
Package ‘LPS’
October 12, 2022

Type Package

Title Linear Predictor Score, for Binary Inference from Multiple
Continuous Variables

Version 1.0.16

Date 2021-05-29

Author Sylvain Mareschal

Maintainer Sylvain Mareschal <maressyl@gmail.com>

URL https://bioinformatics.ovsa.fr/LPS

BugReports https://github.com/maressyl/R.LPS/issues

Description An implementation of the Linear Predictor Score approach, as initiated by Rad-
macher et al. (J Comput Biol 2001) and enhanced by Wright et al. (PNAS 2003) for gene expres-
sion signatures. Several tools for unsupervised clustering of gene expression data are also pro-
vided.

Depends graphics, grDevices, R (>= 2.10)

Imports stats, utils, methods

Suggests limma

License GPL (>= 3)

NeedsCompilation no

Repository CRAN

Date/Publication 2021-05-29 10:20:02 UTC

R topics documented:
clusterize . 2
heat . 4
heat.map . 5
heat.scale . 8
LPS . 9
LPS.coeff . 11
OVL . 14

1

https://bioinformatics.ovsa.fr/LPS
https://github.com/maressyl/R.LPS/issues

2 clusterize

plot.LPS . 15
predict.LPS . 16
Rosenwald dataset . 19
surv.colors . 20
surv.scale . 22

Index 24

clusterize Hierarchical clustering heat maps

Description

This function draws a heat map ordered according to hierarchical clusterings, similarly to heatmap.
It offers more control on layout and allows multiple row annotations.

hclust.ward is derivated from ’stats’ package hclust, with an alternative default (as arguments
can not be passed to it).

dist.COR mimics ’stats’ package dist, computing distances as 1 - Pearson’s correlation coefficient.

Usage

clusterize(expr, side = NULL, cex.col = NA, cex.row = NA, mai.left = NA,
mai.bottom = NA, mai.right = 0.1, mai.top = 0.1, side.height = 1, side.col = NULL,
side.srt = 0, side.cex = 1, col.heatmap = heat(), zlim = "0 centered",

zlim.trim = 0.02, norm = c("rows", "columns", "none"), norm.clust = TRUE,
norm.robust = FALSE, customLayout = FALSE, getLayout = FALSE, plot = TRUE,
widths = c(1, 4), heights = c(1, 4), order.genes = NULL, order.samples = NULL,
fun.dist = dist.COR, fun.hclust = hclust.ward, clust.genes = NULL,
clust.samples = NULL)

dist.COR(input)
hclust.ward(input)

Arguments

expr A numeric matrix, holding features (genes) in columns and observations (sam-
ples) in rows. Rows and columns will be ordered according to hierarchical clus-
tering results.

side To be passed to heat.map.

cex.col To be passed to heat.map.

cex.row To be passed to heat.map.

mai.left To be passed to heat.map.

mai.bottom To be passed to heat.map.

mai.right To be passed to heat.map.

mai.top To be passed to heat.map.

side.height To be passed to heat.map.

clusterize 3

side.col To be passed to heat.map.

side.srt To be passed to heat.map.

side.cex To be passed to heat.map.

col.heatmap To be passed to heat.map.

zlim To be passed to heat.map.

zlim.trim To be passed to heat.map.

norm To be passed to heat.map.

norm.clust Single logical value, whether to apply normalization before clustering or after.
Normalization applied depends on norm.

norm.robust To be passed to heat.map.

customLayout Single logical value, as layout does not allow nested calls, set this to TRUE to
make your own call to layout and embed this plot in a wider one.

getLayout Single logical value, whether to only return the layout arguments that would
be used with the set of arguments provided or not. It can prove useful to build
custom layouts, e.g. merging this plot to an other. See also customLayout.

plot To be passed to heat.map.

widths To be passed to layout.

heights To be passed to layout.

order.genes A function taking the gene dendrogram and expr as arguments, and returning
the same dendrogram ordered in a custom way.

order.samples A function taking the sample dendrogram and expr as arguments, and returning
the same dendrogram ordered in a custom way.

fun.dist A function to be used for distance computation in clustering. Default value uses
1 - Pearson’s correlation as distance. See dist for further details.

fun.hclust A function to be used for agglomeration in clustering. See hclust for further
details.

clust.genes If not NULL, an object coercible to the dendrogram class (typically the output
from hclust()) to use instead of a fresh hierarchical clustering of genes. The
FALSE value can also be used to disable computation and/or plotting of the den-
drogram.

clust.samples If not NULL, an object coercible to the dendrogram class (typically the output
from hclust()) to use instead of a fresh hierarchical clustering of samples.
The FALSE value can also be used to disable computation and/or plotting of the
dendrogram.

input See hclust and dist respectively for further details.

Value

clusterize invisibly returns the same list as heat.map, plus :

genes The gene dendrogram.

samples The sample dendrogram.

See hclust and dist respectively for the other functions.

4 heat

Author(s)

Sylvain Mareschal

See Also

heat.map, heatmap, hclust, dist

Examples

Data with features in columns
data(rosenwald)
group <- rosenwald.cli$group
expr <- t(rosenwald.expr)[,1:100]

NA imputation (feature's mean to minimize impact)
f <- function(x) { x[is.na(x)] <- round(mean(x, na.rm=TRUE), 3); x }
expr <- apply(expr, 2, f)

Simple heat map
clusterize(expr)

With annotation (row named data.frame)
side <- data.frame(group, row.names=rownames(expr))
clusterize(expr, side=side)

heat Heatmap palette generation

Description

This function generates a ramp of colors for heat.map derivated functions.

Usage

heat(colors = c("#8888FF", "#000000", "#FF4444"), n = 256, shapeFun = heat.exp, ...)
heat.exp(n, part, base = 1.015)
heat.lin(n, part)

Arguments

colors Character vector of length 3, determining starting, middle and final colors.

n Single integer value, amount of colors / values to generate.
shapeFun Function taking at least 2 arguments : n and part. heat.exp and heat.lin are

provided as examples.

... Further arguments to heat will be passed to shapeFun.

part Single integer, defined as 1 while generating colors between the first two bound-
aries, and 2 otherwise.

base Single numeric value, base for exponential slope.

heat.map 5

Value

heat returns a character vector of colors in hexadecimal representation.

heat.lin and heat.expr return n numeric values, defining a curve whose slope will be mimiced
during color interpolation.

Author(s)

Sylvain Mareschal

See Also

colorRampPalette

heat.map, clusterize, predict.LPS

Examples

Classical heatmap colors
palette <- heat(c("green", "black", "red"))
heat.scale(zlim=c(-2,2), col.heatmap=palette)

Two distinct shapes provided
heat.scale(zlim=c(-2,2), col.heatmap=heat(shapeFun=heat.lin))
heat.scale(zlim=c(-2,2), col.heatmap=heat(shapeFun=heat.exp))

heat.map Enhanced heat map ploting

Description

This function draws a heatmap from a matrix, similarly to image. It also offers normalization and
annotation features, with more control than heatmap.

side can provide multiple sample annotations, and are handled differently depending on their class
:

numeric are attributed grey shades from the minimum to the maximum, which are provided in the
legend

factor have their levels attributed colors using a default or custom palette. Hexadecimal color
codes starting with # and color names known by R are used "as is".

character are printed as is in a blank cell. Hexadecimal color codes starting with # and color
names known by R are used as background colors instead of text.

logical are ploted in dark (TRUE) or light (FALSE) gray, leaving NAs in white.

6 heat.map

Usage

heat.map(expr, side = NULL, cex.col = NA, cex.row = NA, mai.left = NA,
mai.bottom = NA, mai.right = 0.1, mai.top = 0.1, side.height = 1, side.col = NULL,
side.srt = 0, side.cex = 1, col.heatmap = heat(), zlim = "0 centered",

zlim.trim = 0.02, norm = c("rows", "columns", "none"), norm.robust = FALSE,
customLayout = FALSE, getLayout = FALSE, font = c(1, 3), xaxt = "s", yaxt = "s")

Arguments

expr A numeric matrix, holding features (genes) in columns and observations (sam-
ples) in rows. Column and row order will not be altered.

side An annotation data.frame for expr, or NULL. Must contain at least a row for
each expr row, and one or many annotation column. Merging is performed
on row names, so rows must be named following the same conventions as expr.
Hexadecimal color definitions will be used "as is", other values will be attributed
colors according to side.col.

cex.col Single numeric value, character exapansion factor for column names. NA will
compute a value from expr size, similarly to heatmap.

cex.row Single numeric value, character exapansion factor for row names. NA will com-
pute a value from expr size, similarly to heatmap.

mai.left Single numeric value, left margin in inches (for row names). Use NA for an
automatic value computed from row name lengths. See par.

mai.bottom Single numeric value, bottom margin in inches (for column names). Use NA for
an automatic value computed from column name lengths. See par.

mai.right Single numeric value, right margin in inches (for higher level functions). See
par.

mai.top Single numeric value, top margin in inches. See par.
side.height Single numeric value, scaling factor for annotation track.
side.col A function returning as many colors as requested by its sole argument, defining

the colors to be used for side legend. Default uses a custom palette for few
values, and a derivative of rainbow if more than 8 colors are needed.

side.srt Single numeric value, determining the string rotation angle when writing char-
acter side columns (default is 0, horizontal, 90 is suggested for vertical text on
busy heat maps).

side.cex Single numeric value, the character expansion factor to use for character side
columns.

col.heatmap Character vector of colors, to be used for the cells of the heat map.
zlim Numeric vector of length two, defining minimal and maximal expr values that

will be mapped to colors in col.heatmap. Values outside of this range will
be rounded to the mearest boundary. Two special values are also allowed : "0
centered" to get a symetrical range around 0 (with the default palette, it enforces
0 as the center color), and "range" to get expr range after normalization.

zlim.trim Single numeric value between 0 and 1, defining the proportion of extreme values
(equally split on both sides) to remove before computing "0 centered" or "range"
zlim.

heat.map 7

norm Single character value, normalization to be performed (use "none" to perform no
normalization). "rows" will center and scale genes, while "columns" will center
and scale samples. The functions used depend on norm.robust.

norm.robust Single logical value, if TRUE median and mad will be used for centering and
scaling, else mean and sd.

customLayout Single logical value, as layout does not allow nested calls, set this to TRUE
to make your own call to layout and embed this plot in a wider one. See also
getLayout.

getLayout Single logical value, whether to only return the layout arguments that would
be used with the set of arguments provided or not. It can prove useful to build
custom layouts, e.g. merging this plot to an other. See also customLayout.

font Integer vector of length two, the font used to draw X and Y axis labels respec-
tively (see par). Default is to print X labels (usually samples) in normal font
and Y labels (usually genes) in italic font.

xaxt Single letter, whether to print column labels ("s") or not ("n").

yaxt Single letter, whether to print row labels ("s") or not ("n").

Value

Invisibly returns a named list :

zlim Final value of the zlim argument.

col.heatmap Final value of the col.heatmap argument.

legend If side is used, a named character vector of colors used for annotation.

cex.col Final value of the cex.col argument.

cex.row Final value of the cex.row argument.

mai.left Final value of the mai.left argument.

mai.bottom Final value of the mai.bottom argument.

Author(s)

Sylvain Mareschal

See Also

clusterize, heatmap

Examples

Data with features in columns
data(rosenwald)
group <- rosenwald.cli$group
expr <- t(rosenwald.expr)[,1:100]

NA imputation (feature's mean to minimize impact)
f <- function(x) { x[is.na(x)] <- round(mean(x, na.rm=TRUE), 3); x }
expr <- apply(expr, 2, f)

8 heat.scale

Simple heat map
heat.map(expr)

With annotation (row named data.frame)
side <- data.frame(group, row.names=rownames(expr))
heat.map(expr, side=side)

heat.scale Plots a heat map color scale, for legend

Description

This function plots a color scale using a custom color palette, to legend heat.map derivated func-
tions.

Usage

heat.scale(zlim, col.heatmap, at = -10:10, labels = NULL, horiz = TRUE,
robust = FALSE, customMar = FALSE, title=NA)

Arguments

zlim Numeric vector of length 2, minimum and maximum of values in the palette.
Should correspond to zlim in heat.map, consider to use heat.map invisible
return to get special values.

col.heatmap Character vector of colors used in the heat map. Should correspond to col.heatmap
in heat.map, consider to use heat.map invisible return to get special values.

at Numeric vector, values shown in the axis.

labels Character vector as long as at, defining the values to show at at.

horiz Single logical value, whether to plot an horizontal or a vertical scale.

robust Single logical value, whether to legend median and mad or mean and sd. Should
correspond to heat.map norm.robust value.

customMar Single logical value, whether to skip the call to par to set mar or not.

title Single character value, the axis title to use (NA for automatic generation).

Author(s)

Sylvain Mareschal

See Also

heat.map, clusterize, predict.LPS

LPS 9

LPS Linear Predictor Score fitting

Description

This function trains a Linear Predictor Score model, given pre-computed coefficients. It uses data
with known classes to fit the model.

It has numerous way to be called, and all the arguments are not mandatory. See the ’Examples’
section.

Usage

LPS(data, coeff, response, k, threshold, formula, method = "fdr", ...)

Arguments

data Continuous data used to retrieve classes, as a data.frame or matrix, with sam-
ples in rows and features (genes) in columns. Rows and columns should be
named. Some precautions must be taken concerning data normalization,
see the corresponding section below.

coeff Pre-computed coefficients for the model, as returned by LPS.coeff (see there
for format details).

response Already known classes for the samples provided in data, preferably as a two-
level factor. Can be missing if a formula with a response element is provided,
but this argument precedes.

k Single integer value, amount of features to include in the model, in decreasing
order of coefficient. Can be missing if threshold or formula are provided, but
this argument precedes other both of them.

threshold Single numeric value, p-value threshold to apply for feature selection. Can be
missing if k or formula are provided, but k precedes on it and it precedes on
formula.

formula A formula object, describing the model to fit (several templates are handled, see
’Examples’). The formula response element (before the "~" sign) can replace the
response argument if it is not provided. The variables (after the "~" sign) can
be a single integer (standing for the k argument), a single numeric (standing for
the threshold argument) or a sum of feature names to use directly. "." is also
handled in the usual way (all data columns), and "1" is a more efficient way to
refer to all numeric columns of data.

method Single character value, to be passed to p.adjust when threshold is provided.

... Further arguments are passed to model.frame if response is missing (thus de-
fined via formula). subset and na.action may be particularly useful for cross-
validation schemes, see model.frame.default for details. subset is always
handled but masked in "..." for compatibility reasons.

10 LPS

Value

An object of (S3) class "LPS" :

coeff Named numeric vector, the coefficients used in the model.

classes Character vector, the labels of the two groups to be predicted.

scores List of two numeric vectors, training dataset scores sorted by group.

means Numeric vector, score means of each group in the training dataset.

sds Numeric vector, score sd of each group in the training dataset.

ovl Numeric value, overlapping coefficient as returned by OVL.

k Integer value, amount of features selected in the model (if relevant).

p.threshold Numeric value, threshold used for feature selection (if relevant).

p.method Character value, p-value correction used for feature selection (if relevant).

Normalization

As expression values are directly used in the score, gene centering and scaling are strongly recom-
mended. For Affymetrix raw expression values (strictly positive, linear and absolute), Wright et
al. suggests a multiplicative centering on a median of 1000 followed by a log2 transformation. For
log-ratio, gene centering and scaling should not be necessary, as they are naturally 0-centered.

Time efficiency

Using a numeric matrix as data and a factor as response is the fastest way to compute coefficients,
if time consumption matters (as in cross-validation schemes). formula is there only for consistency
with R modeling functions, and to provide response, k or threshold in a single way.

Author(s)

Sylvain Mareschal

References

Radmacher MD, McShane LM, Simon R. A paradigm for class prediction using gene expression
profiles. J Comput Biol. 2002;9(3):505-11.

Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method
to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S
A. 2003 Aug 19;100(17):9991-6.

Bohers E, Mareschal S, Bouzelfen A, Marchand V, Ruminy P, Maingonnat C, Menard AL, Etancelin
P, Bertrand P, Dubois S, Alcantara M, Bastard C, Tilly H, Jardin F. Targetable activating mutations
are very frequent in GCB and ABC diffuse large B-cell lymphoma. Genes Chromosomes Cancer.
2014 Feb;53(2):144-53.

See Also

LPS.coeff

LPS.coeff 11

Examples

Data with features in columns
data(rosenwald)
group <- rosenwald.cli$group
expr <- t(rosenwald.expr)

NA imputation (feature's mean to minimize impact)
f <- function(x) { x[is.na(x)] <- round(mean(x, na.rm=TRUE), 3); x }
expr <- apply(expr, 2, f)

Coefficients
coeff <- LPS.coeff(data=expr, response=group)

10 best features (straightforward)
m <- LPS(data=expr, coeff=coeff, response=group, k=10)

10 best features (formula)
'k' MUST be an integer, or will be understood as a 'threshold'
Numbers are "numeric", enforce integer with "L" or "as.integer"
m <- LPS(data=as.data.frame(expr), coeff=coeff, formula=group~10L)
k <- as.integer(10)
m <- LPS(data=as.data.frame(expr), coeff=coeff, formula=group~k)

FDR threshold
thr <- 0.01
m <- LPS(data=expr, coeff=coeff, response=group, threshold=thr)
m <- LPS(data=as.data.frame(expr), coeff=coeff, formula=group~0.01)
m <- LPS(data=as.data.frame(expr), coeff=coeff, formula=group~thr)

Custom model
m <- LPS(data=expr, coeff=coeff[c("27481","17013") ,], response=group, k=2)
m <- LPS(data=as.data.frame(expr), coeff=coeff, formula=group~`27481`+`17013`)
Notice backticks in formula for syntactically invalid names

Complete model
m <- LPS(data=expr, coeff=coeff, response=group, k=ncol(expr))
m <- LPS(data=expr, coeff=coeff, response=group, threshold=1)
m <- LPS(data=as.data.frame(expr), coeff=coeff, formula=group~.)
The last is correct but (really) slow on large datasets

LPS.coeff Linear Predictor Score coefficient computation

Description

As Linear Predictor Score coefficients are genuinely t statistics, this function provides a faster im-
plementation for large datasets than using t.test.

12 LPS.coeff

Usage

LPS.coeff(data, response, formula = ~1, type = c("t", "limma"),
p.value = TRUE, log = FALSE, weighted = FALSE, ...)

Arguments

data Continuous data used to retrieve classes, as a data.frame or matrix, with sam-
ples in rows and features (genes) in columns. Rows and columns should be
named. NA values are silently ignored. Some precautions must be taken con-
cerning data normalization, see the corresponding section in LPS manual
page.

response Already known classes for the samples provided in data, preferably as a two-
level factor. Can be missing if a formula with a response element is provided,
but this argument precedes.

formula A formula object, describing the features to consider in data. The formula
response element (before the "~" sign) can replace the response argument if
it is not provided. The features can be enumerated in the variable section of
the formula (after the "~" sign). "." is also handled in the usual way (all data
columns), and "1" is a more efficient way to refer to all numeric columns of
data.

type Single character value, "t" to compute genuine t statistics (unequal variances and
unpaired samples) or "limma" to use the lmFit() and eBayes() t statistics from
this microarray oriented Bioconductor package.

p.value Single logical value, whether to compute (two-sided) p-values or not.

log Single logical value, whether to log-transform t or not (sign will be preserved).
Original description of the LPS does not include log-transformation, but it may
be useful to not over-weight discriminant genes in large series. Values between
-1 and 1 are transformed to 0 to avoid sign shifting, as it generally comes with
non significant p-values.

weighted Single logical value, whether to divide t (or log-transformed t) by gene mean
or not. We recommend to normalize data only by samples and use weighted =
TRUE to include gene centering in the model, rather than centering and scaling
genes by normalizing independantly each series as Wright et al. did.

... Further arguments are passed to model.frame if response is missing (thus de-
fined via formula). subset and na.action may be particularly useful for cross-
validation schemes, see model.frame.default for details. subset is always
handled but masked in "..." for compatibility reasons.

Value

Always returns a row named numeric matrix, with a "t" column holding statistics computed. If
p.value is TRUE, a second "p.value" column is added.

Note

Using a numeric matrix as data and a factor as response is the fastest way to compute coefficients,
if time consumption matters (as in cross-validation schemes). formula was added only for consis-

LPS.coeff 13

tency with other R modeling functions, and eventually to subset features to compute coefficients
for.

Author(s)

Sylvain Mareschal

References

http://www.bioconductor.org/packages/release/bioc/html/limma.html

See Also

LPS

Examples

Data with features in columns
data(rosenwald)
group <- rosenwald.cli$group
expr <- t(rosenwald.expr)

All features, all samples
k <- LPS.coeff(data=expr, response=group)
k <- LPS.coeff(formula=group~1, data=as.data.frame(expr))
LPS.coeff(formula=group~., data=as.data.frame(expr), na.action=na.pass)
The last is correct but (really) slow on large datasets

Feature subset, all samples
k <- LPS.coeff(data=expr[, c("27481","17013")], response=group)
k <- LPS.coeff(formula=group~`27481`+`17013`, data=as.data.frame(expr))
Notice backticks in formula for syntactically invalid names

All features, sample subset
training <- rosenwald.cli$set == "Training"
training <- sample.int(nrow(expr), 10)
training <- which(rosenwald.cli$set == "Training")
training <- rownames(subset(rosenwald.cli, set == "Training"))
k <- LPS.coeff(data=expr, response=group, subset=training)
k <- LPS.coeff(formula=group~1, data=as.data.frame(expr), subset=training)

NA handling by model.frame()
k <- LPS.coeff(formula=group~1, data=as.data.frame(expr), na.action=na.omit)

http://www.bioconductor.org/packages/release/bioc/html/limma.html

14 OVL

OVL Overlap quantification for LPS object

Description

Quantify the overlap between gaussian distributions of the two group scores, to assess model effi-
ciency (best models should not overlap, to prevent from false discovery).

Usage

OVL(means, sds, cutoff=1e-4, n=1e4)

Arguments

means Numeric vector of two values, the means of the gaussian distributions.

sds Numeric vector of two values, the standard deviations of the gaussian distribu-
tions.

cutoff Single numeric value, minimal quantile for integration range definition (distribu-
tions will be considered between their cutoff and 1 - cutoff quantiles only).
The lesser it is, the more precise the returned value will be.

n Single integer value, the amount of equi-distant points to use for the computa-
tion. The greater it is, the more precise the returned value will be.

Value

Returns the proportion of the overlap between the two gaussian distributions N1 and N2, i.e.
min(N1, N2) / (N1 + N2).

Author(s)

Sylvain Mareschal

See Also

LPS-class, LPS, link{dnorm}

Examples

Full overlap between identical distributions
OVL(c(0,0), c(1,1))

Increasing shift
OVL(c(0,1), c(1,1))
OVL(c(0,2), c(1,1))
OVL(c(0,3), c(1,1))
OVL(c(0,10), c(1,1))

plot.LPS 15

plot.LPS Plot method for LPS objects

Description

This function plots the distributions of the LPS scores in each group for a fitted LPS object.

Usage

S3 method for class 'LPS'
plot(x, y, method=c("Wright", "Radmacher", "exact"), threshold = 0.9,

values = FALSE, col.classes = c("#FFCC00", "#1144CC"), xlim, yaxt = "s",
xlab = "LPS", ylab, las = 0, lwd = 2,...)

Arguments

x An object of class "LPS", as returned by LPS.

y Single character value defining y axis : "density" or (bayesian) "probability".

method Single character value, the method to use for predictions. See predict.LPS.

threshold Single numeric value, the confidence threshold to use for the "gray zone" (scores
for which none of the two groups can be assigned with a probability greater than
this threshold). See predict.LPS.

values Single logical value, whether to plot individual scores from the training series
or not.

col.classes Character vector of two values giving to each class a distinct color.

xlim To be passed to plot, see plot.default.

yaxt To be passed to plot, see par.

xlab To be passed to plot, see plot.default.

ylab To be passed to plot, see plot.default.

las To be passed to plot, see par.

lwd To be passed to plot, see par.

... Further arguments to be passed to plot or par.

Author(s)

Sylvain Mareschal

See Also

LPS

16 predict.LPS

Examples

Data with features in columns
data(rosenwald)
group <- rosenwald.cli$group
expr <- t(rosenwald.expr)

NA imputation (feature's mean to minimize impact)
f <- function(x) { x[is.na(x)] <- round(mean(x, na.rm=TRUE), 3); x }
expr <- apply(expr, 2, f)

Coefficients
coeff <- LPS.coeff(data=expr, response=group)

10 best features model
m <- LPS(data=expr, coeff=coeff, response=group, k=10)

Distributions of scores in each group
plot(m, "density")

Probability for each group along the score axis
plot(m, "probability", yaxt="s")

predict.LPS Predict method for LPS objects

Description

This function allow predictions to be made from a fitted LPS model and a new dataset.

It can also plot a gene expression heatmap to visualize results of the prediction.

Usage

S3 method for class 'LPS'
predict(object, newdata, type=c("class", "probability", "score"),

method = c("Wright", "Radmacher", "exact"), threshold = 0.9, na.rm = TRUE,
subset = NULL, col.lines = "#FFFFFF", col.classes = c("#FFCC00", "#1144CC"),
plot = FALSE, side = NULL, cex.col = NA, cex.row = NA, mai.left = NA,

mai.bottom = NA, mai.right = 1, mai.top = 0.1, side.height = 1, side.col = NULL,
col.heatmap = heat(), zlim = "0 centered", norm = c("rows", "columns", "none"),
norm.robust = FALSE, customLayout = FALSE, getLayout = FALSE, ...)

Arguments

object An object of class "LPS", as returned by LPS.

newdata Continuous data used to retrieve classes, as a data.frame or matrix, with sam-
ples in rows and features (genes) in columns. Rows and columns should be
named. It can also be a named numeric vector of already computed scores.

predict.LPS 17

Some precautions must be taken concerning data normalization, see the
corresponding section in LPS manual page.

type Single character value, return type of the predictions to be made ("class", "prob-
ability" or "score"). See ’Value’ section.

method Single character value, the method to use to make predictions ("Wright", "Rad-
macher" or "exact"). See ’Details’ section.

threshold Threshold to use for class prediction. "Wright" method was designed with 0.9,
"Radmacher" method makes no use of the threshold.

na.rm Single logical value, if TRUE samples with one or many NA features will be
scored too (concerned feature is removed for the concerned sample, which might
be discutable).

subset A subsetting vector to apply on newdata rows. See [for handled values.
col.lines If graph is TRUE, a single character value to be used for line drawing on the

heatmap.
col.classes If graph is TRUE, a character vector of two values giving to each class a distinct

color.
plot To be passed to heat.map.
side To be passed to heat.map.
cex.col To be passed to heat.map.
cex.row To be passed to heat.map.
mai.left To be passed to heat.map.
mai.bottom To be passed to heat.map.
mai.right To be passed to heat.map (used to plot score coefficients).
mai.top To be passed to heat.map.
side.height To be passed to heat.map.
side.col To be passed to heat.map.
col.heatmap To be passed to heat.map.
zlim To be passed to heat.map.
norm To be passed to heat.map.
norm.robust To be passed to heat.map.
customLayout To be passed to heat.map.
getLayout To be passed to heat.map.
... Ignored, just there to match the predict generic function.

Details

The "Compound covariate predictor" from Radmacher et al. (method = "Radmacher") simply assign
each sample to the closest group (comparing the sample score to the mean scores of each group in
the training dataset).

The "Linear Predictor Score" from Wright et al. (method = "Wright") modelizes scores in each
training sub-group with a distinct gaussian distribution, and computes the probability for a sample
to be in one of them or the other using a bayesian rule.

The "exact" mode is still under development and should not be used.

18 predict.LPS

Value

For a "class" type, returns a character vector with group assignment for each new sample (possibly
NA), named according to data row names.

For a "probability" type, returns a numeric matrix with two columns (probabilities to be in each
group) and a row for each new sample, row named according to data row names and column named
according to the group labels.

For a "score" type, returns a numeric vector with LPS score for each new sample, named according
to data row names. Notice the score is the same for all methods.

If plot is TRUE, returns the list returned by heat.map, with data described above in the first un-
ammed element.

Author(s)

Sylvain Mareschal

References

Radmacher MD, McShane LM, Simon R. A paradigm for class prediction using gene expression
profiles. J Comput Biol. 2002;9(3):505-11.

Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method
to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S
A. 2003 Aug 19;100(17):9991-6.

See Also

LPS

Examples

Data with features in columns
data(rosenwald)
group <- rosenwald.cli$group
expr <- t(rosenwald.expr)

NA imputation (feature's mean to minimize impact)
f <- function(x) { x[is.na(x)] <- round(mean(x, na.rm=TRUE), 3); x }
expr <- apply(expr, 2, f)

Coefficients
coeff <- LPS.coeff(data=expr, response=group)

10 best features model
m <- LPS(data=expr, coeff=coeff, response=group, k=10)

Class prediction plot
predict(m, expr, plot=TRUE)

Wright et al. class prediction

Rosenwald dataset 19

table(
group,
prediction = predict(m, expr),
exclude = NULL

)

More stringent threshold
table(

group,
prediction = predict(m, expr, threshold=0.99),
exclude = NULL

)

Radmacher et al. class prediction
table(

group,
prediction = predict(m, expr, method="Radmacher"),
exclude = NULL

)

Probabilities
predict(m, expr, type="probability", method="Wright")
predict(m, expr, type="probability", method="Radmacher")
predict(m, expr, type="probability", method="exact")

Probability plot
predict(m, expr, type="probability", plot=TRUE)

Annotated probability plot
side <- data.frame(group, row.names=rownames(expr))
predict(m, expr, side=side, type="probability", plot=TRUE)

Score plot
predict(m, expr, type="score", plot=TRUE)

Rosenwald dataset Rosenwald et al. Lymphochip data

Description

This dataset contains 60 Diffuse Large B-Cell Lymphomas analysed on Lymphochip microarrays,
as published by Rosenwald et al. The "Germinal Center B-cell like" and "Activated B-Cell like"
subtypes, as determined by hierarchical clustering, were predicted by a LPS approach in Wright et
al.

To minimize package size, values were rounded at 3 decimals and only 60 DLBCL from the 240
series were randomly selected (40 from the "Training" set, 20 from the "Validation" set), excluding
"Type III" sub-types.

Usage

data(rosenwald)

20 surv.colors

Format

rosenwald.expr is a numeric matrix of expression values, with probes in rows and samples in
columns. Both dimensions are named, probes by there "UNIQID" and samples by there "LYM
numbers". Many NA values are present.

rosenwald.cli is a data.frame with a row for each sample, and 4 factor columns described below.
Rows are named by samples "LYM numbers", in the same order than rosenwald.expr.

set the "Training" or "Validation" set the sample comes from.

group the DLBCL sub-type that is to be predicted ("GCB" or "ABC").

follow.up follow-up of the patient, in years.

status status of the patient at the end of the follow-up ("Dead" or "Alive").

Source

http://llmpp.nih.gov/DLBCL/

References

Rosenwald A et al. The use of molecular profiling to predict survival after chemotherapy for diffuse
large-B-cell lymphoma. N Engl J Med. 2002 Jun 20;346(25):1937-47.

Wright G et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse
large B cell lymphoma. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9991-6.

surv.colors Produces visual representation of survival data

Description

This function generates color shades for each individual, according to their respective right-censored
survival data (event occurred or not, after which follow-up time). This can prove useful to annotate
heat maps with survival data.

Two color scales are used, one for right-censored individuals (lost of sight before the event occurs,
yellow with default colors) and an other for individual with observed events (death, relapse ... black
in default colors). Shades are generated according to their impact : fast events and long follow-ups
without event have strong colors, while late events and short follow-up without event are light-
colored.

Usage

surv.colors(time, event, eventColors = c("#000000", "#CCCCCC"),
censColors = c("#FFFFEE", "#FFDD00"))

http://llmpp.nih.gov/DLBCL/

surv.colors 21

Arguments

time Numeric vector, the follow-up times of each individual (see Surv in the survival
package).

event Logical vector, whether an event (death, relapse ...) occured at the end of each
individual follow-up or not (see Surv in the survival package).

eventColors Character vector of length 2, the boundaries of the color scale to generate for
individuals with events.

censColors Character vector of length 2, the boundaries of the color scale to generate for
right-censored individuals.

Value

Returns a character vector, named according to time names.

Author(s)

Sylvain Mareschal

See Also

surv.scale, heat.map

Examples

Rosenwald's dataset (hand-picked prognostic probes)
data(rosenwald)
probes <- c("30580", "16006", "32315", "16978", "26588")
expr <- t(rosenwald.expr[probes ,])

NA imputation (feature's mean to minimize impact)
f <- function(x) { x[is.na(x)] <- round(mean(x, na.rm=TRUE), 3); x }
expr <- apply(expr, 2, f)

Survival colors
surv <- with(rosenwald.cli, surv.colors(time=follow.up, event=status=="Dead"))

Color scale legend
with(rosenwald.cli, surv.scale(time=follow.up, event=status=="Dead"))

Annotated clustering
side <- data.frame(OS=surv, row.names=rownames(rosenwald.cli))
clusterize(expr, side=side)

22 surv.scale

surv.scale Plots a survival color scale, for legend

Description

This function plots a color scale using a custom color palette, to legend surv.colors annotations.

Usage

surv.scale(time, event, eventColors = c("#000000", "#CCCCCC"),
censColors = c("#FFFFEE", "#FFDD00"))

Arguments

time Numeric vector, the follow-up times of each individual (see Surv in the survival
package).

event Logical vector, whether an event (death, relapse ...) occured at the end of each
individual follow-up or not (see Surv in the survival package).

eventColors Character vector of length 2, the boundaries of the color scale to generate for
individuals with events.

censColors Character vector of length 2, the boundaries of the color scale to generate for
right-censored individuals.

Author(s)

Sylvain Mareschal

See Also

surv.colors, survival::Surv

Examples

Rosenwald's dataset (hand-picked prognostic probes)
data(rosenwald)
probes <- c("30580", "16006", "32315", "16978", "26588")
expr <- t(rosenwald.expr[probes ,])

NA imputation (feature's mean to minimize impact)
f <- function(x) { x[is.na(x)] <- round(mean(x, na.rm=TRUE), 3); x }
expr <- apply(expr, 2, f)

Survival colors
surv <- with(rosenwald.cli, surv.colors(time=follow.up, event=status=="Dead"))

Annotated clustering
side <- data.frame(OS=surv, row.names=rownames(rosenwald.cli))
clusterize(expr, side=side)

surv.scale 23

Color scale legend
with(rosenwald.cli, surv.scale(time=follow.up, event=status=="Dead"))

Index

∗ datasets
Rosenwald dataset, 19

[, 17

clusterize, 2, 5, 7, 8
colorRampPalette, 5

dist, 2–4
dist.COR (clusterize), 2

hclust, 2–4
hclust.ward (clusterize), 2
heat, 4
heat.exp, 4
heat.lin, 4
heat.map, 2–5, 5, 8, 17, 18, 21
heat.scale, 8
heatmap, 2, 4–7

image, 5

layout, 3, 7
LPS, 9, 12–18
LPS-class (LPS), 9
LPS.coeff, 9, 10, 11

mad, 7
mean, 7
median, 7
model.frame, 9, 12
model.frame.default, 9, 12

OVL, 10, 14

p.adjust, 9
par, 6–8, 15
plot, 15
plot.default, 15
plot.LPS, 15
predict, 17
predict.LPS, 5, 8, 15, 16

rainbow, 6
rosenwald (Rosenwald dataset), 19
Rosenwald dataset, 19

sd, 7, 10
Surv, 21, 22
surv.colors, 20, 22
surv.scale, 21, 22

t.test, 11

24

	clusterize
	heat
	heat.map
	heat.scale
	LPS
	LPS.coeff
	OVL
	plot.LPS
	predict.LPS
	Rosenwald dataset
	surv.colors
	surv.scale
	Index

