
Package ‘DALEXtra’
January 14, 2026

Title Extension for 'DALEX' Package

Version 2.3.1

Description Provides wrapper of various machine learning models.
In applied machine learning, there
is a strong belief that we need to strike a balance
between interpretability and accuracy.
However, in field of the interpretable machine learning,
there are more and more new ideas for explaining black-box models,
that are implemented in 'R'.
'DALEXtra' creates 'DALEX' Biecek (2018) <doi:10.48550/arXiv.1806.08915> ex-
plainer for many type of models
including those created using 'python' 'scikit-learn' and 'keras' libraries, and 'java' 'h2o' library.
Important part of the package is Champion-Challenger analysis and innovative approach
to model performance across subsets of test data presented in Funnel Plot.

Depends R (>= 3.5.0), DALEX (>= 2.4.0)

License GPL

Encoding UTF-8

RoxygenNote 7.3.3

Imports ggplot2

Suggests auditor, gbm, ggrepel, h2o, iml, ingredients, lime,
localModel, mlr, mlr3, ranger, recipes, reticulate, rmarkdown,
rpart, stacks, xgboost, testthat, tidymodels

URL https://ModelOriented.github.io/DALEXtra/,

https://github.com/ModelOriented/DALEXtra

BugReports https://github.com/ModelOriented/DALEXtra/issues

NeedsCompilation no

Author Szymon Maksymiuk [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3120-1601>),

Przemyslaw Biecek [aut] (ORCID:
<https://orcid.org/0000-0001-8423-1823>),

Hubert Baniecki [aut],
Anna Kozak [ctb]

1

https://doi.org/10.48550/arXiv.1806.08915
https://ModelOriented.github.io/DALEXtra/
https://github.com/ModelOriented/DALEXtra
https://github.com/ModelOriented/DALEXtra/issues
https://orcid.org/0000-0002-3120-1601
https://orcid.org/0000-0001-8423-1823

2 champion_challenger

Maintainer Szymon Maksymiuk <sz.maksymiuk@gmail.com>

Repository CRAN

Date/Publication 2026-01-14 06:40:02 UTC

Contents
champion_challenger . 2
create_env . 4
dalex_load_explainer . 5
explain_h2o . 5
explain_keras . 8
explain_mlr . 11
explain_mlr3 . 13
explain_scikitlearn . 15
explain_tidymodels . 19
explain_xgboost . 21
funnel_measure . 23
model_info.WrappedModel . 25
overall_comparison . 26
plot.funnel_measure . 28
plot.overall_comparison . 29
plot.training_test_comparison . 30
predict_surrogate . 31
print.funnel_measure . 33
print.overall_comparison . 34
print.scikitlearn_set . 35
print.training_test_comparison . 35
training_test_comparison . 36
yhat.WrappedModel . 38

Index 40

champion_challenger Compare machine learning models

Description

Determining if one model is better than the other one is a difficult task. Mostly because there is a
lot of fields that have to be covered to make such a judgement. Overall performance, performance
on the crucial subset, distribution of residuals, those are only few among many ideas related to
that issue. Following function allow user to create a report based on various sections. Each says
something different about relation between champion and challengers. DALEXtra package share 3
base sections which are funnel_measure overall_comparison and training_test_comparison
but any object that has generic plot function can be included at report.

champion_challenger 3

Usage

champion_challenger(
sections,
dot_size = 4,
output_dir_path = getwd(),
output_name = "Report",
model_performance_table = FALSE,
title = "ChampionChallenger",
author = Sys.info()[["user"]],
...

)

Arguments

sections - list of sections to be attached to report. Could be sections available with
DALEXtra which are funnel_measure training_test_comparison, overall_comparison
or any other explanation that can work with plot function. Please provide name
for not standard sections, that will be presented as section titles. Otherwise class
of the object will be used.

dot_size - dot_size argument passed to plot.funnel_measure if funnel_measure sec-
tion present

output_dir_path

- path to directory where Report should be created. By default it is current
working directory.

output_name - name of the Report. By default it is "Report"
model_performance_table

- If TRUE and overall_comparison section present, table of scores will be
displayed.

title - Title for report, by default it is "ChampionChallenger".

author - Author of , report. By default it is current user name.

... - other parameters passed to rmarkdown::render.

Value

rmarkdown report

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"

4 create_env

)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.ranger"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
nbins = 5, measure_function = DALEX::loss_root_mean_square)

champion_challenger(list(plot_data), dot_size = 3, output_dir_path = tempdir())

create_env Create your conda virtual env with DALEX

Description

Python objects may be loaded into R. However, it requires versions of the Python and libraries to
match between both machines. This functions allow user to create conda virtual environment based
on provided .yml file.

Usage

create_env(yml, condaenv)

Arguments

yml a path to the .yml file. If OS is Windows conda has to be added to the PATH first

condaenv path to main conda folder. If OS is Unix You may want to specify it. When
passed with windows, param will be omitted.

Value

Name of created virtual env.

Author(s)

Szymon Maksymiuk

dalex_load_explainer 5

Examples

Not run:
create_env(system.file("extdata", "testing_environment.yml", package = "DALEXtra"))

End(Not run)

dalex_load_explainer DALEX load explainer

Description

Load DALEX explainer created with Python library into the R environment.

Usage

dalex_load_explainer(path)

Arguments

path Path to the pickle file with explainer saved.

Details

Function uses the reticulate package to load Python object saved in a pickle and make it acces-
sible within R session. It also adds explainer class to the object so it can be used with DALEX R
functions.

explain_h2o Create explainer from your h2o model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neu-
ral networks etc. Unfortunately R packages that create such models are very inconsistent. Different
tools use different interfaces to train, validate and use models. One of those tools, we would like to
make more accessible is H2O.

6 explain_h2o

Usage

explain_h2o(
model,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = NULL

)

Arguments

model object - a model to be explained

data data.frame or matrix - data which will be used to calculate the explanations. If
not provided, then it will be extracted from the model. Data should be passed
without a target column (this shall be provided as the y argument). NOTE: If the
target variable is present in the data, some of the functionalities may not work
properly.

y numeric vector with outputs/scores. If provided, then it shall have the same size
as data

weights numeric vector with sampling weights. By default it’s NULL. If provided, then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns a numeric
vector with predictions. By default it is yhat.

predict_function_target_column

Character or numeric containing either column name or column number in the
model prediction object of the class that should be considered as positive (i.e.
the class that is associated with probability 1). If NULL, the second column of
the output will be taken for binary classification. For a multiclass classification
setting, that parameter cause switch to binary classification mode with one vs
others probabilities.

residual_function

function that takes four arguments: model, data, target vector y and predict func-
tion (optionally). It should return a numeric vector with model residuals for
given data. If not provided, response residuals (y− ŷ) are calculated. By default
it is residual_function_default.

... other parameters

explain_h2o 7

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose logical. If TRUE (default) then diagnostic messages will be printed

precalculate logical. If TRUE (default) then predicted_values and residual are calcu-
lated when explainer is created. This will happen also if verbose is TRUE. Set
both verbose and precalculate to FALSE to omit calculations.

colorize logical. If TRUE (default) then WARNINGS, ERRORS and NOTES are colorized.
Will work only in the R console. Now by default it is FALSE while knitting and
TRUE otherwise.

model_info a named list (package, version, type) containing information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

load packages and data
library(h2o)
library(DALEXtra)

data <- DALEX::titanic_imputed

init h2o
cluster <- try(h2o::h2o.init())

if (!inherits(cluster, "try-error")) {
stop h2o progress printing
h2o.no_progress()

split the data
h2o_split <- h2o.splitFrame(as.h2o(data))
train <- h2o_split[[1]]
test <- as.data.frame(h2o_split[[2]])
h2o automl takes target as factor
train$survived <- as.factor(train$survived)

fit a model
automl <- h2o.automl(y = "survived",
training_frame = train,
max_runtime_secs = 30)

create an explainer for the model
explainer <- explain_h2o(automl,
data = test,

8 explain_keras

y = test$survived,
label = "h2o")

titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
titanic_h2o <- h2o::as.h2o(titanic_train)
titanic_h2o["survived"] <- h2o::as.factor(titanic_h2o["survived"])
titanic_test_h2o <- h2o::as.h2o(titanic_test)
model <- h2o::h2o.gbm(
training_frame = titanic_h2o,
y = "survived",
distribution = "bernoulli",
ntrees = 500,
max_depth = 4,
min_rows = 12,
learn_rate = 0.001
)
explain_h2o(model, titanic_test[,1:17], titanic_test[,18])

try(h2o.shutdown(prompt = FALSE))
}

explain_keras Wrapper for Python Keras Models

Description

Keras models may be loaded into R environment like any other Python object. This function helps
to inspect performance of Python model and compare it with other models, using R tools like
DALEX. This function creates an object that is easily accessible R version of Keras model exported
from Python via pickle file.

Usage

explain_keras(
path,
yml = NULL,
condaenv = NULL,
env = NULL,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
...,
label = NULL,

explain_keras 9

verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = NULL

)

Arguments

path a path to the pickle file. Can be used without other arguments if you are sure
that active Python version match pickle version.

yml a path to the yml file. Conda virtual env will be recreated from this file. If OS is
Windows conda has to be added to the PATH first

condaenv If yml param is provided, a path to the main conda folder. If yml is null, a name
of existing conda environment.

env A path to python virtual environment.

data data.frame or matrix - data which will be used to calculate the explanations. If
not provided, then it will be extracted from the model. Data should be passed
without a target column (this shall be provided as the y argument). NOTE: If the
target variable is present in the data, some of the functionalities may not work
properly.

y numeric vector with outputs/scores. If provided, then it shall have the same size
as data

weights numeric vector with sampling weights. By default it’s NULL. If provided, then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns a numeric
vector with predictions. By default it is yhat.

predict_function_target_column

Character or numeric containing either column name or column number in the
model prediction object of the class that should be considered as positive (i.e.
the class that is associated with probability 1). If NULL, the second column of
the output will be taken for binary classification. For a multiclass classification
setting, that parameter cause switch to binary classification mode with one vs
others probabilities.

residual_function

function that takes four arguments: model, data, target vector y and predict func-
tion (optionally). It should return a numeric vector with model residuals for
given data. If not provided, response residuals (y− ŷ) are calculated. By default
it is residual_function_default.

... other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose logical. If TRUE (default) then diagnostic messages will be printed

10 explain_keras

precalculate logical. If TRUE (default) then predicted_values and residual are calcu-
lated when explainer is created. This will happen also if verbose is TRUE. Set
both verbose and precalculate to FALSE to omit calculations.

colorize logical. If TRUE (default) then WARNINGS, ERRORS and NOTES are colorized.
Will work only in the R console. Now by default it is FALSE while knitting and
TRUE otherwise.

model_info a named list (package, version, type) containing information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

An object of the class ’explainer’.

Example of Python code available at documentation explain_scikitlearn

Errors use case
Here is shortened version of solution for specific errors

There already exists environment with a name specified by given .yml file
If you provide .yml file that in its header contains name exact to name of environment that already
exists, existing will be set active without changing it.
You have two ways of solving that issue. Both connected with anaconda prompt. First is removing
conda env with command:
conda env remove --name myenv
And execute function once again. Second is updating env via:
conda env create -f environment.yml

Conda cannot find specified packages at channels you have provided.
That error may be caused by a lot of things. One of those is that specified version is too old to
be available from the official conda repo. Edit Your .yml file and add link to proper repository at
channels section.

Issue may be also connected with the platform. If model was created on the platform with dif-
ferent OS yo may need to remove specific version from .yml file.
- numpy=1.16.4=py36h19fb1c0_0
- numpy-base=1.16.4=py36hc3f5095_0
In the example above You have to remove =py36h19fb1c0_0 and =py36hc3f5095_0
If some packages are not available for anaconda at all, use pip statement

If .yml file seems not to work, virtual env can be created manually using anaconda promt.
conda create -n name_of_env python=3.4
conda install -n name_of_env name_of_package=0.20

Author(s)

Szymon Maksymiuk

explain_mlr 11

Examples

library("DALEXtra")
Not run:

if (Sys.info()["sysname"] != "Darwin") {
Explainer build (Keep in mind that 9th column is target)
create_env(system.file("extdata", "testing_environment.yml", package = "DALEXtra"))
test_data <-
read.csv(

"https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv",
sep = ",")
Keep in mind that when pickle is being built and loaded,
not only Python version but libraries versions has to match aswell
explainer <- explain_keras(system.file("extdata", "keras.pkl", package = "DALEXtra"),
condaenv = "myenv",
data = test_data[,1:8], y = test_data[,9])
plot(model_performance(explainer))

Predictions with newdata
predict(explainer, test_data[1:10,1:8])

}

End(Not run)

explain_mlr Create explainer from your mlr model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neu-
ral networks etc. Unfortunately R packages that create such models are very inconsistent. Different
tools use different interfaces to train, validate and use models. One of those tools, which is one of
the most popular one is the mlr package. We would like to present dedicated explain function for it.

Usage

explain_mlr(
model,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
...,
label = NULL,

12 explain_mlr

verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = NULL

)

Arguments

model object - a model to be explained

data data.frame or matrix - data which will be used to calculate the explanations. If
not provided, then it will be extracted from the model. Data should be passed
without a target column (this shall be provided as the y argument). NOTE: If the
target variable is present in the data, some of the functionalities may not work
properly.

y numeric vector with outputs/scores. If provided, then it shall have the same size
as data

weights numeric vector with sampling weights. By default it’s NULL. If provided, then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns a numeric
vector with predictions. By default it is yhat.

predict_function_target_column

Character or numeric containing either column name or column number in the
model prediction object of the class that should be considered as positive (i.e.
the class that is associated with probability 1). If NULL, the second column of
the output will be taken for binary classification. For a multiclass classification
setting, that parameter cause switch to binary classification mode with one vs
others probabilities.

residual_function

function that takes four arguments: model, data, target vector y and predict func-
tion (optionally). It should return a numeric vector with model residuals for
given data. If not provided, response residuals (y− ŷ) are calculated. By default
it is residual_function_default.

... other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose logical. If TRUE (default) then diagnostic messages will be printed

precalculate logical. If TRUE (default) then predicted_values and residual are calcu-
lated when explainer is created. This will happen also if verbose is TRUE. Set
both verbose and precalculate to FALSE to omit calculations.

colorize logical. If TRUE (default) then WARNINGS, ERRORS and NOTES are colorized.
Will work only in the R console. Now by default it is FALSE while knitting and
TRUE otherwise.

model_info a named list (package, version, type) containing information about model. If
NULL, DALEX will seek for information on it’s own.

explain_mlr3 13

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

library("DALEXtra")
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
library("mlr")
task <- mlr::makeClassifTask(
id = "R",
data = titanic_train,
target = "survived"
)
learner <- mlr::makeLearner(

"classif.gbm",
par.vals = list(
distribution = "bernoulli",
n.trees = 500,
interaction.depth = 4,
n.minobsinnode = 12,
shrinkage = 0.001,
bag.fraction = 0.5,
train.fraction = 1

),
predict.type = "prob"

)
gbm <- mlr::train(learner, task)
explain_mlr(gbm, titanic_test[,1:17], titanic_test[,18])

explain_mlr3 Create explainer from your mlr model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neu-
ral networks etc. Unfortunately R packages that create such models are very inconsistent. Different
tools use different interfaces to train, validate and use models. One of those tools, which is one of
the most popular one is mlr3 package. We would like to present dedicated explain function for it.

Usage

explain_mlr3(
model,

14 explain_mlr3

data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = NULL

)

Arguments

model object - a model to be explained

data data.frame or matrix - data which will be used to calculate the explanations. If
not provided, then it will be extracted from the model. Data should be passed
without a target column (this shall be provided as the y argument). NOTE: If the
target variable is present in the data, some of the functionalities may not work
properly.

y numeric vector with outputs/scores. If provided, then it shall have the same size
as data

weights numeric vector with sampling weights. By default it’s NULL. If provided, then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns a numeric
vector with predictions. By default it is yhat.

predict_function_target_column

Character or numeric containing either column name or column number in the
model prediction object of the class that should be considered as positive (i.e.
the class that is associated with probability 1). If NULL, the second column of
the output will be taken for binary classification. For a multiclass classification
setting, that parameter cause switch to binary classification mode with one vs
others probabilities.

residual_function

function that takes four arguments: model, data, target vector y and predict func-
tion (optionally). It should return a numeric vector with model residuals for
given data. If not provided, response residuals (y− ŷ) are calculated. By default
it is residual_function_default.

... other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose logical. If TRUE (default) then diagnostic messages will be printed

explain_scikitlearn 15

precalculate logical. If TRUE (default) then predicted_values and residual are calcu-
lated when explainer is created. This will happen also if verbose is TRUE. Set
both verbose and precalculate to FALSE to omit calculations.

colorize logical. If TRUE (default) then WARNINGS, ERRORS and NOTES are colorized.
Will work only in the R console. Now by default it is FALSE while knitting and
TRUE otherwise.

model_info a named list (package, version, type) containing information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

library("DALEXtra")
library(mlr3)
titanic_imputed$survived <- as.factor(titanic_imputed$survived)
task_classif <- TaskClassif$new(id = "1", backend = titanic_imputed, target = "survived")
learner_classif <- lrn("classif.rpart", predict_type = "prob")
learner_classif$train(task_classif)
explain_mlr3(learner_classif, data = titanic_imputed,

y = as.numeric(as.character(titanic_imputed$survived)))

task_regr <- TaskRegr$new(id = "2", backend = apartments, target = "m2.price")
learner_regr <- lrn("regr.rpart")
learner_regr$train(task_regr)
explain_mlr3(learner_regr, data = apartments, apartments$m2.price)

explain_scikitlearn Wrapper for Python Scikit-Learn Models

Description

scikit-learn models may be loaded into R environment like any other Python object. This function
helps to inspect performance of Python model and compare it with other models, using R tools like
DALEX. This function creates an object that is easily accessible R version of scikit-learn model
exported from Python via pickle file.

16 explain_scikitlearn

Usage

explain_scikitlearn(
path,
yml = NULL,
condaenv = NULL,
env = NULL,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = NULL

)

Arguments

path a path to the pickle file. Can be used without other arguments if you are sure
that active Python version match pickle version.

yml a path to the yml file. Conda virtual env will be recreated from this file. If OS is
Windows conda has to be added to the PATH first

condaenv If yml param is provided, a path to the main conda folder. If yml is null, a name
of existing conda environment.

env A path to python virtual environment.

data data.frame or matrix - data which will be used to calculate the explanations. If
not provided, then it will be extracted from the model. Data should be passed
without a target column (this shall be provided as the y argument). NOTE: If the
target variable is present in the data, some of the functionalities may not work
properly.

y numeric vector with outputs/scores. If provided, then it shall have the same size
as data

weights numeric vector with sampling weights. By default it’s NULL. If provided, then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns a numeric
vector with predictions. By default it is yhat.

predict_function_target_column

Character or numeric containing either column name or column number in the
model prediction object of the class that should be considered as positive (i.e.
the class that is associated with probability 1). If NULL, the second column of

explain_scikitlearn 17

the output will be taken for binary classification. For a multiclass classification
setting, that parameter cause switch to binary classification mode with one vs
others probabilities.

residual_function

function that takes four arguments: model, data, target vector y and predict func-
tion (optionally). It should return a numeric vector with model residuals for
given data. If not provided, response residuals (y− ŷ) are calculated. By default
it is residual_function_default.

... other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose logical. If TRUE (default) then diagnostic messages will be printed

precalculate logical. If TRUE (default) then predicted_values and residual are calcu-
lated when explainer is created. This will happen also if verbose is TRUE. Set
both verbose and precalculate to FALSE to omit calculations.

colorize logical. If TRUE (default) then WARNINGS, ERRORS and NOTES are colorized.
Will work only in the R console. Now by default it is FALSE while knitting and
TRUE otherwise.

model_info a named list (package, version, type) containing information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

An object of the class ’explainer’. It has additional field param_set when user can check parameters
of scikit-learn model

Example of Python code

from pandas import DataFrame, read_csv
import pandas as pd
import pickle
import sklearn.ensemble
model = sklearn.ensemble.GradientBoostingClassifier()
model = model.fit(titanic_train_X, titanic_train_Y)
pickle.dump(model, open("gbm.pkl", "wb"), protocol = 2)

In order to export environment into .yml, activating virtual env via activate name_of_the_env
and execution of the following shell command is necessary
conda env export > environment.yml

Errors use case
Here is shortened version of solution for specific errors

18 explain_scikitlearn

There already exists environment with a name specified by given .yml file
If you provide .yml file that in its header contatins name exact to name of environment that already
exists, existing will be set active without changing it.
You have two ways of solving that issue. Both connected with anaconda prompt. First is removing
conda env with command:
conda env remove --name myenv
And execute function once again. Second is updating env via:
conda env create -f environment.yml

Conda cannot find specified packages at channels you have provided.
That error may be casued by a lot of things. One of those is that specified version is too old to be
avaialble from offcial conda repo. Edit Your .yml file and add link to proper repository at channels
section.

Issue may be also connected with the platform. If model was created on the platform with dif-
ferent OS yo may need to remove specific version from .yml file.
- numpy=1.16.4=py36h19fb1c0_0
- numpy-base=1.16.4=py36hc3f5095_0
In the example above You have to remove =py36h19fb1c0_0 and =py36hc3f5095_0
If some packages are not availbe for anaconda at all, use pip statement

If .yml file seems not to work, virtual env can be created manually using anaconda promt.
conda create -n name_of_env python=3.4
conda install -n name_of_env name_of_package=0.20

Author(s)

Szymon Maksymiuk

Examples

Not run:

if (Sys.info()["sysname"] != "Darwin") {
Explainer build (Keep in mind that 18th column is target)

titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
Keep in mind that when pickle is being built and loaded,
not only Python version but libraries versions has to match aswell

explainer <- explain_scikitlearn(system.file("extdata", "scikitlearn.pkl", package = "DALEXtra"),
yml = system.file("extdata", "testing_environment.yml", package = "DALEXtra"),
data = titanic_test[,1:17], y = titanic_test$survived)
plot(model_performance(explainer))

Predictions with newdata
predict(explainer, titanic_test[1:10,1:17])

}

End(Not run)

explain_tidymodels 19

explain_tidymodels Create explainer from your tidymodels workflow.

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models,
neural networks etc. Unfortunately R packages that create such models are very inconsistent. Dif-
ferent tools use different interfaces to train, validate and use models. One of those tools, which is
one of the most popular one is the tidymodels package. We would like to present dedicated explain
function for it.

Usage

explain_tidymodels(
model,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = NULL

)

Arguments

model object - a model to be explained

data data.frame or matrix - data which will be used to calculate the explanations. If
not provided, then it will be extracted from the model. Data should be passed
without a target column (this shall be provided as the y argument). NOTE: If the
target variable is present in the data, some of the functionalities may not work
properly.

y numeric vector with outputs/scores. If provided, then it shall have the same size
as data

weights numeric vector with sampling weights. By default it’s NULL. If provided, then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns a numeric
vector with predictions. By default it is yhat.

20 explain_tidymodels

predict_function_target_column

Character or numeric containing either column name or column number in the
model prediction object of the class that should be considered as positive (i.e.
the class that is associated with probability 1). If NULL, the second column of
the output will be taken for binary classification. For a multiclass classification
setting, that parameter cause switch to binary classification mode with one vs
others probabilities.

residual_function

function that takes four arguments: model, data, target vector y and predict func-
tion (optionally). It should return a numeric vector with model residuals for
given data. If not provided, response residuals (y− ŷ) are calculated. By default
it is residual_function_default.

... other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose logical. If TRUE (default) then diagnostic messages will be printed

precalculate logical. If TRUE (default) then predicted_values and residual are calcu-
lated when explainer is created. This will happen also if verbose is TRUE. Set
both verbose and precalculate to FALSE to omit calculations.

colorize logical. If TRUE (default) then WARNINGS, ERRORS and NOTES are colorized.
Will work only in the R console. Now by default it is FALSE while knitting and
TRUE otherwise.

model_info a named list (package, version, type) containing information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

library("DALEXtra")
library("tidymodels")
library("recipes")
data <- titanic_imputed
data$survived <- as.factor(data$survived)
rec <- recipe(survived ~ ., data = data) %>%

step_normalize(fare)
model <- decision_tree(tree_depth = 25) %>%

set_engine("rpart") %>%
set_mode("classification")

wflow <- workflow() %>%
add_recipe(rec) %>%
add_model(model)

explain_xgboost 21

model_fitted <- wflow %>%
fit(data = data)

explain_tidymodels(model_fitted, data = titanic_imputed, y = titanic_imputed$survived)

explain_xgboost Create explainer from your xgboost model

Description

DALEX is designed to work with various black-box models like tree ensembles, linear models, neu-
ral networks etc. Unfortunately R packages that create such models are very inconsistent. Different
tools use different interfaces to train, validate and use models. One of those tools, we would like to
make more accessible is the xgboost package.

Usage

explain_xgboost(
model,
data = NULL,
y = NULL,
weights = NULL,
predict_function = NULL,
predict_function_target_column = NULL,
residual_function = NULL,
...,
label = NULL,
verbose = TRUE,
precalculate = TRUE,
colorize = !isTRUE(getOption("knitr.in.progress")),
model_info = NULL,
type = NULL

)

Arguments

model object - a model to be explained

data data.frame or matrix - data which will be used to calculate the explanations. If
not provided, then it will be extracted from the model. Data should be passed
without a target column (this shall be provided as the y argument). NOTE: If the
target variable is present in the data, some of the functionalities may not work
properly.

y numeric vector with outputs/scores. If provided, then it shall have the same size
as data

22 explain_xgboost

weights numeric vector with sampling weights. By default it’s NULL. If provided, then it
shall have the same length as data

predict_function

function that takes two arguments: model and new data and returns a numeric
vector with predictions. By default it is yhat.

predict_function_target_column

Character or numeric containing either column name or column number in the
model prediction object of the class that should be considered as positive (i.e.
the class that is associated with probability 1). If NULL, the second column of
the output will be taken for binary classification. For a multiclass classification
setting, that parameter cause switch to binary classification mode with one vs
others probabilities.

residual_function

function that takes four arguments: model, data, target vector y and predict func-
tion (optionally). It should return a numeric vector with model residuals for
given data. If not provided, response residuals (y− ŷ) are calculated. By default
it is residual_function_default.

... other parameters

label character - the name of the model. By default it’s extracted from the ’class’
attribute of the model

verbose logical. If TRUE (default) then diagnostic messages will be printed

precalculate logical. If TRUE (default) then predicted_values and residual are calcu-
lated when explainer is created. This will happen also if verbose is TRUE. Set
both verbose and precalculate to FALSE to omit calculations.

colorize logical. If TRUE (default) then WARNINGS, ERRORS and NOTES are colorized.
Will work only in the R console. Now by default it is FALSE while knitting and
TRUE otherwise.

model_info a named list (package, version, type) containing information about model. If
NULL, DALEX will seek for information on it’s own.

type type of a model, either classification or regression. If not specified then
type will be extracted from model_info.

Value

explainer object (explain) ready to work with DALEX

Examples

library("xgboost")
library("DALEXtra")
8th column is target that has to be omitted in X data
data <- titanic_imputed[,-8]
y <- titanic_imputed$survived
model <- xgboost(data, as.factor(y), nrounds = 10,

objective = "binary:logistic", nthreads = 1)

explainer_1 <- explain_xgboost(model, data = titanic_imputed[,-8],

funnel_measure 23

titanic_imputed$survived)
plot(predict_parts(explainer_1, titanic_imputed[1,-8]))

funnel_measure Caluculate difference in performance in models across different cate-
gories

Description

Function funnel_measure allows users to compare two models based on their explainers. It parti-
tions dataset on which models were built and creates categories according to quantiles of columns in
parition data. nbins parameter determines number of quantiles. For each category difference in
provided measure is being calculated. Positive value of that difference means that Champion model
has better performance in specified category, while negative value means that one of the Challengers
was better. Function allows to compare multiple Challengers at once.

Usage

funnel_measure(
champion,
challengers,
measure_function = NULL,
nbins = 5,
partition_data = champion$data,
cutoff = 0.01,
cutoff_name = "Other",
factor_conversion_threshold = 7,
show_info = TRUE,
categories = NULL

)

Arguments

champion - explainer of champion model.

challengers - explainer of challenger model or list of explainers.
measure_function

- measure function that calculates performance of model based on true observa-
tion and prediction. Order of parameters is important and should be (y, y_hat).
The measure calculated by the function should have the property that lower score
value indicates better model. If NULL, RMSE will be used for regression, one
minus auc for classification and crossentropy for multiclass classification.

nbins - Number of quantiles (partition points) for numeric columns. In case when
more than one quantile have the same value, there will be less partition points.

24 funnel_measure

partition_data - Data by which test dataset will be partitioned for computation. Can be either
data.frame or character vector. When second is passed, it has to indicate names
of columns that will be extracted from test data. By default full test data. If
data.frame, number of rows has to be equal to number of rows in test data.

cutoff - Threshold for categorical data. Entries less frequent than specified value will
be merged into one category.

cutoff_name - Name for new category that arised after merging entries less frequent than
cutoff

factor_conversion_threshold

- Numeric columns with lower number of unique values than value of this pa-
rameter will be treated as factors

show_info - Logical value indicating if progress bar should be shown.

categories - a named list of variable names that will be plotted in a different colour. By
default it is partitioned on Explanatory, External and Target.

Value

An object of the class funnel_measure

It is a named list containing following fields:

• data data.frame that consists of columns:

– Variable Variable according to which partitions were made
– Measure Difference in measures. Positive value indicates that champion was better, while

negative that challenger.
– Label String that defines subset of Variable values (partition rule).
– Challenger Label of challenger explainer that was used in Measure

– Category a category of the variable passed to function

• models_info data.frame containing information about models used in analysis

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.ranger"

)
model_rf <- mlr::train(learner_rf, task)

model_info.WrappedModel 25

explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
nbins = 5, measure_function = DALEX::loss_root_mean_square)

plot(plot_data)

model_info.WrappedModel

Exract info from model

Description

This generic function let user extract base information about model. The function returns a named
list of class model_info that contain about package of model, version and task type. For wrappers
like mlr or caret both, package and wrapper information are stored

Usage

S3 method for class 'WrappedModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'H2ORegressionModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'H2OBinomialModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'H2OMultinomialModel'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'scikitlearn_model'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'keras'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'LearnerRegr'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'LearnerClassif'

26 overall_comparison

model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'GraphLearner'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'xgb.Booster'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'workflow'
model_info(model, is_multiclass = FALSE, ...)

S3 method for class 'model_stack'
model_info(model, is_multiclass = FALSE, ...)

Arguments

model - model object

is_multiclass - if TRUE and task is classification, then multitask classification is set. Else is
omitted. If model_info was executed withing explain function. DALEX will
recognize subtype on it’s own. @param is_multiclass

... - another arguments

Details

Currently supported packages are:

• mlr models created with mlr package

• h2o models created with h2o package

• scikit-learn models created with scikit-learn Python library and accessed via reticulate

• keras models created with keras Python library and accessed via reticulate

• mlr3 models created with mlr3 package

• xgboost models created with xgboost package

• tidymodels models created with tidymodels package

Value

A named list of class model_info

overall_comparison Compare champion with challengers globally

Description

The function creates objects that present global model performance using various measures. Those
date can be easily plotted with plot function. It uses auditor package to create model_performance
of all passed explainers. Keep in mind that type of task has to be specified.

overall_comparison 27

Usage

overall_comparison(champion, challengers, type)

Arguments

champion - explainer of champion model.
challengers - explainer of challenger model or list of explainers.
type - type of the task. Either classification or regression

Value

An object of the class overall_comparison

It is a named list containing following fields:

• radar list of model_performance objects and other parameters that will be passed to generic
plot function

• accordance data.frame object of champion responses and challenger’s corresponding to them.
Used to plot accordance.

• models_info data.frame containing information about models used in analysis

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.ranger"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "gbm")

data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
plot(data)

28 plot.funnel_measure

plot.funnel_measure Funnel plot for difference in measures

Description

Function plot.funnel_measure creates funnel plot of differences in measures for two models
across variable areas. It uses data created with ’funnel_measure’ function.

Usage

S3 method for class 'funnel_measure'
plot(x, ..., dot_size = 0.5)

Arguments

x - funnel_measure object created with funnel_measure function.

... - other parameters

dot_size - size of the dot on plots. Passed to geom_point.

Value

ggplot object

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.ranger"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot.overall_comparison 29

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
nbins = 5, measure_function = DALEX::loss_root_mean_square)

plot(plot_data)

plot.overall_comparison

Plot function for overall_comparison

Description

The function plots data created with overall_comparison. For radar plot it uses auditor’s plot_radar.
Keep in mind that the function creates two plots returned as list.

Usage

S3 method for class 'overall_comparison'
plot(x, ...)

Arguments

x - data created with overall_comparison

... - other parameters

Value

A named list of ggplot objects.

It consists of:

• radar_plot plot created with plot_radar

• accordance_plot accordance plot of responses. OX axis stand for champion response, while
OY for one of challengers responses. Colour indicates on challenger.

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)

30 plot.training_test_comparison

explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.ranger"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm<- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
plot(data)

plot.training_test_comparison

Plot and compare performance of model between training and test set

Description

Function plot.training_test_comparison plots dependency between model performance on
test and training dataset based on training_test_comparison object. Green line indicates y =
x line.

Usage

S3 method for class 'training_test_comparison'
plot(x, ...)

Arguments

x - object created with training_test_comparison function.

... - other parameters

Value

ggplot object

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,

predict_surrogate 31

target = "m2.price"
)
learner_lm <- mlr::makeLearner(
"regr.lm"

)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.ranger"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- training_test_comparison(explainer_lm, list(explainer_gbm, explainer_rf),
training_data = apartments,
training_y = apartments$m2.price)

plot(data)

predict_surrogate Instance Level Surrogate Models

Description

Interface to different implementations of the LIME method. Find information how the LIME
method works here: https://ema.drwhy.ai/LIME.html.

Usage

predict_surrogate(explainer, new_observation, ..., type = "localModel")

predict_surrogate_local_model(
explainer,
new_observation,
size = 1000,
seed = 1313,
...

)

predict_model.dalex_explainer(x, newdata, ...)

model_type.dalex_explainer(x, ...)

https://ema.drwhy.ai/LIME.html

32 predict_surrogate

predict_surrogate_lime(
explainer,
new_observation,
n_features = 4,
n_permutations = 1000,
labels = unique(explainer$y)[1],
...

)

S3 method for class 'predict_surrogate_lime'
plot(x, ...)

predict_surrogate_iml(explainer, new_observation, k = 4, ...)

Arguments

explainer a model to be explained, preprocessed by the ’explain’ function

new_observation

a new observation for which predictions need to be explained

... other parameters that will be passed to

type which implementation of thee LIME method should be used. Either localModel
(default), lime or iml.

size will be passed to the localModel implementation, by default 1000

seed seed for random number generator, by default 1313

x an object to be plotted

newdata alias for new_observation

n_features will be passed to the lime implementation, by default 4

n_permutations will be passed to the lime implementation, by default 1000

labels will be passed to the lime implementation, by default first value in the y vector

k will be passed to the iml implementation, by default 4

Value

Depending on the type there are different classess of the resulting object.

References

Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.
drwhy.ai/

https://ema.drwhy.ai/
https://ema.drwhy.ai/

print.funnel_measure 33

print.funnel_measure Print funnel_measure object

Description

Print funnel_measure object

Usage

S3 method for class 'funnel_measure'
print(x, ...)

Arguments

x an object of class funnel_measure

... other parameters

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.ranger"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

plot_data <- funnel_measure(explainer_lm, list(explainer_rf, explainer_gbm),
nbins = 5, measure_function = DALEX::loss_root_mean_square)

print(plot_data)

34 print.overall_comparison

print.overall_comparison

Print overall_comparison object

Description

Print overall_comparison object

Usage

S3 method for class 'overall_comparison'
print(x, ...)

Arguments

x an object of class overall_comparison

... other parameters

Examples

library("DALEXtra")
library("mlr")
task <- mlr::makeRegrTask(

id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(

"regr.lm"
)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.ranger"

)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"

)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "gbm")

data <- overall_comparison(explainer_lm, list(explainer_gbm, explainer_rf), type = "regression")
print(data)

print.scikitlearn_set 35

print.scikitlearn_set Prints scikitlearn_set class

Description

Prints scikitlearn_set class

Usage

S3 method for class 'scikitlearn_set'
print(x, ...)

Arguments

x a list from explainer created with explain_scikitlearn

... other arguments

print.training_test_comparison

Print funnel_measure object

Description

Print funnel_measure object

Usage

S3 method for class 'training_test_comparison'
print(x, ...)

Arguments

x an object of class funnel_measure

... other parameters

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(
"regr.lm"

36 training_test_comparison

)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.ranger"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- training_test_comparison(explainer_lm, list(explainer_gbm, explainer_rf),
training_data = apartments,
training_y = apartments$m2.price)

print(data)

training_test_comparison

Compare performance of model between training and test set

Description

Function training_test_comparison calculates performance of the provided model based on
specified measure function. Response of the model is calculated based on test data, extracted from
the explainer and training data, provided by the user. Output can be easily shown with print or
plot function.

Usage

training_test_comparison(
champion,
challengers,
training_data,
training_y,
measure_function = NULL

)

Arguments

champion - explainer of champion model.

challengers - explainer of challenger model or list of explainers.

training_data - data without target column that will be passed to predict function and then to
measure function. Keep in mind that they have to differ from data passed to an
explainer.

training_test_comparison 37

training_y - target column for training_data
measure_function

- measure function that calculates performance of model based on true observa-
tion and prediction. Order of parameters is important and should be (y, y_hat).
By default it is RMSE.

Value

An object of the class training_test_comparison.

It is a named list containing:

• data data.frame with following columns

– measure_test performance on test set
– measure_train performance on training set
– label label of explainer
– type flag that indicates if explainer was passed as champion or as challenger.

• models_info data.frame containing information about models used in analysis

Examples

library("mlr")
library("DALEXtra")
task <- mlr::makeRegrTask(
id = "R",
data = apartments,
target = "m2.price"

)
learner_lm <- mlr::makeLearner(
"regr.lm"

)
model_lm <- mlr::train(learner_lm, task)
explainer_lm <- explain_mlr(model_lm, apartmentsTest, apartmentsTest$m2.price, label = "LM")

learner_rf <- mlr::makeLearner(
"regr.ranger"
)
model_rf <- mlr::train(learner_rf, task)
explainer_rf <- explain_mlr(model_rf, apartmentsTest, apartmentsTest$m2.price, label = "RF")

learner_gbm <- mlr::makeLearner(
"regr.gbm"
)
model_gbm <- mlr::train(learner_gbm, task)
explainer_gbm <- explain_mlr(model_gbm, apartmentsTest, apartmentsTest$m2.price, label = "GBM")

data <- training_test_comparison(explainer_lm, list(explainer_gbm, explainer_rf),
training_data = apartments,
training_y = apartments$m2.price)

plot(data)

38 yhat.WrappedModel

yhat.WrappedModel Wrapper over the predict function

Description

These functions are default predict functions. Each function returns a single numeric score for each
new observation. Those functions are very important since information from many models have to
be extracted with various techniques.

Usage

S3 method for class 'WrappedModel'
yhat(X.model, newdata, ...)

S3 method for class 'H2ORegressionModel'
yhat(X.model, newdata, ...)

S3 method for class 'H2OBinomialModel'
yhat(X.model, newdata, ...)

S3 method for class 'H2OMultinomialModel'
yhat(X.model, newdata, ...)

S3 method for class 'scikitlearn_model'
yhat(X.model, newdata, ...)

S3 method for class 'keras'
yhat(X.model, newdata, ...)

S3 method for class 'LearnerRegr'
yhat(X.model, newdata, ...)

S3 method for class 'LearnerClassif'
yhat(X.model, newdata, ...)

S3 method for class 'GraphLearner'
yhat(X.model, newdata, ...)

S3 method for class 'xgb.Booster'
yhat(X.model, newdata, ...)

S3 method for class 'workflow'
yhat(X.model, newdata, ...)

S3 method for class 'model_stack'
yhat(X.model, newdata, ...)

yhat.WrappedModel 39

Arguments

X.model object - a model to be explained

newdata data.frame or matrix - observations for prediction

... other parameters that will be passed to the predict function

Details

Currently supported packages are:

• mlr see more in explain_mlr

• h2o see more in explain_h2o

• scikit-learn see more in explain_scikitlearn

• keras see more in explain_keras

• mlr3 see more in explain_mlr3

• xgboost see more in explain_xgboost

• tidymodels see more in explain_tidymodels

Value

An numeric vector of predictions

Index

champion_challenger, 2
create_env, 4

dalex_load_explainer, 5

explain, 7, 13, 15, 20, 22
explain_h2o, 5, 39
explain_keras, 8, 39
explain_mlr, 11, 39
explain_mlr3, 13, 39
explain_scikitlearn, 10, 15, 35, 39
explain_tidymodels, 19, 39
explain_xgboost, 21, 39

funnel_measure, 2, 3, 23, 28

geom_point, 28

model_info.GraphLearner
(model_info.WrappedModel), 25

model_info.H2OBinomialModel
(model_info.WrappedModel), 25

model_info.H2OMultinomialModel
(model_info.WrappedModel), 25

model_info.H2ORegressionModel
(model_info.WrappedModel), 25

model_info.keras
(model_info.WrappedModel), 25

model_info.LearnerClassif
(model_info.WrappedModel), 25

model_info.LearnerRegr
(model_info.WrappedModel), 25

model_info.model_stack
(model_info.WrappedModel), 25

model_info.scikitlearn_model
(model_info.WrappedModel), 25

model_info.workflow
(model_info.WrappedModel), 25

model_info.WrappedModel, 25
model_info.xgb.Booster

(model_info.WrappedModel), 25

model_performance, 26, 27
model_type.dalex_explainer

(predict_surrogate), 31

overall_comparison, 2, 3, 26, 29

plot.funnel_measure, 3, 28
plot.overall_comparison, 29
plot.predict_surrogate_lime

(predict_surrogate), 31
plot.training_test_comparison, 30
plot_radar, 29
predict_model.dalex_explainer

(predict_surrogate), 31
predict_parts (predict_surrogate), 31
predict_parts_break_down

(predict_surrogate), 31
predict_parts_ibreak_down

(predict_surrogate), 31
predict_parts_shap (predict_surrogate),

31
predict_surrogate, 31
predict_surrogate_iml

(predict_surrogate), 31
predict_surrogate_lime

(predict_surrogate), 31
predict_surrogate_local_model

(predict_surrogate), 31
print.funnel_measure, 33
print.overall_comparison, 34
print.scikitlearn_set, 35
print.training_test_comparison, 35

training_test_comparison, 2, 3, 30, 36

yhat.GraphLearner (yhat.WrappedModel),
38

yhat.H2OBinomialModel
(yhat.WrappedModel), 38

yhat.H2OMultinomialModel
(yhat.WrappedModel), 38

40

INDEX 41

yhat.H2ORegressionModel
(yhat.WrappedModel), 38

yhat.keras (yhat.WrappedModel), 38
yhat.LearnerClassif

(yhat.WrappedModel), 38
yhat.LearnerRegr (yhat.WrappedModel), 38
yhat.model_stack (yhat.WrappedModel), 38
yhat.scikitlearn_model

(yhat.WrappedModel), 38
yhat.workflow (yhat.WrappedModel), 38
yhat.WrappedModel, 38
yhat.xgb.Booster (yhat.WrappedModel), 38

	champion_challenger
	create_env
	dalex_load_explainer
	explain_h2o
	explain_keras
	explain_mlr
	explain_mlr3
	explain_scikitlearn
	explain_tidymodels
	explain_xgboost
	funnel_measure
	model_info.WrappedModel
	overall_comparison
	plot.funnel_measure
	plot.overall_comparison
	plot.training_test_comparison
	predict_surrogate
	print.funnel_measure
	print.overall_comparison
	print.scikitlearn_set
	print.training_test_comparison
	training_test_comparison
	yhat.WrappedModel
	Index

