical. If TRUE the names of the variables are checked to ensure that they are
syntactically valid variable names. If necessary they are adjusted (by make.names)
so that they are, and also to ensure that there are no duplicates.

22 read.4d.lsd

pool logical. If TRUE, variables instances from all files are concatenated (by columns)
as a single 3-dimensional array. If FALSE (the default), each file is saved as a
separated dimension (fourth) in the array.

nnodes integer: the maximum number of parallel computing nodes (parallel threads) in
the current computer to be used for reading the files. The default, nnodes = 1,
means single thread processing (no parallel threads). If equal to zero, creates up
to one node per CPU core. Only PSOCK clusters are used, to ensure compatibility
with any platform. Please note that each node requires its own memory space,
so memory usage increases linearly with the number of nodes.

posit a string, a vector of strings or an integer vector describing the LSD object posi-
tion of the variable(s) to select. If an integer vector, it should define the position
of a SINGLE LSD object. If a string or vector of strings, each element should
define one or more different LSD objects, so the returning matrix will contain
variables from more than one object. By setting posit.match, globbing (wild-
card), and regular expressions can be used to select multiple objects at once; in
this case, all matching objects are returned.

posit.match a string defining how the posit argument, if provided, should be matched against
the LSD object positions. If equal to "fixed", the default, only exact matching
is done. "glob" allows using simple wildcard characters (’*’ and ’?’) in posit
for matching. If posit.match="regex" interpret posit as POSIX 1003.2 ex-
tended regular expression(s). See regular expressions for details of the dif-
ferent types of regular expressions. Options can be abbreviated.

Details

Selection restriction arguments can be provided as needed; when not specified, all available cases
are selected.

When posit is supplied together with col.names, the selection process is done in two steps. Firstly,
the column names set by col.names are selected. Secondly, the instances defined by posit are
selected from the first selection set.

See select.colnames.lsd and select.colattrs.lsd for examples on how to apply advanced
selection options.

Value

Returns a 4D array containing data series for each instance from the selected variables.

The array dimension order is: time x variable x instance x file.

When pool = TRUE, the produced array is 3-dimensional. Pooling require that selected columns
contains EXACTLY the same variables (number of instances may be different).

Note

If the selected files don’t have the same columns available (names), after column selection, an error
is produced.

When using the option pool = TRUE, columns from multiple files are consolidated with their original
names plus the file name, to keep all column names unique. Use name.var.lsd to get just the LSD
name of the variable corresponding to each column.

read.list.lsd 23

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() read.3d.lsd(), read.single.lsd(), read.multi.lsd(), read.list.lsd(),
read.raw.lsd()

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

read all instances of all variables from files,
allArray <- read.4d.lsd(files)
print(allArray[1 : 10, 1 : 7, 1, 1]) # 1st instance of 1st file (7 vars and 10 times)
print(allArray[11 : 20, "X_A1p", , "Sim1_2"]) # all instances of _A1p in Sim1_2 (10 times)
print(allArray[50, 9, ,]) # all instances of all files of 9th variable for t=50

the same, but pooling all files into a single (3D!) array
allArrayPool <- read.4d.lsd(files, pool = TRUE)
print(allArrayPool[1 : 10, 8 : 9, 3]) # 3rd instances of last 2 vars (10 times)
print(allArrayPool[11 : 20, "X_A1p", 4 : 9]) # 6 instances of _A1p variable (10 times)
print(allArrayPool[50, 9, 4 : 9]) # 6 instances of all files of 9th variable for t=50

read instances of a set of variables named '_A1p' and '_growth1'
abArray <- read.4d.lsd(files, c("_A1p", "_growth1"))
print(abArray[1 : 10, , 1, 2]) # 1st instances of 2nd file (all vars and 10 times)
print(abArray[11 : 20, 2, , "Sim1_3"]) # all instances of 2nd variable in Sim1_3 (10 times)
print(abArray[50, "X_A1p", ,]) # all instances of all files of _A1p variable for t=50

read all variables/variables, skipping the initial 20 time steps
and keeping up to 30 time steps (from t = 21 up to t = 30)
allArray21_30 <- read.4d.lsd(files, skip = 20, nrows = 30)
print(allArray21_30[, "X_growth1", , 2]) # all instances of _growth1 variable in 2nd file
print(allArray21_30[10, 8, ,]) # all instances of all files of 8th variable for t=30

read all variables in second-level objects, using up to 2 cores for processing
abArray2 <- read.4d.lsd(files, posit = "*_*", posit.match = "glob", nnodes = 2)
print(abArray2[11 : 20, , 5, "Sim1_1"]) # 5th instances in Sim1_1 file

read.list.lsd Read one or more instances of LSD variables (time series) from a set
of LSD results file into a list

Description

This function reads the data series associated to a specific or a set of instances of each selected
variable from a set of LSD results file (.res) and saves them into separated matrices (one per file).

24 read.list.lsd

Usage

read.list.lsd(files, col.names = NULL, nrows = -1, skip = 0,
check.names = TRUE, instance = 0, pool = FALSE, nnodes = 1,
posit = NULL, posit.match = c("fixed", "glob", "regex"))

Arguments

files a character vector containing the names of the LSD results files which the data
are to be read from. If they do not contain an absolute path, the file names are
relative to the current working directory, getwd(). These can be compressed
files and must include the appropriated extension (usually .res or .res.gz).

col.names a vector of optional names for the variables. The default is to read all variables.

nrows integer: the maximum number of time steps (rows) to read in. Negative and
other invalid values are ignored. The default is to read all rows.

skip integer: the number of time steps (rows) of the results file to skip before begin-
ning to read data. The default is to read from the first time step (t = 1).

check.names logical. If TRUE the names of the variables are checked to ensure that they are
syntactically valid variable names. If necessary they are adjusted (by make.names)
so that they are, and also to ensure that there are no duplicates.

instance integer: the instance of the variable to be read, for variables that exist in more
than one object. This number is based on the position (column) of the variable
in the results file. The default (0) is to read all instances.

pool logical. If TRUE, variables instances from all files are concatenated (by columns)
into a single matrix. If FALSE (the default), each file is saved as a separated
matrix in a list.

nnodes integer: the maximum number of parallel computing nodes (parallel threads) in
the current computer to be used for reading the files. The default, nnodes = 1,
means single thread processing (no parallel threads). If equal to zero, creates up
to one node per CPU core. Only PSOCK clusters are used, to ensure compatibility
with any platform. Please note that each node requires its own memory space,
so memory usage increases linearly with the number of nodes.

posit a string, a vector of strings or an integer vector describing the LSD object posi-
tion of the variable(s) to select. If an integer vector, it should define the position
of a SINGLE LSD object. If a string or vector of strings, each element should
define one or more different LSD objects, so the returning matrix will contain
variables from more than one object. By setting posit.match, globbing (wild-
card), and regular expressions can be used to select multiple objects at once; in
this case, all matching objects are returned.

posit.match a string defining how the posit argument, if provided, should be matched against
the LSD object positions. If equal to "fixed", the default, only exact matching
is done. "glob" allows using simple wildcard characters (’*’ and ’?’) in posit
for matching. If posit.match="regex" interpret posit as POSIX 1003.2 ex-
tended regular expression(s). See regular expressions for details of the dif-
ferent types of regular expressions. Options can be abbreviated.

read.list.lsd 25

Details

Selection restriction arguments can be provided as needed; when not specified, all available cases
are selected.

When posit is supplied together with col.names or instance, the selection process is done in
two steps. Firstly, the column names and instance positions set by col.names and instance are
selected. Secondly, the instances defined by posit are selected from the first selection set.

See select.colnames.lsd and select.colattrs.lsd for examples on how to apply advanced
selection options.

Value

Returns a named list of matrices with the selected variables’ time series in the results files. If pool
= TRUE, the return value is a single, consolidated matrix (column names are not unique).

The matrices dimension order is: time x variable.

Matrix column names are only "cleaned" if there are just single instanced variables selected. When
multiple instanced variables are present, the column names include all the header information con-
tained in the LSD results file. The name of the LSD variable associated to any column name can be
retrieved with name.var.lsd.

Note

When using the option pool = TRUE, columns from multiple files are consolidated with their original
names plus the file name, to keep all column names unique. Use name.var.lsd to get just the LSD
name of the variable corresponding to each column.

The returned matrices may be potentially very wide, in particular if variables are not well se-
lected(see col.names above) or if there is a large number of instances.

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() name.var.lsd() read.single.lsd(), read.multi.lsd(), read.3d.lsd(),
read.4d.lsd(), read.raw.lsd(),

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

read all instances of all variables from three files (one matrix each),
tableList <- read.list.lsd(files)
print(tableList[[1]][1 : 5, 1 : 7])
print(tableList[[2]][1 : 5, 1 : 7])
print(tableList[[3]][1 : 5, 1 : 7])

read all instances of a set of variables named '_A1p' and '_growth1'

26 read.multi.lsd

and pool data into a single matrix
abTable <- read.list.lsd(files, c("_A1p", "_growth1"), pool = TRUE)
print(abTable[10 : 20, 10 : 12])

read instance 4 of all variables, skipping the initial 20 time steps
and keeping up to 30 time steps (from t = 21 up to t = 30)
inst4List21_30 <- read.list.lsd(files, skip = 20, nrows = 30, instance = 4)
print(inst4List21_30[[1]])
print(inst4List21_30[[2]])

read all variables in top-level objects, using up to 2 cores for processing
instTop <- read.list.lsd(files, posit = 1, nnodes = 2)
print(instTop$Sim1_1[11 : 20,]) # use the file name to retrieve list item
print(instTop$Sim1_2[11 : 20,])

read.multi.lsd Read all instances of LSD variables (time series) from a LSD results
file

Description

This function reads the data series associated to all instances of each selected variable from a LSD
results file (.res).

Usage

read.multi.lsd(file, col.names = NULL, nrows = -1, skip = 0,
check.names = TRUE, posit = NULL,
posit.match = c("fixed", "glob", "regex"),
posit.cols = FALSE)

Arguments

file the name of the LSD results file which the data are to be read from. If it does
not contain an absolute path, the file name is relative to the current working
directory, getwd(). This can be a compressed file (see file) and must include
the appropriated extension (usually .res or .res.gz).

col.names a vector of optional names for the variables. The default is to read all variables.

nrows integer: the maximum number of time steps (rows) to read in. Negative and
other invalid values are ignored. The default is to read all rows.

skip integer: the number of time steps (rows) of the results file to skip before begin-
ning to read data. The default is to read from the first time step (t = 1).

check.names logical. If TRUE the names of the variables are checked to ensure that they are
syntactically valid variable names. If necessary they are adjusted (by make.names)
so that they are, and also to ensure that there are no duplicates.

read.multi.lsd 27

posit a string, a vector of strings or an integer vector describing the LSD object posi-
tion of the variable(s) to select. If an integer vector, it should define the position
of a SINGLE LSD object. If a string or vector of strings, each element should
define one or more different LSD objects, so the returning matrix will contain
variables from more than one object. By setting posit.match, globbing (wild-
card), and regular expressions can be used to select multiple objects at once; in
this case, all matching objects are returned.

posit.match a string defining how the posit argument, if provided, should be matched against
the LSD object positions. If equal to "fixed", the default, only exact matching
is done. "glob" allows using simple wildcard characters (’*’ and ’?’) in posit
for matching. If posit.match="regex" interpret posit as POSIX 1003.2 ex-
tended regular expression(s). See regular expressions for details of the dif-
ferent types of regular expressions. Options can be abbreviated.

posit.cols logical. If TRUE just the position information is used as the names of the columns
in each variable list. If FALSE, the default, the column names include all the
header information contained in the LSD results file (name, position and time
span).

Details

Selection restriction arguments can be provided as needed; when not specified, all available cases
are selected.

When posit is supplied together with col.names, the selection process is done in two steps. Firstly,
the column names set by col.names are selected. Secondly, the instances defined by posit are
selected from the first selection set.

See select.colnames.lsd and select.colattrs.lsd for examples on how to apply advanced
selection options.

Value

Returns a named list of matrices, each containing one of the selected variables’ time series from the
results file.

Variable names are converted to valid R ones when defining list names. Matrix column names
are not "cleaned", even for single instanced variables. The column names include all the header
information contained in the LSD results file.

Note

For extracting data from multiple similar files (like sensitivity analysis results), see read.list.lsd.

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() read.single.lsd(), read.list.lsd(), read.3d.lsd(), read.4d.lsd(),
read.raw.lsd()

28 read.raw.lsd

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

load first .res file into a simple matrix (all instances),
macroList <- read.multi.lsd(files[1])
length(macroList) # number of lists holding variables
names(macroList) # name of each list
print(macroList[[1]][1 : 5, , drop = FALSE])
print(macroList$X_A1p[10 : 20,])

read first instance of 2 variables, skipping the initial 20 time steps
and keeping up to 30 time steps (from t = 21 up to t = 30), positions in cols
varsList21_30 <- read.multi.lsd(files[2], c("_A1p", "_growth1"),

skip = 20, nrows = 30, posit.cols = TRUE)
print(varsList21_30[[1]])
print(varsList21_30$X_growth1)

read.raw.lsd Read LSD results file and clean variables names

Description

This function reads all the data series in a LSD results file (.res).

Usage

read.raw.lsd(file, nrows = -1, skip = 0, col.names = NULL,
check.names = TRUE, clean.names = FALSE, instance = 0,
posit = NULL, posit.match = c("fixed", "glob", "regex"))

Arguments

file the name of the LSD results file which the data are to be read from. If it does
not contain an absolute path, the file name is relative to the current working
directory, getwd(). This can be a compressed file (see file) and must include
the appropriated extension (usually .res or .res.gz).

nrows integer: the maximum number of time steps (rows) to read in. Negative and
other invalid values are ignored. The default is to read all rows.

skip integer: the number of time steps (rows) of the results file to skip before begin-
ning to read data. The default is to read from the first time step (t = 1).

col.names a vector of optional names for the variables. The default is to read all variables.
The names must to be in LSD/C++ format, without dots (".") in the name. Any
dot (and trailing characters) will be automatically removed.

check.names logical. If TRUE the names of the variables are checked to ensure that they are
syntactically valid variable names. If necessary they are adjusted to ensure that
there are no duplicates.

read.raw.lsd 29

clean.names logical. If TRUE the names of the variables in the columns are "cleaned" to
remove extra information from the header in the LSD results file. This option is
incompatible (and will be ignored) when multiple instances of a single variable
are selected. If FALSE, the default, preserve extra information in the names.

instance integer: the instance of the variable to be read, for variables that exist in more
than one object. This number is based on the relative position (column) of the
variable in the results file. The default (0) is to read all instances.

posit a string, a vector of strings or an integer vector describing the LSD object posi-
tion of the variable(s) to select. If an integer vector, it should define the position
of a SINGLE LSD object. If a string or vector of strings, each element should
define one or more different LSD objects, so the returning matrix will contain
variables from more than one object. By setting posit.match, globbing (wild-
card), and regular expressions can be used to select multiple objects at once; in
this case, all matching objects are returned.

posit.match a string defining how the posit argument, if provided, should be matched against
the LSD object positions. If equal to "fixed", the default, only exact matching
is done. "glob" allows using simple wildcard characters (’*’ and ’?’) in posit
for matching. If posit.match="regex" interpret posit as POSIX 1003.2 ex-
tended regular expression(s). See regular expressions for details of the dif-
ferent types of regular expressions. Options can be abbreviated.

Details

Selection restriction arguments can be provided as needed; when not specified, all available cases
are selected.

When posit is supplied together with col.names or instance, the selection process is done in
two steps. Firstly, the column names and instance positions set by col.names and instance are
selected. Secondly, the instances defined by posit are selected from the first selection set.

See select.colnames.lsd and select.colattrs.lsd for examples on how to apply advanced
selection options.

Value

Returns a single matrix containing all variables’ time series contained in the results file.

Note

The returned matrix may be potentially very wide. See read.single.lsd for more polished column
names. To use multiple results files simultaneously, see read.list.lsd and read.3d.lsd.

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() read.single.lsd(), read.multi.lsd(), read.list.lsd(), read.3d.lsd(),
read.4d.lsd(), select.colattrs.lsd(), select.colnames.lsd()

30 read.single.lsd

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

read all instances of all variables of first file,
bigTable <- read.raw.lsd(files[1])
print(bigTable[1 : 5, 1 : 7])

read all instances of all variables, skipping the initial 20 time steps
and keeping up to 30 time steps (from t = 21 up to t = 30)
all21_30 <- read.raw.lsd(files[2], skip = 20, nrows = 30)
print(all21_30[, 1 : 7])

read the third instances of a set of variables named '_A1p' and '_growth1'
abTable <- read.raw.lsd(files[1], col.names = c("_A1p", "_growth1"),

instance = 3)
print(abTable[10 : 20,])

read instances of variable '_A1p' for the second and fourth objects under
any top-level object (use globbing)
a24 <- read.raw.lsd(files[1], col.names = "_A1p",

posit = c("*_2", "*_4"), posit.match = "glob")
print(a24[1 : 10,])

read.single.lsd Read LSD variables (time series) from a LSD results file (a single in-
stance of each variable only)

Description

This function reads the data series associated to one instance of each selected variable from a LSD
results file (.res). Just a single instance (time series of a single LSD object) is read at each call.

Usage

read.single.lsd(file, col.names = NULL, nrows = -1, skip = 0,
check.names = TRUE, instance = 1, posit = NULL,
posit.match = c("fixed", "glob", "regex"))

Arguments

file the name of the LSD results file which the data are to be read from. If it does
not contain an absolute path, the file name is relative to the current working
directory, getwd(). This can be a compressed file (see file) and must include
the appropriated extension (usually .res or .res.gz).

col.names a vector of optional names for the variables. The default is to read all variables.
The names must to be in LSD/C++ format, without dots (".") in the name. Any
dot (and trailing characters) will be automatically removed.

read.single.lsd 31

nrows integer: the maximum number of time steps (rows) to read in. Negative and
other invalid values are ignored. The default is to read all rows.

skip integer: the number of time steps (rows) of the results file to skip before begin-
ning to read data. The default is to read from the first time step (t = 1).

check.names logical. If TRUE the names of the variables are checked to ensure that they are
syntactically valid variable names. If necessary they are adjusted to ensure that
there are no duplicates.

instance integer: the instance of the variable to be read, for variables that exist in more
than one object. This number is based on the relative position (column) of the
variable in the results file. The default (0) is to read all instances.

posit a string, a vector of strings or an integer vector describing the LSD object posi-
tion of the variable(s) to select. If an integer vector, it should define the position
of a SINGLE LSD object. If a string or vector of strings, each element should
define one or more different LSD objects, so the returning matrix will contain
variables from more than one object. By setting posit.match, globbing (wild-
card), and regular expressions can be used to select multiple objects at once.

posit.match a string defining how the posit argument, if provided, should be matched against
the LSD object positions. If equal to "fixed", the default, only exact matching
is done. "glob" allows using simple wildcard characters (’*’ and ’?’) in posit
for matching. If posit.match="regex" interpret posit as POSIX 1003.2 ex-
tended regular expression(s). See regular expressions for details of the dif-
ferent types of regular expressions. Options can be abbreviated.

Details

Selection restriction arguments can be provided as needed; when not specified, all available cases
are considered, but just one instance is considered.

When posit is supplied together with col.names or instance, the selection process is done in
two steps. Firstly, the column names and the instance position set by col.names and instance are
selected. Secondly, the instances defined by posit are selected from the first selection set.

See select.colnames.lsd and select.colattrs.lsd for examples on how to apply advanced
selection options.

Value

Returns a matrix containing the selected variables’ time series contained in the results file.

Note

This function is useful to extract time series for variables that are single instanced, like summary
statistics. For multi-instanced variables, see read.multi.lsd. For extracting data from multiple
similar files (like sensitivity analysis results), see read.list.lsd (multi-instanced variables) and
read.3d.lsd (single-instanced variables).

Author(s)

Marcelo C. Pereira

32 select.colattrs.lsd

See Also

list.files.lsd() read.multi.lsd(), read.list.lsd(), read.3d.lsd(), read.4d.lsd(), read.raw.lsd()

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

load first .res file into a simple matrix (first instances only)
macroVar <- read.single.lsd(files[1])
print(macroVar[10 : 20, 5 : 9])

read second instance of a set of variables named '_A1p' and '_growth1'
ag2Table <- read.single.lsd(files[2], col.names = c("_A1p", "_growth1"),

instance = 2)
print(ag2Table[10 : 15,])

read first instance of all variables, skipping the initial 20 time steps
and keeping up to 30 time steps (from t = 21 up to t = 30)
var21_30 <- read.single.lsd(files[3], skip = 20, nrows = 30)
print(var21_30[, 1 : 7])

read third instance of all variables at the second object level
var2_3_5 <- read.single.lsd(files[1], instance = 3, posit = "*_*",

posit.match = "glob")
print(var2_3_5[20 : 25,])

select.colattrs.lsd Select a subset of a LSD results matrix (by variable attributes)

Description

This function select a subset of a LSD results matrix (as produced by read.raw.lsd) by the variable
attributes, considering the LSD object position and the time span.

Usage

select.colattrs.lsd(dataSet, info, col.names = NULL, init.value = NA,
init.time = NA, end.time = NA, posit = NULL,
posit.match = c("fixed", "glob", "regex"))

Arguments

dataSet matrix produced by the invocation of read.raw.lsd, read.single.lsd, read.multi.lsd
or read.list.lsd (a single matrix a time) functions.

info data frame produced by info.details.lsd for the same results file from where
dataSet was extracted.

select.colattrs.lsd 33

col.names a vector of optional names for the variables to select from. The default is to
select from all variables.

init.value initial value attributed to the variable(s) to select.

init.time initial time attributed to the variable(s) to select.

end.time end time attributed to the variable(s) to select.

posit a string, a vector of strings or an integer vector describing the LSD object posi-
tion of the variable(s) to select. If an integer vector, it should define the position
of a SINGLE LSD object. If a string or vector of strings, each element should
define one or more different LSD objects, so the returning matrix will contain
variables from more than one object. By setting posit.match, globbing (wild-
card), and regular expressions can be used to select multiple objects at once; in
this case, all matching objects are returned.

posit.match a string defining how the posit argument, if provided, should be matched against
the LSD object positions. If equal to "fixed", the default, only exact matching
is done. "glob" allows using simple wildcard characters (’*’ and ’?’) in posit
for matching. If posit.match="regex" interpret posit as POSIX 1003.2 ex-
tended regular expression(s). See regular expressions for details of the dif-
ferent types of regular expressions. Options can be abbreviated.

Details

Selection restriction arguments can be provided as needed; when not specified, all available cases
are selected.

When posit is supplied together with other attribute filters, the selection process is done in two
steps. Firstly, the column names set by otter attribute filters are selected. Secondly, the instances
defined by posit are selected from the first selection set.

See also the read.XXXX.lsd functions which may select just specific posit object instances when
loading LSD results. If only a single set of instances is required, this would be more efficient than
using this function.

Value

Returns a single matrix containing the selected variables’ time series contained in the original data
set.

Note

If only variable names selection is needed, select.colnames.lsd is more efficient because infor-
mation pre-processing (info.details.lsd) is not required.

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd() info.details.lsd(), select.colnames.lsd()

34 select.colnames.lsd

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

read all instances of all variables of first file
bigTable <- read.raw.lsd(files[1])

build the info table
info <- info.details.lsd(files[1])

extract specific instances of a set of variables named '_A1p' and '_growth1'
abFirst2 <- select.colattrs.lsd(bigTable, info, c("_A1p", "_growth1"),

posit = c("1_2", "1_5"))
print(abFirst2[50 : 60,])

extract instances of variable '_A1p' that start at time step t = 1
for the second and fourth objects under any top-level object (use globbing)
a24 <- select.colattrs.lsd(bigTable, info, "_A1p", init.time = 1,

posit = c("*_2", "*_4"), posit.match = "glob")
print(a24[1 : 10,])

extract all second-level object instances of all variables
aSec <- select.colattrs.lsd(bigTable, info, posit = "*_*", posit.match = "glob")
print(aSec[1 : 10,])

extract just top-level object instances variables
aTop <- select.colattrs.lsd(bigTable, info, posit = "^[0-9]+$",

posit.match = "regex")
print(aTop[1 : 10,])

select.colnames.lsd Select a subset of a LSD results matrix (by column/variable names)

Description

This function select a subset of a LSD results matrix (as produced by read.raw.lsd) by the column
(variable) names, considering only the name part of the column labels.

Usage

select.colnames.lsd(dataSet, col.names = NULL, instance = 0,
check.names = TRUE, posit = NULL,
posit.match = c("fixed", "glob", "regex"))

Arguments

dataSet matrix produced by the invocation of read.raw.lsd, read.single.lsd, read.multi.lsd
or read.list.lsd (a single matrix a time) functions.

select.colnames.lsd 35

col.names a vector of optional names for the variables. The default is to read all variables.
The names must to be in LSD/C++ format, without dots (".") in the name. Any
dot (and trailing characters) will be automatically removed.

instance integer: the instance of the variable to be read, for variables that exist in more
than one object. This number is based on the relative position (column) of the
variable in the results file. The default (0) is to read all instances.

check.names logical. If TRUE the names of the variables are checked to ensure that they are
syntactically valid variable names. If necessary they are adjusted to ensure that
there are no duplicates.

posit a string, a vector of strings or an integer vector describing the LSD object posi-
tion of the variable(s) to select. If an integer vector, it should define the position
of a SINGLE LSD object. If a string or vector of strings, each element should
define one or more different LSD objects, so the returning matrix will contain
variables from more than one object. By setting posit.match, globbing (wild-
card), and regular expressions can be used to select multiple objects at once; in
this case, all matching objects are returned. This option only operates if dataSet
was generated by read.raw.lsd WITHOUT argument clean.names = TRUE.

posit.match a string defining how the posit argument, if provided, should be matched against
the LSD object positions. If equal to "fixed", the default, only exact matching
is done. "glob" allows using simple wildcard characters (’*’ and ’?’) in posit
for matching. If posit.match="regex" interpret posit as POSIX 1003.2 ex-
tended regular expression(s). See regular expressions for details of the dif-
ferent types of regular expressions. Options can be abbreviated.

Details

Selection restriction arguments can be provided as needed; when not specified, all available cases
are selected.

The selection of specific posit object positions require full detail on dataSet column names, as
produced by read.raw.lsd and clean.names = TRUE is NOT used. Other read.XXXX.lsd func-
tions do NOT produce the required detail on the data matrices to do object position selection. If
such datasets are used to feed this function and posit is set, the return value will be NULL. In this
case, consider using select.colattrs.lsd, or specifying posit when calling read.XXXX.lsd
functions.

When posit is supplied together with other attribute filters, the selection process is done in two
steps. Firstly, the column names set by otter attribute filters are selected. Secondly, the instances
defined by posit are selected from the first selection set.

See also the read.XXXX.lsd functions which may select just specific col.names columns, instance
instances, or posit positions when loading LSD results. If only a single set of columns/instance/positions
is required, this may be more efficient than using this function.

Value

Returns a single matrix containing the selected variables’ time series contained in the original data
set.

36 select.colnames.lsd

Note

The variable/column names must be valid R or LSD column names.

Author(s)

Marcelo C. Pereira

See Also

list.files.lsd(), select.colattrs.lsd(), read.raw.lsd()

Examples

get the list of file names of example LSD results
files <- list.files.lsd(system.file("extdata", package = "LSDinterface"))

read all instances of all variables in first file
bigTable <- read.raw.lsd(files[1])
print(bigTable[1 : 10, 1 : 7])

extract all instances of a set of variables named '_A1p' and '_growth1'
abTable <- select.colnames.lsd(bigTable, c("_A1p", "_growth1"))
print(abTable[11 : 15,])

extract specific instances of a set of variables named '_A1p' and '_growth1'
abFirst2 <- select.colnames.lsd(bigTable, c("_A1p", "_growth1"),

posit = c("1_2", "1_5"))
print(abFirst2[50 : 60,])

extract all second-level object instances of all variables
aSec <- select.colnames.lsd(bigTable, posit = "*_*", posit.match = "glob")
print(aSec[1 : 10,])

extract just top-level object instances variables
aTop <- select.colnames.lsd(bigTable, posit = "^[0-9]+$", posit.match = "regex")
print(aTop[1 : 10,])

Index

∗ attribute
info.dimensions.lsd, 4
info.init.lsd, 8
info.names.lsd, 9
name.check.lsd, 14
name.clean.lsd, 15
name.nice.lsd, 16
name.r.unique.lsd, 17
name.var.lsd, 18

∗ database
LSDinterface-package, 2
read.3d.lsd, 19
read.4d.lsd, 21
read.list.lsd, 23
read.multi.lsd, 26
read.raw.lsd, 28
read.single.lsd, 30
select.colattrs.lsd, 32
select.colnames.lsd, 34

∗ datasets
LSDinterface-package, 2
read.3d.lsd, 19
read.4d.lsd, 21
read.list.lsd, 23
read.multi.lsd, 26
read.raw.lsd, 28
read.single.lsd, 30
select.colattrs.lsd, 32
select.colnames.lsd, 34

∗ file
info.details.lsd, 3
info.dimensions.lsd, 4
info.distance.lsd, 5
info.init.lsd, 8
info.names.lsd, 9
info.stats.lsd, 10
list.files.lsd, 12
LSDinterface-package, 2
read.3d.lsd, 19

read.4d.lsd, 21
read.list.lsd, 23
read.multi.lsd, 26
read.raw.lsd, 28
read.single.lsd, 30

∗ interface
list.files.lsd, 12
LSDinterface-package, 2
read.3d.lsd, 19
read.4d.lsd, 21
read.list.lsd, 23
read.multi.lsd, 26
read.raw.lsd, 28
read.single.lsd, 30

∗ misc
list.files.lsd, 12
name.check.lsd, 14
name.clean.lsd, 15
name.nice.lsd, 16
name.r.unique.lsd, 17
name.var.lsd, 18

∗ package
LSDinterface-package, 2

∗ statistics
info.distance.lsd, 5
info.stats.lsd, 10

getwd, 3, 4, 8, 9, 12, 14, 19, 21, 24, 26, 28, 30

info.details.lsd, 3, 5, 8, 9, 32, 33
info.dimensions.lsd, 4, 4, 8, 9, 11
info.distance.lsd, 5
info.init.lsd, 4, 5, 8, 9
info.names.lsd, 4, 5, 8, 9, 15–18
info.stats.lsd, 7, 10

list.files.lsd, 3–5, 8, 9, 11, 12, 15, 20, 23,
25, 27, 29, 32, 33, 36

LSDinterface (LSDinterface-package), 2
LSDinterface-package, 2

37

38 INDEX

LSDsensitivity package, 14
LSDsensitivity package documentation,

13

name.check.lsd, 14
name.clean.lsd, 15, 16–18
name.nice.lsd, 16, 16, 17
name.r.unique.lsd, 17
name.var.lsd, 16, 17, 18, 22, 25

read.3d.lsd, 2, 5, 7, 10, 11, 14, 19, 23, 25,
27, 29, 31, 32

read.4d.lsd, 2, 5, 7, 10, 11, 14, 20, 21, 25,
27, 29, 32

read.list.lsd, 2, 14, 20, 23, 23, 27, 29, 31,
32, 34

read.multi.lsd, 2, 14, 20, 23, 25, 26, 29, 31,
32, 34

read.raw.lsd, 2, 14, 20, 23, 25, 27, 28, 32,
34, 36

read.single.lsd, 2, 14, 20, 23, 25, 27, 29,
30, 32, 34

regular expression, 13

select.colattrs.lsd, 3, 20, 22, 25, 27, 29,
31, 32, 36

select.colnames.lsd, 3, 20, 22, 25, 27, 29,
31, 33, 34

TSdist package, 6
TSDistances, 6

	LSDinterface-package
	info.details.lsd
	info.dimensions.lsd
	info.distance.lsd
	info.init.lsd
	info.names.lsd
	info.stats.lsd
	list.files.lsd
	name.check.lsd
	name.clean.lsd
	name.nice.lsd
	name.r.unique.lsd
	name.var.lsd
	read.3d.lsd
	read.4d.lsd
	read.list.lsd
	read.multi.lsd
	read.raw.lsd
	read.single.lsd
	select.colattrs.lsd
	select.colnames.lsd
	Index

