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This tutorial presents the use of the GDAtools package for geometric data analysis. For further information
on the statistical procedures themselves, it is recommended to refer to the books referenced on the home
page of the website.

Introduction
For this example of Multiple Correspondence Analysis (MCA), we will use one of the data sets provided
with the package. This is information about the tastes and cultural practices of 2000 individuals:
listening to musical genres (French popular music, rap, rock, jazz and classical) and taste for film genres
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(comedy, crime film, animation, science fiction, love film, musical). These 11 variables will be used as “ac-
tive” variables in the MCA and are completed by 3 “supplementary” variables: gender, age and education level.

library(ggplot2) # for plots
library(GDAtools)
data(Taste)
str(Taste)

'data.frame': 2000 obs. of 14 variables:
$ FrenchPop: Factor w/ 3 levels "No","Yes","NA": 2 1 2 1 2 1 1 1 1 2 ...
$ Rap : Factor w/ 3 levels "No","Yes","NA": 1 1 1 1 1 1 1 1 1 1 ...
$ Rock : Factor w/ 3 levels "No","Yes","NA": 1 1 2 1 1 2 1 1 2 1 ...
$ Jazz : Factor w/ 3 levels "No","Yes","NA": 1 2 1 1 1 1 1 1 1 1 ...
$ Classical: Factor w/ 3 levels "No","Yes","NA": 1 2 1 2 1 1 1 1 1 1 ...
$ Comedy : Factor w/ 3 levels "No","Yes","NA": 1 2 1 1 1 1 2 2 2 2 ...
$ Crime : Factor w/ 3 levels "No","Yes","NA": 1 1 1 1 2 1 1 1 1 1 ...
$ Animation: Factor w/ 3 levels "No","Yes","NA": 1 1 1 1 1 1 1 1 1 1 ...
$ SciFi : Factor w/ 3 levels "No","Yes","NA": 2 1 1 1 1 2 1 1 1 1 ...
$ Love : Factor w/ 3 levels "No","Yes","NA": 1 1 2 1 1 1 1 1 1 1 ...
$ Musical : Factor w/ 3 levels "No","Yes","NA": 1 1 1 1 1 1 1 1 1 1 ...
$ Gender : Factor w/ 2 levels "Men","Women": 1 1 2 1 2 2 2 2 1 1 ...
$ Age : Factor w/ 3 levels "15-24","25-49",..: 2 3 2 3 2 2 2 2 1 3 ...
$ Educ : Factor w/ 4 levels "None","Low","Medium",..: 3 4 3 4 2 1 3 2 2 2 ...

The active variables all have a “non response” (“NA”) category, which concerns some individuals.
summary(Taste[,1:11])

FrenchPop Rap Rock Jazz Classical Comedy Crime
No : 741 No :1730 No :1455 No :1621 No :1443 No :1141 No :1430
Yes:1249 Yes: 261 Yes: 535 Yes: 364 Yes: 552 Yes: 856 Yes: 555
NA : 10 NA : 9 NA : 10 NA : 15 NA : 5 NA : 3 NA : 15
Animation SciFi Love Musical
No :1905 No :1845 No :1768 No :1923
Yes: 91 Yes: 143 Yes: 225 Yes: 66
NA : 4 NA : 12 NA : 7 NA : 11

Specific MCA makes it possible to cancel these categories out in the construction of the factorial space,
while keeping all the individuals. We start by locating the rank of the categories we want to cancel out.
getindexcat(Taste[,1:11])

[1] "FrenchPop.No" "FrenchPop.Yes" "FrenchPop.NA" "Rap.No"
[5] "Rap.Yes" "Rap.NA" "Rock.No" "Rock.Yes"
[9] "Rock.NA" "Jazz.No" "Jazz.Yes" "Jazz.NA"

[13] "Classical.No" "Classical.Yes" "Classical.NA" "Comedy.No"
[17] "Comedy.Yes" "Comedy.NA" "Crime.No" "Crime.Yes"
[21] "Crime.NA" "Animation.No" "Animation.Yes" "Animation.NA"
[25] "SciFi.No" "SciFi.Yes" "SciFi.NA" "Love.No"
[29] "Love.Yes" "Love.NA" "Musical.No" "Musical.Yes"
[33] "Musical.NA"

The vector of these ranks is then given as an argument in the specific MCA function speMCA().
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mca <- speMCA(Taste[,1:11], excl=c(3,6,9,12,15,18,21,24,27,30,33))

Alternatively, we can use the list of labels of the “junk” categories.
junk <- c("FrenchPop.NA", "Rap.NA", "Rock.NA", "Jazz.NA", "Classical.NA",

"Comedy.NA", "Crime.NA", "Animation.NA", "SciFi.NA", "Love.NA",
"Musical.NA")

mca <- speMCA(Taste[,1:11], excl = junk)

The labels of these categories can be identified using the function ijunk(), which launches an interactive
application for this purpose and allows to copy and paste the appropriate code.

Clouds
The Benzécri corrected inertia rates give an idea of how much information is represented by each axis.
modif.rate(mca)$modif

mrate cum.mrate
1 67.30532896 67.30533
2 22.64536000 89.95069
3 7.17043134 97.12112
4 2.26387669 99.38500
5 0.59232858 99.97733
6 0.02267443 100.00000

We can see here that the first two axes capture most of the information (nearly 90%). In the following, we
will therefore concentrate on the plane formed by axes 1 and 2.

Cloud of individuals

The cloud of individuals does not have a particular shape (triangle, horseshoe. . . ), the points seem to be
distributed in the whole plane (1,2).
ggcloud_indiv(mca)
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However, in some cases, points may overlap and the structure of the cloud of individuals is only imperfectly
rendered by a scatter plot. It is then possible to complete the first graph by a representation of the density of
points in the plane. The function ggcloud_indiv() allows this to be done using contours (like the contour
lines of a topographic map) or hexagonal surfaces (colored with a color gradient according to the number of
points located in the hexagon).
ggcloud_indiv(mca, col = "lightgray", density = "contour")
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ggcloud_indiv(mca, density = "hex", hex.bin = 10)

5



−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5
dim 1 (67.3 %)

di
m

 2
 (

22
.6

 %
)

Regardless of the density representation used, we observe that the points seem to be more concentrated in an
area immediately to the right of the vertical axis.

NB: ggcloud_indiv() also allows the name of the observations to be displayed, when this is of interest from
an interpretation point of view.

Cloud of variables

On the cloud of variables:

• listening to jazz and classical music and liking musicals seem to be opposed to listening to rap and
liking comedies on axis 1;

• the taste for animation and science fiction to the taste for love movies and musicals on axis 2.
ggcloud_variables(mca, shapes = FALSE, legend = "none")
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Many options are possible, including:

• adding symbols (circles, triangles, etc.) in addition to the labels of the categories ;

• selection or highlighting of the most important categories according to different criteria (contribution,
quality of representation, typicality, etc.);

• using size, italics, bold and underlining to identify the most important categories.

The results are traditionally represented in a plane, i.e. in two dimensions (here dimensions 1 and 2). But it is
sometimes easier to concentrate the interpretation on one axis at a time, which is possible with the function
ggaxis_variables() (parameterized here to display the labels of the categories with a size proportional to
their contribution to the construction of the axis).
ggaxis_variables(mca, axis = 1, prop = "ctr")

7

https://nicolas-robette.github.io/GDAtools/reference/ggaxis_variables.html


FrenchPop.No

FrenchPop.Yes

Rap.No
Rap.Yes

Rock.No

Rock.Yes

Jazz.No

Jazz.Yes
Classical.No

Classical.Yes

Comedy.No Comedy.Yes

Crime.No

Crime.Yes

Animation.No

Animation.Yes

SciFi.No
SciFi.Yes

Love.No

Love.Yes

Musical.No

Musical.Yes

−1.0 −0.5 0.0 0.5

Coordinates on axis 1

However, to be robust, the interpretation of the factorial plane cannot stop at a visual examination of the
cloud of variables. This must be completed by a careful analysis of statistical indicators, in particular the
contributions of the categories to the construction of the axes and their quality of representation.

Aids to interpretation
Most of the aids to interpretation and other useful information are present in the object created by speMCA()
function. The package provides several functions to extract and organize this information.

• contrib() presents the contributions of the variables and the categories of these variables to the
construction of each axis and to the construction of the cloud.

• dimcontrib() extracts the contributions of the individuals and the categories of variables to the
construction of a particular axis.

• dimdescr() identifies the variables and variable categories most statistically associated with the different
axes. The measures of association used are the correlation ratios (eta2) for the variables and the
correlation coefficients for the categories.

• The function planecontrib() extracts the contributions of individuals and of the categories of variables
to the construction of a particular plane.

The function tabcontrib() allows, for a given axis, to summarize the main contributions (by default, only
the contributions above the average are presented).
tabcontrib(mca, dim = 1)

VariableCategoryWeight

Quality of
representa-

tion
Contribution
(left)

Contribution
(right)

Total
contri-
bution

Cumulated
contribu-
tion

Contribution
of deviation

Proportion
to variable

ClassicalYes 552 0.478 23.08 31.88 31.88 31.88 100
No 1443 0.474 8.8

Jazz Yes 364 0.467 25.49 31.15 63.04 31.15 100
No 1621 0.448 5.66

ComedyYes 856 0.253 9.66 16.88 79.92 16.88 100
No 1141 0.252 7.22

The classical music and jazz listening variables alone contribute more than 60% to the construction of axis 1.
Listening to classical music and jazz is thus opposed to not listening to them, and secondarily to the taste for
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comedies.

tabcontrib(mca, dim = 2)

VariableCategoryWeight

Quality of
representa-

tion
Contribution
(left)

Contribution
(right)

Total
contri-
bution

Cumulated
contribu-
tion

Contribution
of deviation

Proportion
to variable

Rock Yes 535 0.229 12.99 17.77 17.77 17.77 100
No 1455 0.226 4.78

Love Yes 225 0.250 17.24 17.24 35 17.24 88.79
FrenchPopNo 741 0.199 9.69 15.39 50.39 15.39 100

Yes 1249 0.196 5.69
MusicalYes 66 0.191 14.33 14.33 64.72 14.33 96.61
SciFi Yes 143 0.160 11.49 11.49 76.21 11.49 92.72
Rap Yes 261 0.164 11.05 11.05 87.27 11.05 86.56

On axis 2, listening to rock and rap music and the taste for science fiction films are opposed to the taste for
love films and musicals and the listening of French variety music.

One way to summarize the relationships between the active variables and the factorial axes is the so-called
“square of relationships” (carré des liaisons) proposed by Escofier and Pagès (2008). It uses correlation ratios
to represent these relationships.
ggeta2_variables(mca) + ggtitle("Square of relationships")
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Square of relationships

We see that listening to jazz and classical music is highly correlated with axis 1 and not at all with axis 2,
and that the active variables most correlated with axis 2 are only moderately so.
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Structuring factors
Supplementary variables

We can go further by studying the relationship between the factorial space and the supplementary variables,
in this case gender, age and education. A first step is to project the supplementary variables onto the cloud
of variables.
vcloud <- ggcloud_variables(mca, shapes=FALSE, col="lightgray")
ggadd_supvars(vcloud, mca, Taste[,c("Gender","Age","Educ")])
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It is possible to set the display of each of the supplementary variables separately with the function
ggadd_supvar() (without “s”). However, there are several drawbacks: more lines of code and the risk
of overlapping of the labels of the categories.

The level of education seems to be associated above all with axis 1, the most educated being on the side of
jazz and classical music listening. Gender seems to be linked only to axis 2, with women at the bottom of the
plane and men at the top. As for age, it is associated with both axes: individuals move from the northeast
quadrant to the southwest quadrant as their age increases.

These initial observations can be statistically confirmed by measuring the degree of association between the
supplementary variables and the axes using the correlation ratio (eta2).
dimeta2(mca, Taste[,c("Gender","Age","Educ")])

dim.1 dim.2
Gender 0.0 6.0
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Age 3.8 14.2
Educ 5.9 3.3

Education is the supplementary variable most associated with axis 1: it “explains” 5.9% of the variance of
individual coordinates on this axis. Age is also associated with the first axis, but to a lesser extent, and
gender not at all.

On axis 2, age is the most structuring variable, ahead of gender and education level. We also see that age is
clearly more related to axis 2 than to axis 1.

At the level of the categories, the association of an supplementary variable category with an axis can be
characterized from the correlation coefficients.
des <- dimdescr(mca, vars = Taste[,c("Gender","Age","Educ")])
des$dim.1$categories

categories mean.y.in.xcat mean.y.global sd.y.in.xcat sd.y.global cor
Age.15-24 0.156 0 0.355 0.369 0.176
Educ.None 0.094 0 0.324 0.369 0.145
Educ.Low 0.052 0 0.355 0.369 0.100
Age.25-49 0.006 0 0.358 0.369 0.015
Gender.Women 0.004 0 0.370 0.369 0.012
Gender.Men -0.005 0 0.368 0.369 -0.012
Educ.Medium -0.040 0 0.376 0.369 -0.051
Age.50+ -0.061 0 0.369 0.369 -0.142
Educ.High -0.141 0 0.382 0.369 -0.213

On axis 1, those with no or little education and those aged 15-24 are opposed to those with more education
and those aged 50 and over. The other categories appear to have little relationship with the axis (their
correlation coefficients, in the last column of the table, are close to 0).
des$dim.2$categories

categories mean.y.in.xcat mean.y.global sd.y.in.xcat sd.y.global cor
Age.15-24 0.236 0 0.320 0.342 0.288
Gender.Men 0.088 0 0.302 0.342 0.245
Age.25-49 0.049 0 0.333 0.342 0.123
Educ.High 0.076 0 0.327 0.342 0.123
Educ.Low 0.016 0 0.341 0.342 0.034
Educ.Medium 0.007 0 0.335 0.342 0.009
Educ.None -0.100 0 0.341 0.342 -0.167
Gender.Women -0.081 0 0.357 0.342 -0.245
Age.50+ -0.131 0 0.299 0.342 -0.330

On axis 2, men, those under 50, and those with higher education contrast with women, those over 50, and
those with no degree.

Analysis of one supplementary variable

Let’s continue the analysis by focusing on one supplementary variable, education level. The function supvar()
provides:

• the coordinates of the categories on the axes,

• their squared cosines (which gives the quality of representation of a category on an axis),
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• their dispersion (variance) on the axes,

• the correlation ratios (eta2) between the variable and the axes,

• the typicality tests (to which we will return in the next section),

• the correlation coefficients between the categories and the axes.
supvar(mca, Taste$Educ)

$weight
None Low Medium High
490 678 357 475

$coord
dim.1 dim.2 dim.3 dim.4 dim.5

None 0.254716 -0.293253 -0.191563 0.094510 -0.050520
Low 0.140147 0.046951 0.002259 -0.063613 -0.044181
Medium -0.109057 0.019669 0.054436 0.070183 -0.027962
High -0.380835 0.220714 0.153475 -0.059443 0.136194

$cos2
dim.1 dim.2 dim.3 dim.4 dim.5

None 0.021054 0.027906 0.011908 0.002899 0.000828
Low 0.010073 0.001131 0.000003 0.002075 0.001001
Medium 0.002584 0.000084 0.000644 0.001070 0.000170
High 0.045175 0.015173 0.007337 0.001101 0.005777

$var
dim.1 dim.2 dim.3 dim.4 dim.5

None 0.104915 0.116125 0.115232 0.103800 0.086031
Low 0.125921 0.116092 0.109029 0.087945 0.087735
Medium 0.141298 0.112505 0.097031 0.102449 0.094541
High 0.145983 0.107170 0.091066 0.106049 0.113352
within 0.128284 0.113341 0.104141 0.098718 0.094616
between 0.008061 0.003923 0.001598 0.000524 0.000555
total 0.136345 0.117264 0.105739 0.099242 0.095172
eta2 0.059123 0.033455 0.015115 0.005279 0.005832

$typic
dim.1 dim.2 dim.3 dim.4 dim.5

None 6.487410 -7.468929 -4.878958 2.407110 -1.286704
Low 4.487336 1.503312 0.072336 -2.036827 -1.414633
Medium -2.272883 0.409932 1.134503 1.462690 -0.582753
High -9.502876 5.507427 3.829615 -1.483270 3.398406

$pval
dim.1 dim.2 dim.3 dim.4 dim.5

None 0.000000 0.000000 0.000001 0.016079 0.198197
Low 0.000007 0.132758 0.942334 0.041667 0.157176
Medium 0.023033 0.681856 0.256584 0.143552 0.560059
High 0.000000 0.000000 0.000128 0.138003 0.000678

$cor
dim.1 dim.2 dim.3 dim.4 dim.5

None 0.145 -0.167 -0.109 0.054 -0.029
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Low 0.100 0.034 0.002 -0.046 -0.032
Medium -0.051 0.009 0.025 0.033 -0.013
High -0.213 0.123 0.086 -0.033 0.076

Graphically, we can represent the subcloud of each category using a concentration ellipse, which is centered
on the mean point and encompasses 86% of individuals with that category.
icloud <- ggcloud_indiv(mca, col = "lightgrey")
ggadd_kellipses(icloud, mca, Taste$Educ, label = FALSE)
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Even if, as we have seen, the education level categories are ordered along axis 1, the subclouds overlap to a
large extent, because the association between the variable and the axis is moderate.

Let us now look more specifically at the subcloud of the most highly educated individuals (the 4th category
of the variable Educ).
ggadd_kellipses(icloud, mca, Taste$Educ, sel = 4, legend = "none")
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A concentration ellipse is useful because it jointly represents the mean point of the category and the dispersion
of the subcloud along the axes. Here, we see that although the mean point of the most highly educated
individuals is located in the northwest quadrant, a non-negligible portion of the points in the subcloud are to
the right and/or bottom of the plane.

The concentration ellipses, on the other hand, give only an imperfect representation of the distribution of
the points of the subcloud, because of the possible superposition of the points (in a similar way to what we
have seen for the cloud of individuals) and its centering on the mean point. It can therefore be interesting to
complete a concentration ellipse with a representation of the density of the points in the subcloud, in the
form of contours or surfaces.
ggadd_density(icloud, mca, var = Taste$Educ, cat = "High", density = "contour")
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ggadd_density(icloud, mca, var = Taste$Educ, cat = "High", density = "area", ellipse = TRUE)
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Here we see that there appears to be a concentration of highly educated individuals immediately to the right
of the vertical axis, in an area that also corresponds to a concentration of points in the cloud of individuals
(see above).

A further step in the analysis consists in neutralizing the influence of the distribution of the points of the
cloud of individuals on that of the subcloud, by asking in which parts of the plane the most highly educated
are over/under represented. In the following graph, we represent in each hexagonal tile the proportion of
highly educated individuals, centered in relation to the proportion of highly educated individuals in the
whole sample. In other words, we represent the over/under-representation of highly educated individuals in
each portion of the plane. The graph is made more readable by a smoothing procedure derived from spatial
analysis in geography (inverse distance weighting).
ggsmoothed_supvar(mca, var = Taste$Educ, cat = "High", center = TRUE)
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The most highly educated individuals are overrepresented throughout the northwest quadrant, but also among
the westernmost of the southwest quadrant.

Interaction between two supplementary variables

Interactions between several supplementary variables can also be studied, for example here between gender
and age.
ggadd_interaction(vcloud, mca, Taste$Gender, Taste$Age, legend = "none")
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Gender and age appear to interact little in the plane (1,2). Note, however, that on axis 1, the differences
between the youngest and oldest individuals are larger for women than for men, and that on axis 2, the
youngest individuals differ more by gender than the oldest.

Note: The analyses performed here on supplementary variables are similarly feasible for supplementary
individuals, using the functions supind() and ggadd_supind(). This is useful when some individuals were
excluded from the MCA because they were too atypical or because some information was missing, for example.

Inductive analysis
If one wishes to assess the generalizability of the results, one can complement the descriptive analyses above
with statistical inference procedures that borrow from inductive data analysis and combinatorial approaches
(for this part even more than for the others, we refer to Le Roux and Rouanet, 2004 & 2010).

The typicality problem consists in asking whether a group of individuals can be assimilated to the reference
population or whether it is atypical. A typicality test calculates a combinatorial p-value, which defines the
“degree of typicality” of the mean point of the group of individuals. A low p-value is considered statistically
significant in the combinatorial sense and reflects a difference that is probably not due to chance.
dimtypicality(mca, Taste[, c("Gender","Age","Educ")], dim = c(1,2))

$dim.1
weight test.stat p.value

Age.15-24 297 7.890052 0.00000
Educ.None 490 6.487410 0.00000
Educ.Low 678 4.487336 0.00001
Age.25-49 849 0.669142 0.50340
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Gender.Women 1042 0.543265 0.58695
Gender.Men 958 -0.543265 0.58695
Educ.Medium 357 -2.272883 0.02303
Age.50+ 854 -6.340738 0.00000
Educ.High 475 -9.502876 0.00000

$dim.2
weight test.stat p.value

Age.15-24 297 12.875430 0.00000
Gender.Men 958 10.972527 0.00000
Age.25-49 849 5.520379 0.00000
Educ.High 475 5.507427 0.00000
Educ.Low 678 1.503312 0.13276
Educ.Medium 357 0.409932 0.68186
Educ.None 490 -7.468929 0.00000
Gender.Women 1042 -10.972527 0.00000
Age.50+ 854 -14.772247 0.00000

At a 5 percent threshold, the mean points for women, men, and middle-aged people are not significantly
different from the mean point for the entire population on axis 1 (i.e., 0). On axis 2, it is the mean points of
the low and middle education levels that do not differ significantly from the origin.

One can study the results of typicality tests for a supplementary variable in particular using the function
supvar().
vseduc <- supvar(mca, Taste$Educ)
vseduc$pval[, c(1,2)]

dim.1 dim.2
None 0.000000 0.000000
Low 0.000007 0.132758
Medium 0.023033 0.681856
High 0.000000 0.000000

We see that, on axis 1, all the education level categories are significantly different from 0 at a 5% threshold,
they are atypical of the cloud of all individuals, but this is not the case for the “Low” and “Medium” categories
on axis 2.

Confidence ellipses follow the same logic as typicality tests. With a conventional significance level of 5%,
the confidence ellipse is a 95% confidence zone representing, for a category, the set of possible mean points
that are not significantly different from the observed mean point.
# p <- ggcloud_indiv(mca, col='lightgrey')
ggadd_ellipses(icloud, mca, Taste$Educ, level = 0.05, label = FALSE)
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We find here graphically the results obtained with the typicality tests.

A homogeneity test is a combinatorial procedure that aims at comparing several groups of individuals.
The question is to know if, on a given axis, the positions of two groups of individuals are significantly different
(i.e. if the p-values are all very close to 0). The groups correspond to the different categories of a variable.
ht <- homog.test(mca, Taste$Educ)
round(ht$dim.1$p.values, 3)

None Low Medium High
None 1 0 0 0
Low 0 1 0 0
Medium 0 0 1 0
High 0 0 0 1

On axis 1, the mean points of the education level categories are all significantly different from each other.
round(ht$dim.2$p.values, 3)

None Low Medium High
None 1 0.000 0.000 0
Low 0 1.000 0.223 0
Medium 0 0.223 1.000 0
High 0 0.000 0.000 1

This is not the case on axis 2, where the “Low” and “Medium” categories are not significantly different
(p-value = 0.22).
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Internal validation
The lack of robustness of MCAs, or the absence of means to measure this robustness, is sometimes presented
as one of the weaknesses of geometric data analysis. These criticisms are hardly relevant, especially since
there are techniques for the “internal validation” of MCA results. Ludovic Lebart (2006; 2007) has proposed
the use of bootstrap, i.e. resampling by random draw with replacement. This approach has the advantage of
being non-parametric, i.e. it does not rely on any of the probabilistic assumptions of frequentist inference.

Lebart proposes several methods. The total bootstrap uses new MCAs computed from bootstrap replications
of the initial data.

• In the type 1 total bootstrap, the sign of the coordinates is corrected if necessary (the direction of the
axes of an ACM being arbitrary).

• In the type 2, the order of the axes and the sign of the coordinates are corrected if necessary.

• In type 3, a procustean rotation is used to find the best overlap between the initial and replicated axes.

The partial bootstrap, on the other hand, does not compute a new MCA: it projects bootstrap replications
of the initial data as supplementary elements of the MCA. It gives a more optimistic (or less demanding)
view of the stability of the results than the total bootstrap.

Below, the results of a partial bootstrap (with 30 replications, a number generally considered sufficient by
Lebart) are represented with confidence ellipses. We can see that if the points of the bootstrap replications of
some categories are relatively scattered, this is only the case for categories far from the origin of the plane
and does not change the interpretation of the MCA results: they are quite robust.
ggbootvalid_variables(mca, type = "partial", K = 30) + theme(legend.position = "none")
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It is possible to conduct the same type of analysis for supplementary variables with the function
ggbootvalid_supvars(), and to obtain the results of bootstrap replication calculations (without graphing)
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with the functions bootvalid_variables() and bootvalid_supvars().

MCA and clustering
MCA and automatic clustering techniques are often used together. For example, after having represented the
data by factorial planes, one may wish to obtain a summary in the form of a typology, i.e. to group together
individuals who are similar. To do this, we can use the original data or the coordinates of the individuals in
the MCA cloud.

We perform here a Ascending Hierarchical Classification (AHC) from the coordinates of the individuals
in the factorial plane (1,2), then a partition in 3 clusters.
d <- dist(mca$ind$coord[, c(1,2)])
ahc <- hclust(d, "ward.D2")
cluster <- factor(cutree(ahc, 3))

The partition thus created can then be used for further analysis, for example by crossing it with supplementary
variables, or more simply by representing the subclouds of individuals corresponding to the clusters of the
typology, using convex hulls. A convex hull is the smallest convex polygon among those containing a set
of points. In the context of MCA, convex hulls are an interesting graphical representation, especially if the
subclouds represented do not overlap too much, as is the case here.
ggadd_chulls(icloud, mca, cluster)
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Some remarks:

• The function quadrant() also creates a typology of individuals, in a simpler way: each individual is
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classified according to the part of the plane (the “quadrant”) where it is located (northwest, northeast,
southeast, southwest).

• There are many measures of distance / similarity. In the example above, we used the Euclidean distance
between the coordinates of the individuals. If we perform an automatic clustering from the original
variables of the MCA, it is consistent to use the chi-2 distance, the one used by correspondence analyses,
which is possible with the function dist.chi2().

• The function ahc.plots() proposes some graphical representations which give indications for the choice
of the number of clusters from the results of an AHC.

• If the AHC is the most widespread automatic clustering technique in geometric data analysis, there are
many others (see for example the package cluster).

MCA variants
Class Specific Analysis

The Class Specific Analysis (CSA) is an extension of MCA which allows to study a subcloud of individuals
by taking into account the distribution of variables in the subcloud and in the whole cloud. It is thus a
question of taking into account the fact that the structure of the subcloud does not exist in abstracto but in
relation to the cloud in which it is included.

CSA is illustrated here using the subcloud of the most highly educated individuals.
csa <- csMCA(Taste[,1:11], Taste$Educ=="High", excl=c(3,6,9,12,15,18,21,24,27,30,33))

ggcloud_variables(csa, shapes = FALSE, legend = "none")
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tabcontrib(csa, dim = 1)

VariableCategoryWeight

Quality of
representa-

tion
Contribution
(left)

Contribution
(right)

Total
contri-
bution

Cumulated
contribu-
tion

Contribution
of deviation

Proportion
to variable

Jazz Yes 145 0.629 41.85 51.08 51.08 17.25 33.76
No 326 0.608 9.23

ClassicalYes 183 0.363 17.79 24.55 75.63 6.9 28.1
No 290 0.359 6.76

AnimationYes 34 0.149 12.43 12.43 88.06 4.64 35.66

We can see that, as in the MCA, listening to jazz and classical music structure axis 1, but this time much
more strongly since these two variables alone contribute 75% to the construction of the axis.
tabcontrib(csa, dim = 2)

VariableCategoryWeight

Quality of
representa-

tion
Contribution
(left)

Contribution
(right)

Total
contri-
bution

Cumulated
contribu-
tion

Contribution
of deviation

Proportion
to variable

AnimationYes 34 0.651 59.05 59.05 59.05 22.06 35.66
SciFi Yes 38 0.149 9.51 9.51 68.55 2.53 24.72
Rock Yes 203 0.118 6.71 6.71 75.26 2.55 27.32
Jazz Yes 145 0.075 5.43 5.43 80.69 2.16 32.22

It is above all the taste for animation movies that contributes to the construction of axis 2.

In sum, the subcloud of the variables for the most highly educated individuals has points in common with
that of the population as a whole, but also some very marked specificities.

The similarity between the MCA on all individuals and the CSA on the most highly educated individuals can
be measured by studying the angles between the axes of the two analyses, with the function angles.csa().
angles.csa(csa, mca)

$cosines
mca.dim1 mca.dim2 mca.dim3 mca.dim4 mca.dim5 mca.dim1&2 mca.dim1&3

csa.dim1 0.772 0.157 -0.051 0.415 0.486 0.787 0.773
csa.dim2 0.553 -0.481 -0.063 -0.511 -0.535 0.733 0.557
csa.dim3 -0.017 -0.680 -0.059 0.010 0.480 0.680 0.061
csa.dim4 0.223 0.182 0.385 -0.482 0.179 0.287 0.445
csa.dim5 -0.181 -0.296 -0.298 -0.350 0.154 0.347 0.348

mca.dim1&4 mca.dim1&5 mca.dim2&3 mca.dim2&4 mca.dim2&5 mca.dim3&4
csa.dim1 0.876 0.912 0.165 0.444 0.511 0.418
csa.dim2 0.753 0.770 0.485 0.702 0.719 0.515
csa.dim3 0.020 0.480 0.682 0.680 0.832 0.059
csa.dim4 0.531 0.286 0.426 0.515 0.256 0.617
csa.dim5 0.394 0.238 0.420 0.458 0.334 0.459

mca.dim3&5 mca.dim4&5
csa.dim1 0.489 0.639
csa.dim2 0.539 0.740
csa.dim3 0.483 0.480
csa.dim4 0.425 0.515
csa.dim5 0.335 0.382
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$angles
mca.dim1 mca.dim2 mca.dim3 mca.dim4 mca.dim5 mca.dim1&2 mca.dim1&3

csa.dim1 39.5 81.0 87.1 65.5 60.9 38.1 39.4
csa.dim2 56.4 61.3 86.4 59.3 57.7 42.9 56.2
csa.dim3 89.0 47.2 86.6 89.4 61.3 47.2 86.5
csa.dim4 77.1 79.5 67.3 61.2 79.7 73.3 63.6
csa.dim5 79.6 72.8 72.7 69.5 81.2 69.7 69.6

mca.dim1&4 mca.dim1&5 mca.dim2&3 mca.dim2&4 mca.dim2&5 mca.dim3&4
csa.dim1 28.8 24.2 80.5 63.7 59.3 65.3
csa.dim2 41.1 39.7 61.0 45.4 44.0 59.0
csa.dim3 88.9 61.3 47.0 47.2 33.7 86.6
csa.dim4 57.9 73.4 64.8 59.0 75.2 51.9
csa.dim5 66.8 76.3 65.2 62.7 70.5 62.7

mca.dim3&5 mca.dim4&5
csa.dim1 60.7 50.2
csa.dim2 57.4 42.3
csa.dim3 61.1 61.3
csa.dim4 64.9 59.0
csa.dim5 70.4 67.5

We can see that the first dimension of the CSA is clearly correlated to the first dimension of the MCA (and
very little to the second dimension), but that the second dimension of the CSA is quite distinct from the first
two dimensions of the MCA.

We will not go further here but let us specify that all the visualization and interpretation techniques described
previously can be applied to the results of a CSA.

Discriminant analysis

The instrumental variables approach is a form of approximation between geometric data analysis and regression
methods. In practice, it consists of constructing a factorial space, from a first group of active variables, so
that this space “explains” a second set of variables, called instrumental variables, as well as possible.
The term “explain” is used here in a sense similar to analysis of variance (anova) or regression, in which an
explanatory variable “explains” an explained variable, i.e. accounts for its variance as well as possible.

In the general case, there are several instrumental variables, which can be categorical and/or numerical.
When the active variables are all numerical, we speak of Principal Component Analysis on Instrumental
Variables (function PCAiv()), and when the active variables are all categorical, of Correspondence Analysis
on Instrumental Variables (function MCAiv()).

If the instrumental variable is unique and categorical, we can say that it partitions the individuals into
groups or “classes”. It is therefore a question of carrying out an inter-class analysis, by constructing a
factorial space which accounts for the differences between classes (functions bcPCA() for cases where the
active variables are continuous and bcMCA() for those where they are categorical). It is also sometimes called
barycentric discriminant analysis or discriminant correspondence analysis. If the active variables are
continuous, a variant is the factorial discriminant analysis (FDA), also called descriptive discriminant
analysis (function DA()), which is equivalent to linear discriminant analysis in the Anglo-Saxon literature.
When the active variables are categorical, an adaptation of the FDA has been proposed by Gilbert Saporta
(1977) under the name Disqual (function DAQ()).

As an example, we apply a barycentric discriminant analysis to construct the factorial space of the differences
in tastes between individuals of different age categories.
between <- bcMCA(Taste[,1:11], class = Taste$Age, excl = junk)
factoextra::fviz_ca(between, repel = TRUE, invisible = "row.sup",

col.col = "dodgerblue3", col.row = "tomato2", title = "Between-class analysis")
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between$ratio

[1] 0.04077871

The first axis, or “discriminant factor”, orders the age categories and in particular contrasts listening to rap
and rock music and taste for science fiction, on the side of the young, with listening to classical music and
taste for musicals, on the side of the over 50s. But many of the taste categories are close to the center of axis
1 and are therefore not differentiated much by age. Age differences account for only 4% of the total inertia of
the cloud.

Conditional analysis

Conditional analyses are another attempt to integrate geometric data analysis and regression. Their principle
is to constrain the axes of the MCA to be independent (i.e. orthogonal) of one or more supplementary
variables, i.e. to construct a MCA “all things (of these supplementary variables) equal” (Bry et al, 2016).
Comparing the results of the original MCA with those of the conditional MCA is a way to study structure
effects.

In the general case, there are several variables whose effect must be “eliminated” and these are sometimes
called orthogonal instrumental variables. We will therefore carry out a Principal Component Analysis
on Orthogonal Instrumental Variables if the active variables are all numerical (function PCAoiv()) and a
Correspondence Analysis on Orthogonal Instrumental Variables if the active variables are all categorical
(function MCAoiv()).

As for the discriminant analyses (previous sub-section), if the orthogonal instrumental variable is unique
and categorical, it partitions the individuals into “classes”. But this time we are in the context of an
intra-class analysis: the aim is to construct the factorial space that accounts for the structures common
to the different classes. When the active variables are categorical, a conditional MCA (Escofier, 1990
and function wcMCA()) is performed, of which the standardized MCA (Bry et al, 2016) is an alternative
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(function stMCA()). The conditional approach also applies to the case of numerical active variables (function
wcPCA()).

We now construct the space of tastes common to women and men, or, put differently, neutralizing the
gendered differences. In the plane(1,2), the results obtained are very similar to those of the MCA. The main
difference concerns the (very female) taste for love movies, which is no longer distinguishable on axis 2.

The small size of the differences between the two analyses is confirmed by the fact that the within-class
analysis accounts for almost 99% of the total inertia of the cloud.
within <- wcMCA(Taste[,1:11], class = Taste$Gender, excl = junk)
ggcloud_variables(within, legend = "none") + ggtitle("Within-class analysis")
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within$ratio

[1] 0.9896936

Symmetrical multi-table analysis

Another case arises when the active variables are divided into several homogeneous groups and these groups
play a symmetrical role (unlike the approaches with instrumental variables).

With two groups of variables, one can perform a co-inertia analysis (Tucker, 1958; Dolédec and Chessel,
1994) in order to study the structures common to both groups (functions coiMCA() if the groups are composed
of categorical variables, coiPCA() if they are composed of numerical variables).

A co-inertia analysis is applied to a new dataset, in which a group of 5 variables describes the tastes for
different musical genres, and a second group of 2 variables describes the frequency of listening (in general or
“focused”, i.e. doing nothing else).
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data(Music)
Xa <- Music[,1:5] # music tastes
Xb <- Music[,8:9] # frequency of listening
coin <- coiMCA(Xa, Xb,

excl.a = c("FrenchPop.NA","Rap.NA","Rock.NA","Jazz.NA","Classical.NA"))
factoextra::fviz_ca(coin, repel = TRUE, title = "Co-inertia analysis",

col.col = "dodgerblue3", col.row = "tomato2")
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Examination of the first axis shows that rap, jazz and rock are on the side of daily listening and frequent
or daily focused listening, while taste for French popular music is on the side of non-daily listening and no
focused listening.

Multiple Factor Analysis (MFA, see Escofier and Pagès, 1994) makes it possible to deal with two groups
of variables or more. It takes into account both the structures specific to each group and the structures
common to the groups. The function multiMCA() makes it possible to carry out MFA using specific MCA or
Class Specific Analysis.

Here, we use the Taste data. One group of variables describes the listening to music genres and the other
the taste for movie genres, and the MFA uses specific MCAs.
mca1 <- speMCA(Taste[,1:5], excl = c(3,6,9,12,15))
mca2 <- speMCA(Taste[,6:11], excl = c(3,6,9,12,15,18))
mfa <- multiMCA(list(mca1,mca2))
ggcloud_variables(mfa, shapes=FALSE, legend="none") + ggtitle("Analyse factorielle multiple")
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We observe that it is mainly the film variables that structure the plane (1,2). An MFA is of little interest
here, because the two spaces are very little related: the RV coefficient is 1.4% (the RV coefficient - function
rvcoef() - is a kind of correlation coefficient between groups of variables).
rvcoef(mca1$ind$coord, mca2$ind$coord)

[1] 0.01412768

NB: There is another approach to deal with the case of several groups of variables, whether these groups play
a symmetrical role or not, it is the PLS approach (Partial Least Square, see Tenenhaus, 1998). Most of
these techniques are available in the package plsdepot, developed by Gaston Sanchez.

Nonsymmetric correspondence analysis

When dealing with a contingency table with a dependence structure, i.e. when the role of the two variables
is not symmetrical but, on the contrary, one can be considered as predicting the other, nonsymmetric
correspondence analysis (NSCA) can be used to represent the predictive structure in the table and to assess
the predictive power of the predictor variable.

Technically, NSCA is very similar to the standard CA, the main difference being that the columns of the
contingency table are not weighted by their rarity (i.e. the inverse of the marginal frequencies).

Here we study data on the distribution of various domestic tasks in couples. We consider that the type of
domestic task is predictive of who performs that task.
library(ade4)
data(housetasks)
housetasks

Wife Alternating Husband Jointly
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Laundry 156 14 2 4
Main_meal 124 20 5 4
Dinner 77 11 7 13
Breakfeast 82 36 15 7
Tidying 53 11 1 57
Dishes 32 24 4 53
Shopping 33 23 9 55
Official 12 46 23 15
Driving 10 51 75 3
Finances 13 13 21 66
Insurance 8 1 53 77
Repairs 0 3 160 2
Holidays 0 1 6 153

The biplots of an NSCA reflect the dependency structure of the contingency table and thus should not be
interpreted as the planes of a standard CA. A first principle is that the graph displays the centred row profiles.
A second principle is that the relationships between rows and columns are contained in their inner products :
the rows are depicted as vectors, also called biplot axes, and the columns are projected on these vectors. If
some columns have projections on the row vector far away from the origin, then the row has a comparatively
large increase in predictability, and its profile deviates considerably from the marginal one, especially for that
column.

For more detailed interpretational guidelines, see Kroonenberg and Lombardo (1999, pp.377-378).
nsca <- nsCA(housetasks)
nsca.biplot(nsca)
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[1] 0.4067139

We find that knowing that household tasks involve laundry or meal preparation “increases predictive
performance” of female tasks. Repairs are associated with male tasks and vacation planning with joint tasks.

The Goodman and Kruskal tau is an asymmetric measure of global association. Its high value (0.41)
here indicates that the type of household task does predict who performs the task.

Some practical points
Links with other packages

The MCA and PCA variants offered in GDAtools are, as far as possible, intended to create objects similar
to those created by the PCA(), MCA() and CA() functions of the [FactoMineR] package (https://cran.r-
project.org/package=FactoMineR). This allows these objects to be (mostly) compatible with a number of
functions for interpreting and visualizing the results:

• the graphical functions of the FactoMineR package,

• the package Factoshiny for the interactive construction of graphs,

• the amazing package explor, developed by Julien Barnier, for interactive exploration of results,

• the package factoextra to extract and visualize the results.

Color customization

Most of the graphical functions in GDAtools have been designed with the “grammar” (and default
color palettes) of ggplot2 in mind, and in such a way as to be able to customize colors in a very
flexible way. One can indeed use scale_color_* functions, like scale_color_grey() for gray scales,
scale_color_brewer() for ColorBrewer palettes, scale_color_manual() for using custom palettes, or
paletteer::scale_color_paletteer_d() from the package paletteer for accessing a large number of
color palettes existing in R (a list of which is available here). However, one must be careful to choose a
palette with at least as many colors as there are variables to represent (otherwise some variables will remain
invisible).

For example, to display the cloud of variables with the ColorBrewer palette “Paired1”, we will proceed as
follows.
ggcloud_variables(mca) + scale_color_brewer(palette = "Paired")
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