Package ‘FMAT’

January 12, 2026

Title The Fill-Mask Association Test

Version 2026.1

Date 2026-01-01

Maintainer Han Wu Shuang Bao <baohws@foxmail.com>

Description The Fill-Mask Association Test (FMAT")
<doi:10.1037/pspa0000396>
is an integrative, probability-based social computing method
using Masked Language Models to measure conceptual associations
(e.g., attitudes, biases, stereotypes, social norms, cultural values)
as propositional semantic representations in natural language.
Supported language models include 'BERT"
<doi:10.48550/arXiv.1810.04805> and its variants available at 'Hugging Face'
<https://huggingface.co/models?pipeline_tag=fill-mask>.
Methodological references and installation guidance are provided at
<https://psychbruce.github.io/FMAT/>.

License GPL-3
Encoding UTF-8

URL https://psychbruce.github.io/FMAT/

BugReports https://github.com/psychbruce/FMAT/issues
SystemRequirements Python (>=3.9.0)
Depends R (>=4.0.0)

Imports reticulate, data.table, stringr, forcats, rvest, psych, irr,
glue, crayon, cli, purrr, plyr, dplyr, tidyr

Suggests bruceR, PsychWordVec, text, sweater, nlme
RoxygenNote 7.3.3
NeedsCompilation no

Author Han Wu Shuang Bao [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3043-710X>)

Repository CRAN
Date/Publication 2026-01-12 05:50:02 UTC

https://doi.org/10.1037/pspa0000396
https://doi.org/10.48550/arXiv.1810.04805
https://huggingface.co/models?pipeline_tag=fill-mask
https://psychbruce.github.io/FMAT/
https://psychbruce.github.io/FMAT/
https://github.com/psychbruce/FMAT/issues
https://orcid.org/0000-0003-3043-710X

2 BERT download

Contents
BERT download e 2
BERT info s 3
BERT _info_date e 4
BERT remove o e e 5
BERT vocab e 5
fill_mask e e 7
FMAT_query o e e e e e e e e 8
FMAT _query_bind e 9
FMAT run e 10
ICC_models e e e e e e 13
LPR_reliability e 13
set_cache_folder 14
special_case L e e e e e 15
summary.fmat e 16
weight_decay L 17

Index 18

BERT_download Download and save BERT models to local cache folder.
Description

Download and save BERT models to local cache folder "% USERPROFILE%/.cache/huggingface".

Usage

BERT_download(models = NULL, verbose = FALSE)

Arguments
models A character vector of model names at HuggingFace.
verbose Alert if a model has been downloaded. Defaults to FALSE.
Value

Invisibly return a data.table of basic file information of local models.

See Also

set_cache_folder()
BERT_info()
BERT_vocab ()

https://huggingface.co/models

BERT info

Examples
Not run:
models = c("bert-base-uncased”, "bert-base-cased")

BERT_download(models)
BERT_download() # check downloaded models
BERT_info() # information of all downloaded models

End(Not run)

BERT_info Get basic information of BERT models.

Description

Get basic information of BERT models.

Usage

BERT_info(models = NULL)

Arguments

models A character vector of model names at HuggingFace.

Value

A data.table:

* model name

* model type

* number of parameters

* vocabulary size (of input token embeddings)

» embedding dimensions (of input token embeddings)
* hidden layers

* attention heads

[MASK] token

See Also

BERT_download()
BERT_vocab ()

https://huggingface.co/models

4 BERT info_date
Examples

Not run:

models = c("bert-base-uncased”, "bert-base-cased")

BERT_info(models)

BERT_info() # information of all downloaded models

speed: ~1.2s/model for first use; <1s afterwards

End(Not run)

BERT_info_date Scrape the initial commit date of BERT models.

Description

Scrape the initial commit date of BERT models.
Usage

BERT_info_date(models = NULL)
Arguments

models A character vector of model names at HuggingFace.
Value

A data.table:

* model name
* initial commit date (scraped from huggingface commit history)

Examples

Not run:
model.date = BERT_info_date()
get all models from cache folder

one.model.date = FMAT:::get_model_date("bert-base-uncased”)
call the internal function to scrape a model

that may not have been saved in cache folder

End(Not run)

https://huggingface.co/models

BERT remove 5

BERT_remove Remove BERT models from local cache folder.

Description

Remove BERT models from local cache folder.

Usage

BERT_remove (models)

Arguments

models Model names.

Value

NULL.

BERT_vocab Check if mask words are in the model vocabulary.

Description

Check if mask words are in the model vocabulary.

Usage

BERT_vocab(
models,
mask.words,
add. tokens = FALSE,
add.verbose = FALSE,
weight.decay = 1

)
Arguments
models A character vector of model names at HuggingFace.
mask.words Option words filling in the mask.
add. tokens Add new tokens (for out-of-vocabulary words or phrases) to model vocabulary?

Defaults to FALSE.

* Default method of producing the new token embeddings is computing the
(equally weighted) average subword token embeddings. To change the
weights of different subwords, specify weight.decay.

https://huggingface.co/models

add.verbose

weight.decay

Value

BERT vocab

* It just adds tokens temporarily without changing the raw model file.
Print subwords of each new token? Defaults to FALSE.

Decay factor of relative importance of multiple subwords. Defaults to 1 (see
weight_decay() for computational details). A smaller decay value would give
greater weight to the former subwords than to the latter subwords. The i-th
subword has raw weight = decay " i.

* decay = 1: all subwords are equally important (default)
* 0 < decay < 1: first subwords are more important
* decay > 1: last subwords are more important
For example, decay = 0.5 would give 0.5 and 0.25 (with normalized weights

0.667 and 0.333) to two subwords (e.g., "individualism" = 0.667 "individual" +
0.333 "##ism").

A data.table of model name, mask word, real token (replaced if out of vocabulary), and token id

(0~N).

See Also

BERT_download()
BERT_info()

FMAT_run()

Examples

Not run:

models = c("bert-
BERT_info(models)

base-uncased”, "bert-base-cased”)

BERT_vocab(models, c("bruce”, "Bruce"))

BERT_vocab(models, 2020:2025) # some are out-of-vocabulary
BERT_vocab(models, 2020:2025, add.tokens=TRUE) # add vocab

BERT_vocab(models,
c("individualism”, "artificial intelligence"),
add. tokens=TRUE)

End(Not run)

fill_mask 7

fill_mask Run the fill-mask pipeline and check the raw results.

Description

This function is only for technical check. Please use FMAT_run() for general purposes.

Usage

fill_mask(query, model, targets = NULL, topn = 5, gpu)

fill_mask_check(query, models, targets = NULL, topn = 5, gpu)

Arguments

query Query sentence with mask token.

model, models Model name(s).

targets Target words to fill in the mask. Defaults to NULL (return the top 5 most likely
words).

topn Number of the most likely predictions to return. Defaults to 5.

gpu Use GPU (3x faster than CPU) to run the fill-mask pipeline? Defaults to missing

value that will automatically use available GPU (if not available, then use CPU).
An NVIDIA GPU device (e.g., GeForce RTX Series) is required to use GPU.
See Guidance for GPU Acceleration.

Options passing on to the device parameter in Python:

e FALSE: CPU (device =-1).
e TRUE: GPU (device = 0).

* Others: passing on to transformers.pipeline(device=...) which de-
fines the device (e.g., "cpu”, "cuda: 0", or a GPU device id like 1) on which
the pipeline will be allocated.

Value

A data.table of raw results.

Functions

e fill_mask(): Check performance of one model.

e fill_mask_check(): Check performance of multiple models.

https://psychbruce.github.io/FMAT/#guidance-for-gpu-acceleration
https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline.device

8 FMAT _query

Examples
Not run:
query = "Paris is the [MASK] of France.”
models = c("bert-base-uncased”, "bert-base-cased")

d.check = fill_mask_check(query, models, topn=2)

End(Not run)

FMAT_query Prepare a data.table of queries and variables for the FMAT.

Description

Prepare a data.table of queries and variables for the FMAT.

Usage

FMAT_query(
query = "Text with [MASK], optionally with {TARGET} and/or {ATTRIB}.",

MASK = . (),
TARGET = . (),
ATTRIB = . ()
)
Arguments
query Query text (should be a character string/vector with at least one [MASK] token).
Multiple queries share the same set of MASK, TARGET, and ATTRIB. For multiple
queries with different MASK, TARGET, and/or ATTRIB, please use FMAT_query_bind()
to combine them.
MASK A named list of [MASK] target words. Must be single words in the vocabulary of

a certain masked language model.
» For model vocabulary, see, e.g., https://huggingface.co/bert-base-uncased/
raw/main/vocab. txt

* Infrequent words may be not included in a model’s vocabulary, and in this
case you may insert the words into the context by specifying either TARGET
or ATTRIB.

TARGET, ATTRIB A named list of Target/Attribute words or phrases. If specified, then query
must contain {TARGET} and/or {ATTRIB} (in all uppercase and in braces) to be
replaced by the words/phrases.

Value

A data.table of queries and variables.

https://huggingface.co/bert-base-uncased/raw/main/vocab.txt
https://huggingface.co/bert-base-uncased/raw/main/vocab.txt

FMAT_query_bind

See Also

FMAT_query_bind()
FMAT_run()

Examples

FMAT_query("[MASK] is a nurse.”, MASK = .(Male="He", Female="She"))

FMAT_query(

c("[MASK] is {TARGET}.", "[MASK] works as {TARGET}."),
MASK = .(Male="He", Female="She"),
TARGET = .(Occupation=c(”a doctor”, "a nurse”, "an artist"”))

)

FMAT_query(
"The [MASK] {ATTRIB}.",
MASK = .(Male=c("man"”, "boy"),

Female=c("woman"”, "girl")),
ATTRIB = .(Masc=c("is masculine”, "has a masculine personality"),
Femi=c("is feminine”, "has a feminine personality"”))
)
FMAT_query_bind Combine multiple query data.tables and renumber query ids.
Description

Combine multiple query data.tables and renumber query ids.

Usage
FMAT_query_bind(...)

Arguments

Query data.tables returned from FMAT_query ().

Value

A data.table of queries and variables.

See Also

FMAT_query ()
FMAT_run()

10 FMAT run

Examples

FMAT_query_bind(
FMAT_query(
"[MASK] is {TARGET}.",
MASK = .(Male="He", Female="She"),
TARGET = . (Occupation=c("a doctor”, "a nurse”, "an artist"”))
),
FMAT _query (
"[MASK] occupation is {TARGET}.",
MASK = .(Male="His", Female="Her"),
TARGET = . (Occupation=c("doctor”, "nurse", "artist"))
)
)

FMAT_run Run the fill-mask pipeline on multiple models (CPU / GPU).

Description

Run the fill-mask pipeline on multiple models with CPU or GPU (faster but requires an NVIDIA
GPU device).

Usage

FMAT_run(
models,
data,
gpu,
add. tokens = FALSE,
add.verbose = FALSE,
weight.decay = 1,
pattern.special = special_case(),
file = NULL,
progress = TRUE,
warning = TRUE,
na.out = TRUE

)
Arguments
models A character vector of model names at HuggingFace.
data A data.table returned from FMAT_query () or FMAT_query_bind().
gpu Use GPU (3x faster than CPU) to run the fill-mask pipeline? Defaults to missing

value that will automatically use available GPU (if not available, then use CPU).
An NVIDIA GPU device (e.g., GeForce RTX Series) is required to use GPU.
See Guidance for GPU Acceleration.

Options passing on to the device parameter in Python:

https://huggingface.co/models
https://psychbruce.github.io/FMAT/#guidance-for-gpu-acceleration

FMAT run 11

e FALSE: CPU (device = -1).
¢ TRUE: GPU (device = 0).

* Others: passing on to transformers.pipeline(device=...) which de-
fines the device (e.g., "cpu”, "cuda: 0", or a GPU device id like 1) on which
the pipeline will be allocated.

add. tokens Add new tokens (for out-of-vocabulary words or phrases) to model vocabulary?
Defaults to FALSE.

* Default method of producing the new token embeddings is computing the
(equally weighted) average subword token embeddings. To change the
weights of different subwords, specify weight.decay.

* It just adds tokens temporarily without changing the raw model file.
add.verbose Print subwords of each new token? Defaults to FALSE.

weight.decay Decay factor of relative importance of multiple subwords. Defaults to 1 (see
weight_decay() for computational details). A smaller decay value would give
greater weight to the former subwords than to the latter subwords. The i-th
subword has raw weight = decay " i.

* decay = 1: all subwords are equally important (default)
* 0 < decay < I: first subwords are more important
* decay > 1: last subwords are more important
For example, decay = 0.5 would give 0.5 and 0.25 (with normalized weights

0.667 and 0.333) to two subwords (e.g., "individualism" = 0.667 "individual" +
0.333 "##ism").

pattern.special
See special_case() for details.

file File name of .RData to save the returned data.

progress Show a progress bar? Defaults to TRUE.

warning Alert warning of out-of-vocabulary word(s)? Defaults to TRUE.

na.out Replace probabilities of out-of-vocabulary word(s) with NA? Defaults to TRUE.
Details

The function automatically adjusts for the compatibility of tokens used in certain models: (1) for
uncased models (e.g., ALBERT), it turns tokens to lowercase; (2) for models that use <mask> rather
than [MASK], it automatically uses the corrected mask token; (3) for models that require a prefix to
estimate whole words than subwords (e.g., ALBERT, RoBERTa), it adds a white space before each
mask option word. See special_case() for details.

These changes only affect the token variable in the returned data, but will not affect the M_word
variable. Thus, users may analyze data based on the unchanged M_word rather than the token.

Note also that there may be extremely trivial differences (after 5~6 significant digits) in the raw
probability estimates between using CPU and GPU, but these differences would have little impact
on main results.

https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline.device

12 FMAT run

Value

A data.table (class fmat) appending data with these new variables:

* model: model name.
* output: complete sentence output with unmasked token.

* token: actual token to be filled in the blank mask (a note "out-of-vocabulary" will be added if
the original word is not found in the model vocabulary).

* prob: (raw) conditional probability of the unmasked token given the provided context, esti-
mated by the masked language model.

— Raw probabilities should NOT be directly used or interpreted. Please use summary . fmat()
to contrast between a pair of probabilities.

See Also

set_cache_folder()
BERT_download()
BERT_vocab()
FMAT_query()
FMAT_query_bind()
summary . fmat ()
special_case()

weight_decay()
Examples
Running the examples requires the models downloaded

Not run:
models = c("bert-base-uncased”, "bert-base-cased")

queryl = FMAT_query(

c("[MASK] is {TARGET}.", "[MASK] works as {TARGET}."),
MASK = .(Male="He", Female="She"),
TARGET = . (Occupation=c("a doctor”, "a nurse”, "an artist”))

)
datal = FMAT_run(models, queryl)
summary(datal, target.pair=FALSE)

query2 = FMAT_query(
"The [MASK] {ATTRIB}.",
MASK = .(Male=c("man"”, "boy"),

Female=c("woman”, "girl")),
ATTRIB = .(Masc=c("is masculine”, "has a masculine personality"),
Femi=c("is feminine”, "has a feminine personality"”))

)
data2 = FMAT_run(models, query2)

summary (data2, mask.pair=FALSE)

ICC_models 13

summary (data2)

End(Not run)

ICC_models Intraclass correlation coefficient (ICC) of BERT models.

Description

Interrater agreement of log probabilities (treated as "ratings"/rows) among BERT language models
(treated as "raters"/columns), with both row and column as ("two-way") random effects.

Usage

ICC_models(data, type = "agreement”, unit = "average")
Arguments

data Raw data returned from FMAT_run() (with variable prob) or its summarized

data obtained with summary.fmat () (with variable LPR).

type Interrater "agreement” (default) or "consistency”.

unit Reliability of "average” scores (default) or "single" scores.
Value

A data.frame of ICC.

LPR_reliability Reliability analysis (Cronbach’s o) of LPR.

Description

Reliability analysis (Cronbach’s a) of LPR.

Usage
LPR_reliability(fmat, item = c("query"”, "T_word”, "A_word"), by = NULL)

Arguments
fmat A data.table returned from summary.fmat().
item Reliability of multiple "query"” (default), "T_word", or "A_word".
by Variable(s) to split data by. Options can be "model”, "TARGET", "ATTRIB", or

any combination of them.

14 set_cache_folder

Value

A data.frame of Cronbach’s «.

set_cache_folder Set (change) HuggingFace cache folder temporarily.

Description
This function allows you to change the default cache directory (when it lacks storage space) to
another path (e.g., your portable SSD) temporarily.

Usage

set_cache_folder(path = NULL)

Arguments
path Folder path to store HuggingFace models. If NULL, then return the current cache
folder.
Keep in Mind

This function takes effect only for the current R session femporarily, so you should run this each
time BEFORE you use other FMAT functions in an R session.

Examples

Not run:

library(FMAT)

set_cache_folder("D:/huggingface_cache/")

-> models would be saved to "D:/huggingface_cache/hub/"
run this function each time before using FMAT functions

BERT_download()
BERT_info()

End(Not run)

special_case 15

special_case Specify models that require special treatment to ensure accuracy.

Description

Specify models that require special treatment to ensure accuracy.

Usage
special_case(
uncased = "uncased|albert|electra|muhtasham”,
u2581 = "albert|xlm-roberta|xlnet”,
u2581.excl = "chinese"”,
ud120 = "roberta|bart|deberta|bertweet-large|ModernBERT",
ud120.excl = "chinese|x1lm-|kornosk/"
)
Arguments
uncased Regular expression pattern (matching model names) for uncased models.
u2581, uo120 Regular expression pattern (matching model names) for models that require a

special prefix character when performing whole-word fill-mask pipeline.

WARNING: The developer is unable to check all models, so users need to check
the models they use and modify these parameters if necessary.

* u2581: add prefix \u2581 (white space) for all mask words
* u@120: add prefix \u@120 (white space) for only non-starting mask words
u2581.excl, ue120.excl
Exclusions to negate u2581 and u@12@ matching results.

Value

A list of regular expression patterns.

See Also

FMAT_run()

Examples

special_case()

16 summary.fmat

summary . fmat [S3 method] Summarize the results for the FMAT.

Description

Summarize the results of Log Probability Ratio (LPR), which indicates the relative (vs. absolute)
association between concepts.

Usage

S3 method for class 'fmat'
summary (
object,
mask.pair = TRUE,
target.pair = TRUE,
attrib.pair = TRUE,
warning = TRUE,

Arguments

object A data.table (class fmat) returned from FMAT_run().
mask.pair, target.pair, attrib.pair

Pairwise contrast of [MASK], TARGET, ATTRIB? Defaults to TRUE.
warning Alert warning of out-of-vocabulary word(s)? Defaults to TRUE.

Other arguments (currently not used).

Details

The LPR of just one contrast (e.g., only between a pair of attributes) may not be sufficient for a
proper interpretation of the results, and may further require a second contrast (e.g., between a pair
of targets).

Users are suggested to use linear mixed models (with the R packages nlme or 1me4/lmerTest) to
perform the formal analyses and hypothesis tests based on the LPR.

Value

A data.table of the summarized results with Log Probability Ratio (LPR).

See Also

FMAT_run()

Examples

see examples in “FMAT_run”

weight_decay 17

weight_decay Compute a vector of weights with a decay rate.

Description

Compute a vector of weights with a decay rate.

Usage

weight_decay(vector, decay)

Arguments
vector Vector of sequence.
decay Decay factor for computing weights. A smaller decay value would give greater
weight to the former items than to the latter items. The i-th item has raw weight
= decay " i.
* decay = I: all items are equally important
* 0 <decay < 1: first items are more important
* decay > I: last items are more important
Value

Normalized weights (i.e., sum of weights = 1).

See Also

FMAT_run()

Examples

"individualism”
weight_decay(c("individual”, "##ism"), 0.5)
weight_decay(c("individual”, "##ism"), 0.8)
weight_decay(c("individual”, "##ism"), 1)
weight_decay(c("individual”, "##ism"), 2)

"East Asian people”

weight_decay(c("East”, "Asian"”, "people"), 0.5)
weight_decay(c("East”, "Asian"”, "people”), 0.8)
weight_decay(c("East”, "Asian"”, "people”), 1)
weight_decay(c("East"”, "Asian"”, "people”), 2)

Index

BERT_download, 2
BERT_download(), 3, 6, 12
BERT_info, 3
BERT_info(), 2,6
BERT_info_date, 4
BERT_remove, 5
BERT_vocab, 5
BERT_vocab(), 2, 3, 12

fill_mask, 7

fill_mask_check (fill_mask), 7
FMAT_query, 8
FMAT_query(), 9, 10, 12
FMAT_query_bind, 9
FMAT_query_bind(), 8-10, 12
FMAT_run, 10
FMAT_run(), 6, 7,9, 13, 15-17

ICC_models, 13
LPR_reliability, 13

set_cache_folder, 14
set_cache_folder(), 2, 12
special_case, 15
special_case(), 11, 12
summary . fmat, 16
summary.fmat(), 12, 13

weight_decay, 17
weight_decay(), 6, 11, 12

18

	BERT_download
	BERT_info
	BERT_info_date
	BERT_remove
	BERT_vocab
	fill_mask
	FMAT_query
	FMAT_query_bind
	FMAT_run
	ICC_models
	LPR_reliability
	set_cache_folder
	special_case
	summary.fmat
	weight_decay
	Index

